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Abstract. In this paper we associate to generalized cones of rank k in
RN certain convex cones in the space of alternate k-linear forms over
RN . As a first consequence, we show a new proof of a Perron-Frobenius
theorem for generalized positive operators. Afterwards, we give an appli-
cation to the stability of periodic orbits of some monotone autonomous
systems.

1. Introduction

Convex cones and positive operators have become undoubtedly one of the
most extensively studied objects of linear algebra. The main reason for this
is the enormous amount of applications that they find in pure and applied
mathematics (see [2] and [7]). For instance the field of differential equations
has employed the concepts of monotonicity and positivity to construct what
is now known as the theory of monotone systems (see [6, 12]). Many results
concerning the dynamical behavior of these systems have been reported
in recent years, exerting major impact especially in equations arising in
biological models.

An outstanding property of positive operators is provided by the Perron-
Frobenius theory. This shows the existence of dominant eigenvalues associ-
ated with positive eigenvectors and other relevant spectral features. In [2]
and [7] a wide account is given of the extreme importance of this property
in applying positive operator theory to concrete problems.

Soon some researchers tried to extend the techniques related to positivity
in order to study spectral properties of similar operators. A key advance is
presented in [7] with the introduction of the new concept of cone of rank
k (where k is a positive integer). A convenient extension of the notion
of positive operator led to a generalized Perron-Frobenius theory that for
example provided a new geometric insight into the classical work [5] by
Gantmacher on totally positive operators.

In [10], we have taken a step forward in the use of these generalized cones
through the introduction of a new class of monotone differential systems.
More precisely, we have proven that monotone systems with respect to cones
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of rank 2 possess a Poincaré-Bendixson property. This allows us to extend
several results on periodic orbits from the classical two-dimensional setting
to any (finite) dimension.

Subsequent research has led us to establish a useful link between convex
cones and generalized cones which have a strong incidence on the stability
of periodic orbits. To be concrete, given C a cone of rank k in RN , we have
constructed certain convex cones K in the space of k-linear alternate forms
over RN in such a way that positive operators with respect to C induce
positive operators (in the usual sense) with respect to K. Our aim in this
paper is to carry out this construction and indicate some of its applications.
The first one is a new proof of the Perron-Frobenus results in [4] and [7].
This proof may offer some interest insofar as, unlike the preceding works, it
has a pure geometric nature and does not rely on a fixed point argument.

We notice that k-linear alternate forms were employed in the above-
mentioned work of Gantmacher and Krein (see also T. Ando in [1]). The
reason is that total positivity has a straightforward formulation in terms of
what they call skew-symmetric product of vectors. This paper can be viewed
as a broad generalization of that theory through its combination with the
geometrical perspective adopted in [7].

The paper is organized as follows. In next section, we summarize some
properties of k-linear alternate forms. We mention some purely algebraic
ones and offer a wider explanation of some geometrical and topological as-
pects that will be especially relevant in our work.

In the third section, we review the concept of cone of rank k (k ∈ N),
and we construct the associated convex cones in Λk the space of alternate
k-linear forms. We also complete the basic definitions with some additional
noteworthy properties of the cones.

Section 4 deals with the generalized positive operators and how they in-
duce positive operators with respect to the associated convex cones in Λk.
This will allow us to provide a new proof of a Perron-Frobenius theorem for
such operators based on the classical Perron-Frobenius theory.

In section 5, we apply our work to a very well-known example of a general-
ized cone defined by means of the number of sign changes in the coordinates
of vectors in RN . Many of the results shown there are already present in
[1, 5, 7], at least implicitly. Our aim is simply to reformulate them in order
to fit them into our new general approach.

In the final section, we go back to our motivating problem, which is the
study of the stability of periodic orbits of the new autonomous systems
introduced in [10]. We merely indicate the applications we have in mind
and leave further study to future works.

2. Some background on alternate multilinear forms

We first enumerate some basic properties of alternate multilinear forms.
A thorough treatment of them can be found in [13].
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Let Λk denote the space of alternate k-linear forms over RN . The decom-
posable elements of Λk are those written as x1∧x2∧ . . .∧xk where xi ∈ RN .
These forms act over vectors y1, . . . , yk ∈ RN according to the formula

x1 ∧ . . . ∧ xk(y1, . . . , yk) = Det(〈xi, yj〉).
(〈·, ·〉 stands for the usual scalar product in RN ).
Each element in Λk is a linear combination of decomposable k-forms. In

fact, if B = {e1, . . . , eN} is a basis of RN , then

Bk = {ei1 ∧ . . . ∧ eik : 1 ≤ i1 < i2 < · · · < ik ≤ N}

is a basis of Λk. In particular dim Λk =
(
N
k

)
.

The formula

〈x1 ∧ . . . ∧ xk, y1 ∧ . . . ∧ yk〉 = x1 ∧ . . . ∧ xk(y1, . . . , yk)

defines (through the obvious extension by linearity) a scalar product in Λk. If
B is an orthogonal (resp. orthonormal) basis of RN , then Bk is an orthogonal
(resp. orthonormal) basis of Λk.

To work with coordinates, let us introduce some notation concerning
minors of matrices. Let A = (aji ) be a matrix of order N1 × N2 and
α = (α1, . . . , αk), β = (β1, . . . , βk) with positive integer components such
that 1 ≤ α1 < α2 < · · · < αk ≤ N1, 1 ≤ β1 < β2 < · · · < βk ≤ N2. Let mβ

α

be the determinant of (aβj
αi) with i, j = 1, . . . , k. Giving the lexicographic

ordering to the set of vectors with positive integer components, we can then
construct the matrix A(k) = (mβ

α), called the k-th multiplicative compound
of A.

Let (xi1, . . . , x
i
N ) be the coordinates of xi with respect to the basis B for

i = 1, . . . , k. Then the coordinates of x1 ∧ . . . ∧ xk with respect to the basis
Bk of Λk is just the k-th multiplicative compound of the matrix M = (xij).

Let T : RN → RN be a linear map. The k-th multiplicative compound
T (k) : Λk → Λk is defined as

T (k)(x1 ∧ . . . ∧ xk) = Tx1 ∧ . . . ∧ Txk

over decomposable elements and extended linearly to all Λk. If A is the
matrix representation of T with respect a basis B, then A(k) is the matrix
representation of T (k) with respect to Bk.

Multiplicative compounds have two remarkable properties:
a) Cauchy-Binet Formula: (AB)(k) = A(k)B(k).
b) The spectrum of A(k) is

Sp(A(k)) = {µi1µi2 . . . µik : 1 ≤ i1 < · · · < ik ≤ N}

where Sp(A) = {µ1, . . . , µN} is the spectrum of A.
The form x1∧. . .∧xk is zero if and only if x1, . . . , xk are linearly dependent.

Moreover the forms x1 ∧ . . . ∧ xk and y1 ∧ . . . ∧ yk (different from zero) are
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linearly dependent if and only if

L[x1, . . . , xk] = L[y1, . . . , yk],

where L[u1, . . . , um] stands for the linear subspace generated by {u1, . . . , um}.
As a consequence, every subspace of dimension k of RN can be identified up
to a nonzero constant with a decomposable element of Λk.

Now, in more detail, we discuss some properties of topological nature
which will be useful later. First, the applications

(x1, . . . , xk)→ x1 ∧ . . . ∧ xk, T → T (k)

are both continuous with respect to the standard topologies in each space.
In particular, given sequences {xin} converging to xi0 for i = 1, . . . , k, it

holds that the sequence {x1
n∧. . .∧xkn} converges to x1

0∧. . .∧xk0. We establish
now a sort of reciprocal result in next proposition.

Proposition 1. Let {x1
n ∧ . . . ∧ xkn} be a sequence of nonzero forms that

converges to a certain λ ∈ Λk−{0}. Then there exist vectors x1
0, . . . , x

k
0 ∈ RN

such that λ = x1
0 ∧ . . . ∧ xk0. In addition, for every n ∈ N there are vectors

w1
n, . . . , w

k
n ∈ L[x1

n, . . . , x
k
n] such that the sequence {win} tends to xi0 for

i = 1, . . . , k.

Proof: For each n ∈ N we can apply the Gram-Schmidt orthogonalization
process in L[x1

n, . . . , x
k
n] and find vectors yin ∈ RN such that

x1
n ∧ . . . ∧ xkn = y1

n ∧ . . . ∧ ykn,

〈yin, yjn〉 = 0 for i 6= j

and
|y1
n| = · · · = |yk−1

n | = 1.

The convergence to λ and the equality |y1
n ∧ . . . ∧ ykn| = |ykn| implies that

{|ykn|} must be bounded. Therefore the sequences {yin} have a common
subsequence that converges to some xi0. Hence we deduce that

λ = x1
0 ∧ . . . ∧ xk0,

and the first part of the proposition is proven.
The second part would abide from the following property: for every ε > 0

there exists n0 such that for all n > n0 the subspace L[x1
n, . . . , x

k
n] intersects

the balls
B(xi0, ε) = {x ∈ RN : |x− xi0| < ε} i = 1, . . . , k.

We now deny this property and reach a contradiction, from which the propo-
sition will hold true.

Thus we assume the existence of ε0 > 0, a superindex i0 ∈ {1, . . . , k} and
a subsequence {x1

nj
∧ . . . ∧ xknj

} verifying

(1) L[x1
nj
, . . . , xknj

] ∩B(yi0 , ε0) = ∅.
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As in the proof of the first part, we can construct subsequences {winm
}

such that
w1
nm
∧ . . . ∧ wknm

= x1
nm
∧ . . . ∧ xknm

and each {winm
} converging to a certain wi0. Obviously

w1
0 ∧ . . . ∧ wk0 = x1

0 ∧ . . . ∧ xk0.

Thus there exist real numbers {αij}j=1,...,k
i=1,...,k such that

xi0 =
k∑
j=1

αjiw
j
0 i = 1, . . . , k.

Let us consider the vector

zi0nm
=

k∑
j=1

αji0w
j
nm
∈ L[x1

nm
, . . . , xknm

].

Clearly {zi0nm
} tends to

∑k
j=1 α

j
i0
wj0 = xi00 . This contradicts (1). �

We notice that we can express the convergence of sequences of subspaces
as follows: given {Hn} a sequence of subspaces of dimension k, we say
that it converges to the subspace H0 if there are sequences {xin} such that
Hn = L[x1

n, . . . , x
k
n] verifying that

{xin} → xi0 i = 1, . . . , n

and
H0 = L[x1

0, . . . , x
k
0].

Based on the above, we can assert that any such sequence {Hn} has a
converging subsequence.

3. Convex cones generated by cones of rank k

The following definition is taken from [7].

Definition 1. A closed set C ⊂ RN is a cone of rank k if
(1) It is homogeneous, i. e. x ∈ C, λ ∈ R⇒ λx ∈ C.
(2) It contains a subspace of dimension k but no subspace of dimension

greater than k.

The set Cc = Rn − C is also a cone called the complementary cone of C.
We say that C is k-solid if there is a linear subspace Π of dimension k

such that Π− {0} ⊂
◦
C. We say that C is complemented if there is a linear

subspace Π of dimension N − k such that Πc ∩ C = {0}. In this case, Cc is
a cone of rank N − k that is (N − k)-solid.

In the sequel we fix a complemented cone C of rank k (2 ≤ k ≤ N − 1).
Let us take Π and Πc subspaces of dimension k and N − k with

Π− {0} ⊂
◦
C and Πc − {0} ⊂ RN − C,
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and take B = {e1, . . . , ek} and Bc = {ek+1, . . . , eN} bases of Π and Πc,
respectively. The set

B1 = {e1, . . . , ek, ek+1, . . . , eN}

is a basis of RN . Let P be the hyperplane in Λk generated by the vectors
ei1 ∧ . . . ∧ eik with (i1, . . . , ik) 6= (1, . . . , k).

Let us define

(2) C(k) = {u1 ∧ . . . ∧ uk : L[u1, . . . , uk] ⊂ C}.

C(k) is closed in Λk since C is closed in RN . In addition, it is homogeneous,
i. e.

λ ∈ C(k), α ∈ R =⇒ αλ ∈ C(k).

In particular it is symmetric in the sense that λ ∈ C(k) =⇒ −λ ∈ C(k).

Lemma 1. It holds that C(k) ∩ P = {0}.

Proof: Let us take a form

u1 ∧ . . . ∧ uk ∈ C(k) ∩ P.

Writing ui = (ui1, . . . , u
k
N ) the coordinates of ui with respect to B, we know

that
u1 ∧ . . . ∧ uk = (uij)

(k)

with respect to Bk. Since u1 ∧ . . . ∧ uk ∈ P we deduce that the minor
m1,...,k

1,...,k is zero. From this, we can assert the existence of a nontrivial linear
combination

v = c1u1 + · · ·+ ckuk

having the first k coordinates equal to 0. This means that

v ∈ Πc = L[ek+1, . . . , eN ].

On the other hand, by construction of C(k) we know that v ∈ C. The
hypothesis C ∩ Πc = {0} yields to v = 0. Since v was a nontrivial linear
combination of u1, . . . , uk we deduce that these vectors are linearly depen-
dent and therefore u1 ∧ . . . ∧ uk = 0 as desired. �

Let P be any hyperplane of Λk (not necessarily constructed as before)
such that P ∩C(k) = {0}. To distinguish between the two hemispaces of Λk
induced by P , we take F , a nontrivial functional over Λk, which is zero over
P . We define the sets

C
(k)
+ (P ) = {λ ∈ C(k) : F (λ) > 0}

and
C

(k)
− (P ) = {λ ∈ C(k) : F (λ) < 0}.

Trivially C
(k)
+ (P ) = −C(k)

− (P ) and C
(k)
+ (P ) ∪ C(k)

− (P ) = C(k) − {0}. We
define now

D = {λ ∈ C(k)
+ (P ) : F (λ) = 1}.
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D is closed since C is closed. We claim that D is also bounded. Otherwise,
we would find a sequence {λn} in C(k)

+ (P ) such that F (λn) = 1 and ‖λn‖ →
+∞. By extracting a subsequence, we can assume that µn = λn

‖λn‖ defines a

sequence that converges to a unitary µ0 ∈ Λk. Again µ ∈ C(k)
+ (P ) because

C is closed. We now notice that F (µn) = 1/‖λn‖ tends to zero, and thus
F (µ0) = 0. This contradicts the fact that C(k) ∩ P = {0}.

Consequently, D is compact. Its convex envelop co(D) = co(D) is also
compact. It is immediate that

co(C(k)
+ (P )) = {αλ : α ≥ 0, λ ∈ co(D)}.

Clearly
K(P ) := co(C(k)

+ (P ))
is closed, convex, homogeneous and satisfies K(P ) ∩ (−K(P )) = {0}. In
short K(P ) is a convex cone.

Definition 2. The set K(P ) is called the convex cone in Λk associated to
C induced by the hyperplane P .

Remark 1. Actually the same process applied to C
(k)
− (P ) yields another

convex cone, just −K(P ). Thus, the preceding definition is somewhat am-
biguous. Nevertheless, from here on, we obviate this point since it will not
have any relevance in the statements and proofs that follow.

Remark 2. From the construction above, we deduce that if G is any non-
trivial linear functional and G(λ) > 0 for all λ ∈ C(k)

+ (P ) then G(λ) > 0 for
all λ ∈ K(P ).

Remark 3. If Q is a hyperplane close enough to P then C(k) ∩ Q = {0}.
Furthermore C(k)

+ (P ) = C
(k)
+ (Q) and thus K(Q) = K(P ).

In the sequel, we fix the convex cone K(P ), and denote it simply by K
when P plays no role.

Lemma 2. K has non-empty interior.

Proof: If this were not so, and since K is convex, then K would be
contained in an hyperplane of Λk. In fact K ∪ (−K) would be contained in
such a hyperplane. It turns out that there exists F , a nontrivial linear form
over Λk, such that F is zero over K. F induces an alternate k-linear form
T through the formula

T (x1, . . . , xk) = F (x1 ∧ . . . ∧ xk).
Let us consider an element y1 ∧ . . . ∧ yk ∈ K such that

L[y1, . . . , yk]− {0} ⊂
◦
C.

It is straightforward that there exists ε > 0 such that

L[x1, . . . , xk]− {0} ⊂
◦
C ( whence x1 ∧ . . . ∧ xk ∈ K)
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if |xi − yi| < ε. Then we deduce that the k-linear form T is zero in a
neighborhood of (y1, . . . , yk) ∈ RN × · · · × RN . This implies that T is
actually zero, but this contradicts the fact that F is nontrivial. �

We can get further in next proposition.

Proposition 2. A decomposable form y1 ∧ . . . ∧ yk ∈ K is in the interior

of K provided that L[y1, . . . , yk]− {0} ⊂
◦
C.

Proof: Otherwise y1∧ . . .∧yk would belong to the boundary of K. Thus,
we could find a nonzero linear functional F such that F (y1 ∧ . . . ∧ yk) = 0
and

F (x1 ∧ . . . ∧ xk) ≥ 0 for x1 ∧ . . . ∧ xk ∈ K.
We call T the nonzero multilinear map defined by F as in the preceding
proof. Take ε > 0 small enough such that

L[x1, . . . , xk]− {0} ⊂
◦
C if |xi − yi| < ε, i = 1, . . . , k.

It turns out that T has a local minimum at (x1, . . . , xk). Let us check that
this is impossible.

First, we pick up an arbitrary vector x ∈ RN and consider the function

α(h) = T (x1 + hx, x2, . . . , xk), h ∈ R.
By hypothesis, α has a local minimum at h = 0. However,

α(h) = T (x1, . . . , xk) + hT (x, . . . , xk) = hT (x, . . . , xk).

Therefore, necessarily, T (x, . . . , xk) = 0. The same argument leads to the
following property for T :

For any j = 1, . . . , k, the linear form

T k(x) = (x1, . . . , xj−1, x, xj+1 . . . , xk)

is zero.
Let us now consider a couple of vectors x, y ∈ RN and define the function

β(h1, h2) = T (x1 + h1x, x
2 + h2y, x

3, . . . , xk), h1, h2 ∈ R.
Again, β has a local minimum at (0, 0) by hypothesis. On the other hand,

(3) β(h1, h2) = T (x1, . . . , xk) + h1T (x, x2, . . . , xk)+

+ h2T (x1, y, . . . , xk) + h1h2T (x, y, . . . , xk).

From what has been proved above, we deduce that

β(h1, h2) = h1h2T (x, y, . . . , xk).

Hence the only possibility for β to have a minimum at h1 = 0, h2 = 0
is that T (x, y, x3, . . . , xk) = 0. Since x, y are arbitrary, when we repeat
the argument for every couple of components, we find that for every i, j =
1, . . . , k the bilinear form

B(x, y) = T (x1, . . . , xi−1, x, xi+1, . . . , xj−1, y, xj+1, . . . , xk)
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is zero. Immediately, by reiterating the argument, we find that T would be
zero. However, this is a contradiction, since F was chosen to be nontrivial
�.

The geometry of the cone C can be rather complex, unlike the case of
convex cones. Let us introduce two properties of the associated convex cone
K, which can be interpreted as a restriction of such a possible complex
structure.

Definition 3. C is said to be full if x1 ∧ . . .∧xk ∈ K(P )−{0} implies that
L[x1, . . . , xk] ⊂ C.

Let x1∧ . . .∧xk 6= 0 with L[x1, . . . , xk] ⊂ C but L[x1, . . . , xk]∩∂C 6= {0}.
We can take y1, . . . , yk such that

y1 ∧ . . . ∧ yk = x1 ∧ . . . ∧ xk and y1 ∈ ∂C.
Let us consider a sequence {y1

n} converging to y1 with y1
n ∈ RN − C. We

find that
{y1
n ∧ . . . ∧ yk} → y1 ∧ . . . ∧ yk = x1 ∧ . . . ∧ xk.

If C is full, then y1
n ∧ . . .∧ yk does not belong to K. Therefore x1 ∧ . . .∧ xk

belongs to the boundary of K. This fact, together with proposition 2, leads
to

Proposition 3. If C is full then

x1 ∧ . . . ∧ xk ∈
◦
K ⇔ L[x1, . . . , xk]− {0} ⊂

◦
C

and

x1 ∧ . . . ∧ xk ∈ ∂K ⇔ L[x1, . . . , xk] ⊂ C and L[x1, . . . , xk] ∩ ∂C 6= {0}.

The next definition states a connectivity property that has strong impli-
cations for the uniqueness of these associated convex cones.

Definition 4. We say that C is k-connected if for some hyperplane P the
set C(k) ∩K(P )− {0} is connected.

Lemma 3. If C is k-connected, then K(P ) is independent of P .

Proof: Let Q be another hyperplane of Λk with Q∩C(k) = {0} and F a
nontrivial linear functional which is zero over Q. By hypothesis F (λ) 6= 0 for
all λ ∈ C(k)

+ (P ). If F is either positive or negative over C(k)
+ , then obviously

K(Q) is either equal to K(P ) or −K(P ). If F changes sign over C(k)
+ (P )

then Q separates K(P ), this contradicting the k-connectedness of K(P ).

4. Positive operators with respect to cones of rank k

We still consider a complemented cone C of rank k that is k-solid and
continue to use the notation of the preceding section.

Proposition 4. A linear operator A : RN → RN is said strongly positive

with respect to C if A(C − {0}) ⊂
◦
C.
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Lemma 4. If A is inversible and strongly positive with respect to C, then
A−1 is strongly positive with respect to Cc.

Proof: First, we notice that, since RN − C and
◦
C are non-empty open

sets, it holds that

(4) RN − C ⊂
◦
Cc

and

(5) Cc ∩
◦
C = ∅.

Let us take x ∈ Cc−{0} and let us assume that A−1x /∈
◦
Cc. In particular,

if we use (4), it should hold that A−1x ∈ C. In fact, since x 6= 0 and A is
inversible, we would have that A−1x ∈ C−{0}. Since A is strongly positive

with respect to C we find that AA−1x = x ∈
◦
C. Thus, x ∈ (Cc − {0}) ∩

◦
C,

contradicting (5).�
A key point in our work is the obvious inclusion

A(k)C(k) ⊂ C(k)

provided that A is strongly positive. This appears to indicate that A(k)

could be strongly positive with respect to K(P ). This would not be true so
long as A(k) may mix the forms x1 ∧ . . .∧ xk of the two hemispaces induced
by the hyperplane P . Our next aim is to select one such hyperplane P for
which these ideas can be carried out. First, we need to establish a lemma.

Lemma 5. There exist two subspaces Π0 and Πc
0 of dimension k and N −k

respectively satisfying

An(Π0)− {0} ⊂
◦
C, An(Πc

0)− {0} ⊂ Rn − C
for all integers n.

Proof:
Let us take a subspace Π of dimension k with Π ⊂ C. Let us define the

subspaces Πn = An(Π) for n ∈ N. Since A is strongly positive, we find that
Πn ⊂ A(C). Now let us observe that A(C) is a cone of rank k, verifying

A(C)− {0} ⊂
◦
C.

Consider a subsequence {Πnj} converging to certain Π0. Then

Π0 − {0} ⊂ A(C)− {0} ⊂
◦
C.

It is obvious that in fact

(6) An(Π0)− {0} ⊂
◦
C

for all n ∈ N. On the other hand, given m ∈ N arbitrary, we can assert that

A−m(Π0) = lim
nj→+∞

A−m(Anj (Π)) = lim
n→+∞

Anj−m(Π) ⊂ A(C)
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where the last inclusion is true for nj > m. Thus

A−m(Π0)− {0} ⊂
◦
C.

This fact, together with (6), gives the desired property for Π0.
The construction of Πc is identical by reasoning with the strong positive

operator A−1.

Theorem 1. Let us assume that A is a strongly positive operator with respect
to C. Then there exist a cone of the form K(P ) and a natural number n0

such that G = An0 satisfies the condition that G(k) is strongly positive with
respect to K(P ).

Proof: We take the subspaces Π0 and Πc
0 as in the preceding lemma and

define

(7) Hn = An(Π0), Hc
n = An(Πc

0) for n ∈ N.
Let us consider a sequence of natural numbers {nj} → +∞ as j → +∞
such that

lim
j→+∞

Hnj = H0 and lim
j→+∞

Hc
nj

= Hc
0.

It follows that

H0 − {0} ⊂
◦
C and Hc

0 − {0} ⊂ RN − C.
Let us consider the hyperplanes Pnj of Λk induced by the couple Hnj , H

c
nj

and P0 the one induced by H0, H
c
0. Obviously, Pnj tends to P0. From this,

we deduce a property which we describe in next paragraph.
We use P+

0 , P
−
0 to denote the closed hemispaces defined by P0, and

C+
0 = P+

0 ∩ C
(k), C−0 = P−0 ∩ C

(k) = −C+
0

(see the definitions in (2) and after lemma 1). Similarly, we define the
corresponding subsets P−nj

, P+
nj
, (C+)nj , (C

−)nj . The convergence of Pnj to
P0 implies that for all sufficiently large nj

(C+)nj = C+
0 or (C+)nj = C−0 .

In particular, there are np < nq such that

(C+)np = (C+)nq or (C+)np = (C−)nq .

Simply by changing names, we can assume that (C+)np = (C+)nq .
Let us now take the operator B = Anq−np and consider B(k). In the same

manner as for the operator A(k) itself, we know that B(k)C(k) ⊂ C(k). On
the other hand, by the definition of B and (7), we find that

BHnp = Hnq and BHc
np

= Hc
nq
.

Hence the equality B(k)Pnp = B(k)Pnq is fulfilled. By linearity, we find that
either

B(k)(C+)np ⊂ (C+)nq = (C+)np
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or
B(k)(C+)np ⊂ −(C+)nq = −(C+)np .

Therefore the operator G = (B(k))2 satisfies G(C+)np ⊂ (C+)np .
Consider the convex cone K = K(Pnp) constructed from (C+)np . Again,

we clearly see that (B(k))2K ⊂ K. Furthermore, since

(B(k))2(x1 ∧ . . . ∧ xk) ∈
◦
K

for any nonzero x1 ∧ . . . ∧ xk ∈ (C+)np , we deduce that

(B(k))2(K − {0}) ⊂
◦
K.

That is, (B(k))2 is strongly positive with respect to K. We finish by noticing
that

(B(k))2 = (A2(nq−np))(k)

and thus the theorem holds with n0 = 2(nq − np).�
With this theorem, we get a sort of Perron-Frobenius theorem for this

class of operators.

Theorem 2. Let
Sp(A) = {λ1, λ2, . . . , λN}

be the spectrum of A with |λi| ≥ |λj | for i < j. Then |λk| > |λk+1|. If we
call H and Hc the generalized subspaces associated with {λ1, . . . , λk} and
{λk+1, . . . , λN} respectively, then

H − {0} ⊂
◦
C and Hc ∩ C = {0}.

We shall use next lemma:

Lemma 6. Let L be a linear operator in RN and let us assume that for
certain n0 ∈ N the power Ln0 has a leading positive eigenvalue µ0 that
is algebraically simple. Then L has a leading real eigenvalue λ0 that is
algebraically simple and λn0

0 = µ0. In addition the eigenspaces associated
with µ0 and λ0 are equal.

Proof: It is well known that if the spectrum of L is

Sp(L) = {λ1, . . . , λN}
then the spectrum of Ln0 is just

Sp(Ln0) = {λn0
1 , . . . , λn0

N }.
Besides the generalized eigenspace associated with λn0

i is the direct sum
of the generalized subspaces associated to the eigenvalues λj which satisfies
λn0
j = λn0

i . From this the lemma straightforwardly follows.�
Proof of Theorem 2: From Theorem 1, we know that G(k) is strongly

positive with respect to a convex cone K = K(P ), where G = An0 for
certain n0 ∈ N. The classical Perron-Frobenius theorem shows that G(k)

has a leading positive eigenvalue that is algebraically simple. Moreover, it
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has an associated eigenvector that is positive. From Lemma 6, we deduce
that A(k) has a leading eigenvalue that is algebraically simple and has a
positive eigenvector.

Let us recall that the the spectrum of A(k) consists of the products of k
eigenvalues of A. Thus we straightforwardly find that the product λ1λ2 . . . λk
is strictly dominant and simple. Hence necessarily |λk+1| < |λk|.

Let us now see the assertions concerning the eigenspaces H and Hc. First,
we assume that A is diagonalizable (in the complex sense). In particular,
there is a basis {v1, . . . , vk} of H such that either Avi = λiv

i if λi is a real
eigenvalue or

Avi = αiv
i + βiv

i+1, Avi+1 = −βvi + αvi+1

provided that λi = αi + iβi and λi+1 = αi − iβi are complex conjugate
eigenvalues (βi 6= 0). From this, we deduce that

Avi ∧Avi+1 = (α2 + β2)vi ∧ vi+1 = λiλi+1v
i ∧ vi+1.

Hence

A(k)v1 ∧ . . . ∧ vk = Av1 ∧ . . . ∧Avk = λ1 . . . λkv
1 ∧ . . . ∧ vk.

Therefore v1 ∧ . . .∧ vk is just an eigenvalue associated with the dominant
eigenvalue λ1 . . . λk. Let us prove that H = L[v1, . . . , vk]− {0} is contained

in
◦
C.
Let us take w = x1 ∧ . . . ∧ xk ∈ K − {0} such that L[x1, . . . , xk] ⊂ C.

It is well known that the sequence wn = Gn(w)
‖Gn(w)‖ converges to a unitary

eigenvector colinear to v1 ∧ . . . ∧ vk. We can write wn = x1
n ∧ . . . ∧ xkn and

given that G is strongly positive we find that

L[x1
n, . . . , x

k
n]− {0} ⊂

◦
C for all n ∈ N.

Again, since C is closed, we deduce that L[v1, . . . , vk] ⊂ C. In fact, since

A(C − {0}) ⊂
◦
C, it follows that actually L[v1, . . . , vk]− {0} ⊂

◦
C.

The assertion concerning the eigenspace Hc follows from Lemma 4 and
the same proof as above.

If A is not diagonalizable, it is well known that there exists a sequence
{An} of diagonalizable applications converging to A. It is easy to see that
An is strongly positive with respect to C and inversible for large enough n.
A straightforward continuity argument leads to the desired result. �

Obviously, the cone K(P ) of Theorem 1 is equal to the cone induced by
the invariant subspacesH andHc of Theorem 2. We shall denote it byK(A).
Let us recall that by choosing {e1, . . . , ek} a basis of H and {ek+1, . . . , eN}
a basis of Hc, the hyperplane P of Λk is generated by

Bk = {ei1 ∧ . . . ∧ eik : (i1, . . . , ik) 6= (1, . . . , k)}.
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Since A(Hc) ⊂ Hc, for each w ∈ Bk the form A(k)w for w ∈ Bk can never
be equal to e1 ∧ . . . ∧ ek. This means that P is invariant for A(k). Hence
A(k)C+(P ) is equal either to C+(P ) or −C+(P ).

Corollary 1. Let H and Hc be the invariant subspaces for A provided by
Theorem 2. Then either A(k) or (A(k))2 is strongly positive with respect to
the convex cone K(A).

Two results on continuous dependence of the cone K with respect to the
operator A should me remarked upon. We denote by SL(RN ) the space of
linear inversible operator over RN .

Proposition 5. There exists U neighborhood of A in SL(RN ) such that
K(B) = K(A) for all B ∈ U .

Proof: It is direct from remark 3.�
The second result establishes that the corresponding cone is preserved

through special homotopies.

Definition 5. We say that two inversible operators B,C are strongly posi-
tively isotopic if there is a continuous function

M : [0, 1]→ SL(N)

such that M(0) = B, M(1) = C and M(t) is strongly positive with respect
to C for all t ∈ [0, 1].

Proposition 6. If B is strongly positively isotopic to A, then K(B) =
K(A).

Proof: If we use P (t) to refer to the hyperplane induced by M(t), then
P (t) is continuous in t. Since P (t)∩C(k) = {0} the proposition easily follows.

Remark 4. Definition 5 can be relaxed so that it allows M(1) not to be
strongly positive. For example, we can say that B is strongly positively
isotopic to the identity if M(1) = I. In such a case, the leading product of
the eigenvalues of B immediately becomes positive.

5. A particular case

In this section, we exemplify our work with a well-known cone of rank k.
Given x = (x1, . . . , xN ) ∈ RN having no zero component, we define

sign(x) as the number of sign changes in the sequence x1, . . . , xN . The
set

Ck = {x : sign(x) ≤ k − 1}
is a cone of rank k for k = 2, . . . , N − 1. Moreover, it is k-solid and comple-
mented (see [1] and [7]).

Our aim in this section is to establish the following result:

Theorem 3. The unique convex cone of Λk associated to Ck is K+ the cone
of forms having non-negative coordinates with respect to the usual basis of
Λk. In addition, Ck is full and k-connected.
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For the sake of completeness, we shall give a proof through a series of
lemmas, though many of the arguments used are similar to those appearing
in [1] and [7]. For instance, the first one is borrowed from [7].

Lemma 7. If x1, . . . , xk ∈ RN satisfy that x1 ∧ . . . ∧ xk ∈
◦
K+, then

L[x1, . . . , xk]− {0} ⊂
◦
Ck.

Proof: Let us suppose that the lemma is not true. This means that there
is

y = (y1, . . . , yN ) ∈ L[x1, . . . , xk]− {0}
such that

(−1)jyij ≥ 0 for 1 ≤ i1 < i2 < · · · < ik+1 ≤ N.

In addition since y 6= 0 at least one of the products (−1)jyij is strictly
positive. Consider the obvious equality

(8) 0 = Det


yi1 x1

i1
. . . xki1

yi2 x1
i2

. . . xki2
. . . . . . . . .
yik+1

x1
ik+1

. . . xkik+1

 .

Expanding the determinant by the first column, we have by hypothesis
a sum of non-negative numbers where at least one is strictly positive. This
makes (8) impossible.�

Lemma 8. If L[x1, . . . , xk]− {0} ⊂
◦
Ck then x1 ∧ . . . ∧ xk ∈

◦
K+ ∪ (−

◦
K+).

Proof: First of all if x1 ∧ . . . ∧ xk has a zero component, there exists
y ∈ L[x1, . . . , xk]−{0} having k zero components. From this, it is immediate
that close to y there are vectors having just k sign changes; this contradicts
that y ∈ Ck. Therefore x1 ∧ . . . ∧ xk must have no zero component. In the
sequel, we reason by reduction to the absurd and assume that x1 ∧ . . . ∧ xk
have components of both signs.

For the rest of the proof, we use a recurrent argument in k = 2, . . . , N−1.
Let us first consider the case k = 2. We then take xi = (xi1, . . . , x

i
N ), i = 1, 2

such that x1 ∧ x2 has a positive component and a negative component. We
may assume that x1

1 and x2
1 are not simultaneously zero. If this is not

the case, we can eliminate the initial zero components since the following
reasoning still holds.

By taking a suitable linear combination of x1 and x2, we can assume that
x1

1 = 1 and x2
1 = 0. We can also assume that

Det
(

1 0
x1
j x2

j

)
= x2

j > 0

for certain j. Since x2 ∈
◦
C2 we deduce that

(9) x2
i > 0 for all i = 2, . . . , N
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.
By hypothesis, there are subindices 1 < p < q such that

(10) d = Det
(
x1
p x2

p

x1
q x2

q

)
< 0.

Let us consider α1, α2 the solutions of the system{
α1x1

p + α2x2
p = −1

α1x1
q + α2x2

q = 1

We find that

α1 =
Det

(
−1 x2

p

1 x2
q

)
d

=
−x2

p − x2
q

d
.

From (9) and (10) we deduce that α1 > 0. Therefore the vector

v = α1x1 + α2x2 ∈ L[x1, x2]

has at least two sign changes (at the coordinates 1st, pth and qth). This
means that L[x1, x2] is not contained in C2.

Let us assume that we have proved the result for k̄ = 2, . . . , k− 1 and let
us prove it for k > 2.

As before, we can assume that xj1 is nonzero for some j = 1, . . . , k. Fur-
thermore, by performing some linear combinations, we can assume that
x1

1 = 1 and xi1 = 0 for i = 2, . . . , k. These equalities imply that the linear
combinations of the vectors x2, . . . , xk can have at most k− 1 sign changes.

Again the fact that L[x1, . . . , xk]−{0} ⊂
◦
Ck also implies that the minors of

the form

Det

 x2
i1

. . . xki1
. . . . . . . . .
x2
ik−1

. . . xkik−1


are all nonzero.

From the recurrent assumption, we know that the preceding minors all
have the same sign. After a permutation of the vectors, we can assume that
these minors actually satisfy

(11) Det

 x2
i1

. . . xki1
. . . . . . . . .
x2
ik−1

. . . xkik−1

 > 0

By hypothesis, there is a minor

(12) d = Det

 x1
i1

. . . xki1
. . . . . . . . .
x1
ik

. . . xkik

 < 0.

This minor cannot include the first file (1, 0, . . . , 0), since these are all posi-
tive. Let us consider α1, . . . , αk the solutions of the system
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α1x1

i1
+ · · ·+ αkxki1 = −1
. . . = 1

α1x1
ik

+ · · ·+ αkxkik = (−1)k

We know that

α1 =

Det


−1 . . . xki1
1 . . . xki2
. . . . . . . . .

(−1)k . . . xkik


d

> 0

By expanding the numerator with respect to the first column and applying
(11) and (12) we get that α1 > 0.

Hence, the vector v = α1x1 + · · ·+αkxk again has k sign changes at least
and then we reach the desired contradiction.�

We shall now see a connectivity property linked to Lemma 3.

Lemma 9. The set of decomposable forms in K+ − {0} is connected.

Proof: Let us take any form x1 ∧ . . . ∧ xk ∈ K+ − {0} and i1 < · · · < ik
such that

m(i1, . . . , ik) = Det

 x1
i1

. . . xki1
. . . . . . . . .
x1
ik

. . . xkik

 > 0.

Given α = (α1, . . . , αN ) with αi ≥ 0 for i = 1, . . . , N , let us consider the
form

λ(α) = x1(α) ∧ . . . ∧ xk(α)

where xi(α) = (α1x
i
1, . . . , αNx

i
N ). It is immediate that λ(α) ∈ K+ for every

α. Let us consider the set

S(x1 ∧ . . . ∧ xk) =
{
λ(α) :

{
αij = 1 for j = 1, . . . , k

0 ≤ αm ≤ 1 otherwise

}
.

It turns out that S(x1 ∧ . . . ∧ xk) is a connected set containing the forms

x1 ∧ . . . ∧ xk when α = (1, 1, . . . , 1)

and

(0, . . . , 0,m(i1, . . . , ik), 0, . . . , 0) when αm = 0 for m 6= ij , j = 1, . . . , k.

In particular, each decomposable form in K+ can be connected with any

form in
◦
K+. This proves our assertion. �
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We now wish to prove that Ck is full. To do so, let us consider the
parametric family of tridiagonal matrices of order N

A(r) =


1 r 0 0 . . . 0
r 1 r 0 . . . 0
0 r 1 r . . . 0
0 . . . . . . . . . . . . 0
0 . . . 0 0 r 1

 , r > 0.

For all small enough r the matrix A(r) is oscillating. Hence, for each k,
there is a positive integer p such that A(r)p is strongly positive with respect
to Ck (see [7]).

Lemma 10. The operator (A(r)p)(k) is strongly positive with respect to K+.

Proof: Let B = {e1, . . . , eN} of RN be the standard basis of RN . For a
multiindex (i) = (i1, . . . , ik) we know that

H(i) = L[ei1 , . . . , eik ] ⊂ Ck.
The strong positiveness of A(r)p yields to

A(r)pH(i)− {0} ⊂
◦
Ck.

In particular

λ(i) = (A(r)p)(k)ei1 ∧ . . . ∧ eik ⊂
◦
K+ ∪ (−

◦
K+).

Now, we notice that A(r) (and thus (A(r)p)(k)) tends to the identity when
r tends to 0. Therefore

λ(i) ⊂
◦
K+

at least for small enough r. Since all the extreme rays of K+ are of the form

ei1 ∧ . . . ∧ eik we immediately obtain that (A(r)p)(k)K − {0} ⊂
◦
K+.

Corollary 2. If x1 ∧ . . . ∧ xk ∈ K+ then L[x1, . . . , xk] ⊂ Ck.

Proof: Due to Lemma 7 we consider only the case that x1 ∧ . . . ∧ xk
belongs to the boundary of K+. Then

(A(r)p)(k)x1 ∧ . . . ∧ xk ∈
◦
K+

from the preceding lemma. Lemma 8 shows that

A(r)pL[x1, . . . , xk]− {0} ⊂
◦
Ck.

Since A(r) tends to the identity when r tends to zero and Ck is closed, we
deduce that L[x1, . . . , xk] is contained in Ck.

Proof of Theorem 3: Lemma 3 implies that any hyperplane P yielding
to the convex cone K(P ) cannot intersect K+ ∪ (−K+). Therefore

C
(k)
+ (P ) = C(k)(P ) ∩K+
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because of Lemmas 7,8 and Corollary 2. The rest of the theorem is straight-
forward from the stated results.

6. An application to autonomous differential equations

The basis of this paper is found in [10], where a new class of smooth
autonomous systems

(13) ẋ = F (x), x ∈ RN

is introduced, called C-cooperative systems. Here, C stands for a comple-
mented cone of rank 2 that is 2-solid. The main property fulfilled by such a
systems is the Poincaré-Bendixson property enjoyed by some of its orbits.

In this section, we outline how the results described above can be em-
ployed in the study of the stability of periodic orbits.

Given x(t) a nonconstant T -periodic solution of (13), its variational equa-
tion is the linear system

(14) u̇ = F ′(x(t))u.

Let U(t) be the matrix solution of (14) satisfying U(0) = I. The operator
U(T ) is called the monodromy operator associated with x(t). The spectrum
of U(T ) always contains the point µ1 = 1. If we denote the remaining eigen-
values by µ2, . . . , µN , it holds that x(t) is an (orbitally) attracting solution
if |µi| < 1.

Let us assume then that system (13) is C-cooperative. This means that
in particular U(t) is strongly positive with respect to C for all t > 0 (see
[10]). In addition, U(t) forms a family of strongly positively isotopic to the
identity. By Proposition 6 the convex coneK induced by U(t) is independent
of t > 0. The operator U(t)(2) is strongly positive with respect to K for t > 0
and its dominant eigenvalue is µ1µ2 = µ2. Putting all this together, we can
state:

Proposition 7. The nonconstant T -periodic solution x(t) is orbitally at-
tracting provided that U(T )(2) has a spectral radius lesser than 1. In addi-
tion, the eigenvalue µ2 is positive.

Thus we have reduced the problem of the stability of x(t) to the classical
problem of estimating the spectral radius of a positive operator. In concrete
examples U(T )(2) is not explicitly known but it satisfies a linear system

(15) ẏ = F ′(x(t))[2]y

where A[k] stands for the k-additive compound of the matrix A (see [3] and
[11]). Proceeding as in [8] or [9] one can obtain the desired estimates.
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