EXISTENCE OF PERIODIC ORBITS FOR
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ABSTRACT. We give a result on existence of periodic orbits for au-
tonomous differential systems with arbitrary finite dimension. It is based
on a Poincaré-Bendixson property enjoyed by a new class of monotone
systems introduced in L. A. Sanchez, Cones of rank 2 and the Poincaré-
Bendizson property for a mew class of monotone systems, Journal of
Differential Equations 216 (2009), 1170-1190. A concrete application is
done to a scalar differential equation of order 4.

1. INTRODUCTION

The study of periodic orbits in autonomous systems is a quite nontrivial
issue in the theory of differential equations. The main reason seems to be
the decisive role played by the dimension of the phase space. In the two-
dimensional case the classical Poincaré-Bendixson theorem (see [4]) provides
an utmost powerful tool which actually yields to a thorough understanding
of the global behavior of planar systems. In higher dimensions no such a
general result can exist as long as chaotic behavior comes into the scene.
This fact reduced for a long time the search of periodic orbits, at least for
dissipative systems, to local approaches in the setting of bifurcation theory.

Over the last thirty years partial extensions of the Poincaré-Bendixson
property for new classes of autonomous systems have been achieved. All of
them share the same underlying idea: to prove that compact limit sets of
the flows are topologically conjugate to invariant sets of planar flows. A first
example is the work by H.L. Smith in [10] on three-dimensional competi-
tive systems, which is based on the theory of monotone systems developed
mainly by M. W. Hirsch and H. L. Smith himself (see the monographs [5]
and [11]). A second theory to be mentioned is that by R. A. Smith in [12, 13],
where quadratic Lyapunov-like functions are employed to construct globally
attracting two-dimensional Lipschitz manifolds. A third example was pro-
vided by J. Mallet-Paret and H. L. Smith in [8] for monotone cyclic feedback
systems thanks to the existence of a discrete-valued Lyapunov functional.
The ideas contained in this work have even been applied to delay differential
systems and one-dimensional scalar parabolic equations.
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Very recently we have obtained in [9] a new result of this nature. It is
based on an extended notion of monotone flow with respect to some general-
ized cones called cones of rank 2. These cones were already considered by M.
A. Krasnoselskii et al. in [7] to study spectral properties of certain operators
(see also [3]). We have taken advantage of such spectral properties, in com-
bination with the theory of invariant manifolds and the Closing Lemma, to
establish that some limit sets of these flows are essentially two-dimensional.
A first consequence is that we provide a new theoretical framework which
is intended to encompass the aforementioned results by H. L. Smith and R.
A. Smith.

In the present paper we initiate some further developments of the theory
described in [9] in order to get deeper insights into the behavior of these new
monotone flows. Concretely we just deal here with the problem of the exis-
tence of periodic orbits. To do that we require the flow to be dissipative and
to have a unique equilibrium with certain instability properties. The exis-
tence of at least one periodic orbit will follow from the Poincaré-Bendixson
property proved in [9] and the existence of a convenient locally invariant
manifold at the equilibrium point. We shall also show how our results can
be employed in practice by studying the monotonicity induced by indefinite
quadratic forms and applying it to a particular four-order autonomous scalar
equation. This application is meant to be merely illustrative and we leave
more detailed analysis of more relevant models for future works.

Let us outline how this paper is organized. Next section is just devoted
to summarize the main results of [9]. This includes the introduction of the
cones of rank 2 and the corresponding notion of monotone flow. We also
present the key properties enjoyed by these systems proved in that paper.

In the third section we give our result on existence of periodic orbits. To
do this we have to show some implications of the monotonicity over the local
structure around an equilibrium point.

Section 4 is devoted to introduce what we call P-cooperative systems.
These are systems that are monotone with respect to generalized orders
induced by a indefinite matrix P. We put the emphasis on the computational
aspects which this monotonicity notion entails.

In the final section we check the criterion developed in sections 3 and 4
for a four-order autonomous equation.

2. C-COOPERATIVE SYSTEMS

We consider a general autonomous system

(1) X=F(X), XeRY

where F' is a smooth vector field defined in RY. The semiflow induced by
(1) is denoted by ®(t,p), and we assume for simplicity that it is defined for
allt >0 and p € RY.
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Given a solution X (t) = ®(¢,p) of (1), its positive semiorbit is the set
0% (p) = {X(1) : £ > O},
If X (¢) is defined for all ¢ € R then
O(p) = {X(1) : t € R}

is called the orbit of X (t).

Constant solutions of (1) are of the form X (¢) = p where F(p) = 0. The
point p is then said to be an equilibrium point of the system.

The orbit of nonconstant periodic solutions is an oriented simple closed
curve. We call it a periodic orbit of (1).

Our aim in this section is to recall the results of [9] that will be employed
later on. We begin with a basic definition.

Definition 1. A subset C C RY is said a cone of rank k if

(1) It is closed.

(2) It is homogeneous, i. e. v € C, A€ R= Az € C.

(3) It contains a subspace of dimension k but no subspace of dimension
greater than k.

C is said k-solid if there is a subspace H of dimension k with H—{0} C C.
It is said complemented if there is a subspace H¢ of dimension N —k verifying
HenC ={0}.

Next definition looks like somewhat technical, but it has an amenable

expression in concrete cases as we shall see in section 4. We denote by
F’(X) the derivative of the vector field F.

Definition 2. System (1) is C-cooperative if the following condition is ful-
filled:
Let p,q € R™ and define the matrices

API(t) = /1 F'(s®(t,p) + (1 - 5)®(t,q))ds
0
and UP4(t) the solution of
U= AP (t)U, U0) =1.
Then
2) UPM($)C — {0} C C forall t> 0.

Remark 1. Inclusion (2) is referred as that matrices UP4(t) are strongly
positive with respect to C'.

In next theorem we recall the main properties of solutions of C-cooperative
systems when k£ = 2. We suppose then that system (1) is C-cooperative
where C' is a cone of rank 2 that is 2-solid and complemented.
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Theorem 1. Let X (t) be a nonconstant solution of (1) such that X (to) € C
for some tg > 0.

I) Tnvariance Property: X (t) € C for all t > ty.

II) Poincaré-Bendixson Property: If in addition X (t) is bounded in [0, +00]
and its omega-limit set £ has no equilibrium points, then € is a periodic or-
bit.

Property I follows from (2) and the identity
3) X (t) = UXWX) (1) (X (t)).
Property II is theorem 1 in [9].

Remark 2. Property I) is inherited by any nonconstant solution Y (t) be-
longing to the omega-limit set of X (t). To see that let us fixr s € R arbitrary.
There exists a sequence {t,} — +oo such that {X(t,)} — Y (s). On the
other hand

{X(tn)} = {F(X(ta))} — F(Y (5)) = Y (s).
Since X (t,) € C for large n we have that Y(s) € C. Furthermore since
s is arbitrary and applying again (3) and Property I we actually have that
Y(s) € C.
In consequence for a nonconstant solution X (¢) only two possibilities oc-

cur: either X (t) € C for all t large enough or X (t) € RN — C for all t € R.
We will say that X (¢) is eventually infinitesimally ordered in the first case
and that it is infinitesimally unordered in the second case.

Finally we stress another result that was extremely important for prov-
ing the Poincaré-Bendixson property in [9] and which will play a big role
hereinafter. Its proof can be found in [3] and [7].

Theorem 2 (Perron-Frobenius Property). Let UP%(t) be the operators
introduced in definition 2 and consider L = UP1(ty) for certain fized ty > 0.
Let the spectrum of L be

Sp = {u1,- -, un}

where |p1| > |pe| > -+ > |un|. Then

(4) lp2| > |3l

In addition if H and H¢ are the (generalized) eigenspaces of L associated
to {p1, uo} and {us, ..., un} respectively, then it holds that

(5) H-{0}cC and HNC = {0}

Inequality (4) is usually known as a spectral gap property.



PERIODIC ORBITS FOR AUTONOMOUS SYSTEMS 5

3. EXISTENCE OF PERIODIC ORBITS

The Poncaré-Bendixson property described in theorem 1 yields to the ex-
istence of a nontrivial periodic orbit as soon as there is one infinitesimally
ordered bounded solution verifying that its omega-limit set has no equilib-
rium points. We prove that this happens in a standard situation.

We first need to introduce some well-known definitions.

Definition 3. System (1) is said dissipative if there exists a bounded set
D C RY such that for each p € RN there is tg > 0 such that ®(t,p) € D for
all t > ty.

In particular all solutions of a dissipative system are bounded.

Definition 4. An equilibrium point py € R of (1) is stable if for any open
neighborhood U of pg there exists another open neighborhood V' of pg such
that for each p € V there exists to > 0 verifying that ®(t,p) € U for all
t > tg. We say that py is unstable if it is not stable.

Recall that we denote the derivative of F at a point X € RN by F'(X).

Definition 5. An equilibrium point po € R of (1) is said hyperbolic if no
eigenvalue of F'(pg) has zero real part.

Remark 3. For an hyperbolic equilibrium pg to be unstable it is necessary
and sufficient that F'(po) has at least one eigenvalue with positive real part.

We state now the main result of this paper.

Theorem 3. Let us suppose that system (1) is C-cooperative, dissipative
and has a unique equilibrium point py that in addition is hyperbolic and
unstable. Then it has at least one nontrivial periodic orbit.

In the rest of the section we assume the hypotheses of this theorem in
order to prove it. The key point is the local structure of the flow around the
equilibrium point pg.

We first study how many eigenvalues with positive real parts can exist.

Proposition 1. The number of eigenvalues of F'(py) having positive real
part is even.

Proof: This proposition follows by the same argument employed in The-
orem 52.1 in [6]. We outline it here for the reader’s convenience. Since
system (1) is supposed dissipative the topological degree over large balls of
I — ®(t,-) equals 1 for all ¢ large enough. The maps I — ®(¢,-) and —F
are homotopic over these balls and so —F has degree 1 as well. Since this
vector field has an unique zero at pg that in addition is not degenerate, we
can assert that sgn(Det (—F'(pg))) = 1. Obviously this sign must be (—1)™
where m is the number of real positive eigenvalues of F’(pg). Thus m must
be even. Since non-real complex eigenvalues appear in pairs the proposition
is proved.[]
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From this proposition and the instability hypotheses over py directly we
can state:

Corollary 1. If the spectrum of F'(pg) is

Sp(F'(po)) = {\1,..., AN} with Re(\;) > Re()j) fori < j,
then
(6) Re(A1), Re(A2) > 0.

In consequence the local unstable manifold W* has dimension at least 2.
Let us call W¥, in case that it exists, to the local stable manifold at py.

On the other hand we can take p = ¢ = pg in definition 2 and so we know
that the matrix solution UP0(t) = UPoPo(t) of the initial value problem

U=Fl(p)U, U©0)=1I

satisfies in particular UP°(1)C — {0} C C.
By the Perron-Frobenius property we have that |us| > |us| where the
spectrum of UP°(1) is

Sp(UP (1)) = {p1, p2, ., un} with  |pi| = [py] for i < j.
Since UP°(1) = Exp(F”(po)) we can assert that
(7) Re(A2) > Re(A3)

(recall that \;’s are the eigenvalues of F'(pg) defined in corollary 1).

In addition let us call II; and Il to the generalized eigenspaces associated
to {A1, A2} and {As,..., An} respectively. These eigenspaces are the same
that those appearing in the splitting of the matrix UP°(1) in the Perron-
Frobenius Property. Therefore we deduce that

(8) M —{0}cC and T,NC = {0}.

The spectral gap (7) is rather important since it leads to distinctions
among different invariant manifolds around the equilibrium point according
to the rate of convergence to it. Concretely in our situation we can establish:

Theorem 4. There exists a smooth locally invariant manifold W1 containing
po satisfying:
i) dim(Wp) = 2.
ii) The tangent space to W1 at po is 11;.
iii) For each r €]As, A2 and any p lying on Wy there exists M > 0 such
that
|®(t, p) — po| < Me™  for all t < 0.

In particular Wy C W*.

Proof: This theorem can be deduced either from Lemma 5.1 of [4] or
Theorem 4.1 of [2]. Notice that this last result is stated under the hypothesis
Re(A2) < Re(\3) instead of (7). The fact that we can apply it just follows
through a time-reversal argument.[]
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Corollary 2. If X(t) is a solution of (1) whose orbit lies in W1 —{po} then

. o
X(t)eC forallteR.
Proof: Due to the Perron-Frobenius property we can assert that the

[e]
tangent plane IIy to Wi at pp satisfies that II; — {0} € C. Obviously the
same inclusion is fulfilled for any subspace that is close enough to Il;, in
particular for the tangent spaces to W; at points near pg. Since X (t) tends

. o
to pop as t — —oo we deduce that X(tg) € C for all ¢ near —oo. The
Invariance Property directly gives the corollary.[]

A similar property is enjoyed by the stable manifold.

Corollary 3. If W* is nontrivial, then any solution X (t) lying in W*—{po}
satisfies that X (t) € RN — C for all t.

Proof: Recall that IT5 the eigenspace associated to {As, ..., Ay} verifies
that IIo N C' = {0}. On the other hand the tangent space of W* at pg is
contained in Ils. From this we can reason as in the preceding proof to
obtain this corollary.l]

Proof of theorem 3: Let us take X (¢) any solution starting at W' and
prove that its omega-limit set does not contain pg. Otherwise the Butler-
McGhee lemma (see [1]) would imply that the omega-limit set of X (¢) con-
tains an orbit Y (¢) lying in W#. Corollary 2 and remark 2 then contradict
corollary 3.0J

Once we have proved our main theorem it is time to prove its usefulness
in concrete applications. To do that we introduce in next section a cone
defined by means of indefinite forms which provides a quite flexible notion
of monotone flow.

4. P-COOPERATIVE SYSTEMS

We work in RY with N > 3. The usual scalar product of vectors =,y € RY
will be denoted by (z,y).

Let us consider P a symmetric matrix having 2 negative eigenvalues and
N — 2 positive eigenvalues. The associated indefinite bilinear form is given
by Q(X) = (X, PX).

Let us define the set

C=CP)={X eRY:Q(X) <0}
Proposition 2. C is a cone of rank 2. In addition it is complemented and
2-solid.

Proof: The continuity of @ firstly implies that C is closed by definition.
The equality Q(ax) = o?Q(X) for every a € RV gives the homogeneity.
Let us call H (resp. H¢) to the 2-dimensional (resp. (N — 2)-dimensional)
linear subspace associated to the negative (resp. positive) eigenvalues of P.
It holds that

(9) Q(X) <0 forall X € H—-{0}, Q(X) >0 forall X € H*—{0}.
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Again the continuity of () says that
H - {0} C C, H°NnC ={0}.

From these inclusions the proposition easily follows. [J
Now let us consider again the autonomous system (1). The transpose of
a matrix A is denoted by A*.

Proposition 3. System (1) is C-cooperative provided that for every X € RV
there exists A(X) € R such that the matrices

F'(X)*P+ PF'(X)+ \X)P
are negative definite for all X € RV,
Proof: See Proposition 7 and the afterwards discussion in [9]. O

Remark 4. When the preceding proposition holds true we will say that
system (1) is P-cooperative in order to explicit the role of matriz P.

Consequently we get:
Corollary 4. If system (1) is P-cooperative then Theorem 3 can be applied.

Let us study some basic facts on the concept of P-cooperativeness. Given
the matrix P as above, we define

Mp={A: A*"P+ PA+ AP <0 for certain A € R}.

Every matrix A belonging to Mp will be said P-cooperative as well.
For a fixed P-cooperative matrix A let us define

A={NeR:A*"P+ PA+ AP < 0}.
Proposition 4. A is an open interval.

Proof: It is obvious that A is open. On the other hand take A1 < Ay
belonging to A and let us prove that any A €]A1, Ao also belongs to A. If
X € RY and Q(X) < 0 then

(10) (X, (A*P + PA)X) + \(X, PX) =
(X,(A*P + PA)X) + M (X, PX) + (A — A\)Q(z) < 0.

A similar argument in the case that Q(X) > 0 employing now Ag in the
middle term of (10) proves the proposition.[]
Next lemma follows directly from the definitions.

Lemma 1. Next properties hold true:

i) Mp is convez.
ii) If U is a N x N invertible matriz, then U~"MpU = My+py.

Remark 5. Item i) of the las lemma implies for instance that if the set
{F'(X) : X € RN} is a segment of matrices then the property of being
C-cooperative will be fulfilled simply provided that the extreme matrices of
the segment are C-cooperative. On the other hand item ii) says how the P-
cooperativeness property transforms through linear changes of coordinates.
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We finish the section with a discussion on some computational aspects of
the P-cooperativeness in the particular case

—a 0 0 0 0
0 —a 0 0 0

P=P,=| 0 0 1 0 o |, a>o.
[ U |

The parameter a measures the aperture of the corresponding cone C': the
larger « is the bigger the cone becomes. Let us take A = (a;;) of order N.
Then the matrix Q(\) = A*P, + P,A+ AP, is equal to

—a(2a11 +A) —ala2+a21) —aaz+az -+ —aan +ang
—afaig +a2) —o(2a22 +A) —aazs+az - —aasny + an
—aa13 + asy —Qag3 + a3z 2a33 + A s asN + ans

—aaiN +an1  —aasy +anz  asy +ang - 2anN + A

Let us call @;(\) the submatrix of Q(\) formed by the first j’s rows and
columns for j = 1,...,N. Let p;(\) be the determinant of @Q;()). Clearly
pj(A) are polynomials of degree j that in addition have positive leading
coefficients for j > 1.

Next lemma expresses the condition for Q(A) to be negative definite
through a very well-known criterion involving polynomials p;(\).

Lemma 2. Matriz Q(\) is negative definite for certain A = Ao if and only
if
sign(p;(Ao)) = (=1)’.
Actually we give a more precise description of the situation in next state-
ment.

Proposition 5. Matriz A of order N is P,-cooperative if and only if p;(\)
has two roots u{, ug €R forj=2,...,N satisfying

(1) pd <pd<pd ,

2) p] <pl™ < pfTH <y forj=3,...N.

(3) sign(p;(\) = (—1)7 on i, wh[ for j = 3,....,N.
In addition the permitted values of X which appear in the definition of P-
cooperativeness are those in the interval |, pd'[.

Proof of proposition 5: It is easy to see that py()\) has two roots
u? < p3 and that
pi(A) <0, pa(N) >0 X >l

Let us see that p3(u3) > 0. Otherwise for A(€) = p3 + € with € > 0 small
enough we would have that pi(A(e)) < 0,p2(A(€)) > 0,p3(A(€)) < 0 and
hence Q3(\(e€)) is negative definite. Letting e tend to 0 we have that Q3(u3)
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is at least negative semidefinite. Since pg(,ug) is supposed to be nonzero
Q3(p3) is negative definite indeed. But the equality pe(u3) = 0 contradicts
lemma 2.

From this we deduce that Q3(\) is negative definite if and only if p3())
has two zeroes p$ < p3 in [u3, +oo[ such that p3(A\) < 0 in |u3, p3].

Likewise ps()\) takes nonpositive values at p$ and p3. Therefore Q4(\) is
negative definite for certain \ if and only if p4()\) has two roots u} < uj in
[143, 113] such that py(A\) > 0 in |ui, p3[. Simply reiterating this argument the
proposition follows.[].

Remark 6. Notice that due to proposition 4 the roots uz in the preceding
proposition are unique.

5. APPLICATION TO A SCALAR FOUR-ORDER EQUATION

Just to exemplify our results we consider the equation

(11) ™) 422" + 22" + 22" + x = f(x)
The characteristic values of the equation
™) 422" + 22" + 22" + 2 =0

are =7 and —1 with multiplicity 2. So we expect that the certain nonlin-
earities f(z) provoke the appearance of periodic orbits. To be precise we
assume that f(z) satisfies:

i) f is continuously derivable.
i) f(x) =< 2=0.

iii) f ’( ) <0.

) im T g o

|x|~>oo X

iv

Hypothesis ii) ensures that x = 0 is the only equilibrium point of (11).
Hypothesis iii) implies that this equilibrium point is unstable. Finally hy-
pothesis iv) means that (11) can be rewritten as

(12) ™) 4 22" 4 22" + 22’ + (1 — L)z = g(x)

where g(x) is continuous and bounded. Since now the right hand of (12) is
stable a straightforward argument proves that (11) is dissipative.

We are going now to impose (11) to be P-cooperative with respect to cer-
tain matrix P. This will always be possible as far as |f/(x)| is small enough.
To get concrete estimates let us rewrite equation (11) as an equivalent four-
dimensional system as follows:

(13) X = AX + G(X),
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where X = (z, 2/, 2", 2",

o 1 0 O
o 0 1 0
A= 0 0 0 1

-1 -2 -2 =2

and G(X) = (0,0,0, f(x))*.
Define

wy =sup{f(z):x € R}, w_ =inf{f(z):x e R}.

According to remark 5 system (13) is P-cooperative provided that matri-
ces

0 1 0 0
0 0 1 0
Ax = 0 0 0 1
14wy -2 -2 -2
are so.
The matrix
1 0 1 0
v — 0 1 -1 1

0O -1 -1 3
induces a change of variables that transform A into its Jordan canonical
form, that is

0 1 0 0

_1 - -1 0 O 0

U AU = 0 0 -1 1

0o 0 0 -1

Furthermore we have that

—wi/Q 1 —wi/Q 0
) _ -1 0 0 0
By =U" AU = wy/2 0 —14wy/2 1
wy/2 0 wy /2 -1

We consider matrix P, defined in the preceding section. By lemma 1
it is enough to prove that B4 are both P,-cooperative to show that A
are P-cooperative with respect another matrix P. So let us implement the
computational tool described in that section.

First we compute

alwy — ) 0 (I+a)ws/2 wy/2

i} B 0 —a\ 0 0
Bibat PaBetAboa =1 (1 L ywa/2 0 —24we+A 1+we/2
wy /2 0 1+ ws/2 -2+ A

We then have the polynomials
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p2(N) = &2A(\ — wy),

p3(\) = ad[a(\ — wi)(=2 + we + N) — (14 a)*w? /4]
and
a(ws —A)  (I+0ws/2  wi/2
ps(A) = —aXDet | 1+a)ws/2 —2+ws+A 14+wy/2
wi/Q 1+'LU:|:/2 —24+ A

Let us take o = 1. We give values to wy up to a decimal figure for which
proposition 5 applies.
Firstly for wy = 0.2 we have that

p2(A\) = AN —02),  u2=0.2,

p3(A\) = AA2 —2X+0.4),  pd =0.2254, pi =1.7746
and

pa(A) = AN — 402 £3.20 - 0.62), i =0.2936, u2 = 0.7032.

Thus conditions of proposition 5 are fulfilled. Let us see that this does
not occur for wy = 0.3. In fact it is straightforward that ps(\) would have
to have four real roots. But in this case

pa(N) = A(A3 — 4X\% 4+ 3.3\ — 0.945),
and its roots are

A1 =0, A2 =0.496 — 0.260¢, A3 = 0.496 4 0.2607, A4 = 3.007.

Concerning w_ we check the value w_ = —5.9 which provides
p2(N) =AA+59),  p3=0,

p3(\) = AA2 —2X —11.8), i =0, p2 =4.5777

and
pa(N) = A3 — 402 —2.904+0.295),  pl =0, p?=0.0906.
Again for w_ = 0.6 polynomial ps(\) does not satisfy proposition 5.
Actually

pa(N) = A2(\2 — 4\ —3)
whose roots are

A1 = —0.646, Mo, A3 = 0, \q = 4.646.
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This corresponds just to the case in which uf = Ay and uj = A3 coalesce
into one double root.

So corollary 4 implies the existence of a periodic orbit provided that
—5.9 < f'(z) < 0.2 for all z € R. Notice that in particular in the definition
of P-cooperative matrix we must take A in the interval |0.2936, 0.703[ for A4
and in the interval ]0,0.0906] for A_. This means that we cannot take the
same A for both matrices, which makes a strong difference with the theory
developed in [12, 13].

A natural question is if we can improve the bounds above by choosing
conveniently the parameter a. We have explored this possibility and as far
as wy is concerned no really good improvement can be achieved. The reason
for this is the closeness between the characteristic values —1 and +¢ for the
unperturbed system and the fact that in the region where f’(x) becomes
positive these characteristic values get closer and closer until the spectral
gap property (4) is violated.

On the other hand we do have succeeded in improving the lower bound
for f'(x). For instance we have obtained the condition f’(x) €] — 11.9,.2|
by taking @ = 2 whereas f'(x) €] — 8.5,0.2[ if @ = 2.5. It seems that the
best choice must be a value of o around 2. To accomplish such sharper
estimates requires a deeper study of the P-cooperativeness condition on
the line explained in proposition 5. We pretend to work out these kind of
improvements in more specific papers to be done in the future.
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