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Abstract

A Newtonian equation in the plane is considered. There is a central
force (attractive or repulsive) and an external force λh(t), periodic in
time. The periodic second primitive of h(t) defines a planar curve and
the number of periodic solutions of the differential equation is linked
to the number of loops of this curve, at least when the parameter λ is
large.
Keywords: forced oscillation, central force, averaging method, wind-
ing number
MSC 2010: 34C25, 34C29, 70K40

1 Introduction and main results

Consider the second order equation in the plane

z̈ ± z

|z|q+1
= λh(t), z ∈ C \ {0} (1)

where q ≥ 2, λ ≥ 0 is a parameter and h : R → C is a continuous and
2π-periodic function satisfying∫ 2π

0
h(t)dt = 0.

This equation models the motion of a particle under the action of a
central force F (z) = ∓ z

|z|q+1 and an external force λh(t). The force F can
be attractive or repulsive depending on the sign + or − in the equation (1).
For q = 2 the vector field F becomes the classical gravitational or Coulomb
force. For general information on this type of problems we refer to [1].

For the repulsive case it is known that (1) has no 2π-periodic solutions
when λ is small enough (see [8] and [2]). In this paper we will discuss the
existence of 2π-periodic solutions when λ is large. Before stating the main
result we recall the notion of index as it is usually employed in Complex
Analysis (see [5]). Given a continuous and 2π-periodic function γ : R → C
and a point z lying in C \ γ(R), the index of z with respect to the circuit γ
is an integer denoted by j(z, γ). When γ is smooth, say C1, this index can
be expressed as an integral,
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j(z, γ) =
1

2πı

∫
γ

dξ

z − ξ
=

1
2πı

∫ 2π

0

γ̇(t)
z − γ(t)

dt.

It is well known that z 7→ j(z, γ) is constant on each connected compo-
nent Ω of C \ γ(R). From now on we write j(Ω, γ) for this index. Let φ(t)
be a 2π-periodic solution of (1), the index j(0, φ) is well defined and can be
interpreted as the winding number of the solution φ around the singularity
z = 0.

Theorem 1.1. Let H(t) be a 2π-periodic solution of

Ḧ(t) = −h(t)

and let Ω1, . . . ,Ωr be bounded components of C \ H(R). Then there ex-
ists λ∗ > 0 such that the equation (1) has at least r different solutions
φ1(t), . . . , φr(t) of period 2π if λ ≥ λ∗. Moreover,

j(0, φk) = j(Ωk,H), k = 1, . . . , r.

Next we discuss the applicability of the theorem in three simple cases.

Example 1.2. h(t) ≡ 0.
We also have H(t) ≡ 0 and so C \ H(R) = C \ {0}. This set has no

bounded components and so the theorem is not applicable. This is reason-
able since the equation z̈− z

|z|q+1 = 0 has no periodic solutions. This is easily
checked since all solutions satisfy

1
2
d2

dt2
(|z|2) = |ż|2 +

1
|z|q−1

> 0 .

On the contrary, in the attractive case the equation (1) has many periodic
solutions for h ≡ 0. Notice that φ(t) = eı(t+c) is a 2π periodic solution for
any c ∈ R. In particular this shows that the number of bounded components
r is just a lower bound of the number of periodic solutions.

Example 1.3. h(t) = eıt.
The second primitive of −h is H(t) = eıt and C\H(R) has one bounded

component, the open disk {|z| < 1}. The theorem asserts the existence of
a 2π-periodic solution φ1(t) with j(0, φ1) = 1 for λ large enough. Indeed
this result can be obtained using very elementary techniques. The change
of variables z = eıtw transforms (1) into

ẅ + 2ıẇ − w ± w

|w|q+1
= λ .

This equation has, for large λ, two equilibria w+ and w− with |w+| → ∞
and |w−| → 0 as λ → ∞. These equilibria become 2π-periodic solutions
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with index one in the z-plane. Our method of proof can be seen as a con-
tinuation from infinity and this explains why we cannot detect the small
solution. After lengthy computations it is possible to find the spectrum of
the linearization of the w equation around the equilibria. This allows to
apply Lyapunov center theorem in some cases to deduce the existence of
sub-harmonic and quasi-periodic solutions in the z-plane (see [7] for more
details on this technique).

Example 1.4. h(t) = eıt + 27e3ıt.
The function H(t) = eıt + 3e3ıt is a parametrization of an epicycloid.

We observe that C \H(R) has five bounded connected components with
corresponding indices 3, 2, 2, 1, 1. Hence we obtain five 2π-periodic solutions.

For some forcings h(t) the set C \ H(R) has infinitely many bounded
components. In such a case the previous result implies that the number of
2π-periodic solutions grows arbitrarily as λ→∞.

2 Brouwer degree and weakly nonlinear systems

This section is devoted to describe a well known result on the existence of
periodic solutions of the system

ẋ = εg(t, x; ε), x ∈ U ⊆ Rd (2)

where U is an open and connected subset of Rd, ε ∈ [0, ε∗] is a small param-
eter and g : R×U × [0, ε∗] → Rd is continuous and 2π-periodic with respect
to t. Later it will be shown that our original system (1) can be transformed
into a system of the type (2). Following the ideas of the averaging method,
we define the function
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G(c) =
1
2π

∫ 2π

0
g(t, c; 0)dt, c ∈ U .

Next we assume that G does not vanish on the boundary of a certain open
set W , whose closure W is compact and contained in U . In such a case the
degree of G on W is well defined.

Proposition 2.1. In the above conditions assume that

deg(G,W, 0) 6= 0.

Then the system (2) has at least one 2π-periodic solution xε(t) lying in W
for ε > 0 sufficiently small.

This result is essentially contained in Cronin’s book [4]. We also refer to
the more recent paper by Mawhin [6] containing more general results and
some history.

Before applying this Proposition to (1) it will be convenient to have some
information on the behaviour of xε(t) as ε↘ 0. The function g is bounded
on the compact set [0, 2π]×W × [0, ε∗] and so

‖ẋε‖∞ = O(ε) as ε↘ 0.

Let εn ↘ 0 be a sequence such that xεn(0) converges to some point c in W .
Then xεn(t) converges uniformly to the constant c in [0, 2π]. Integrating the
equation (2) over a period we obtain∫ 2π

0
g(t, xεn(t); εn)dt = 0

and letting n → ∞ we deduce that G(c) = 0. In other words, as ε ↘ 0
the solutions xε(t) given by the previous Proposition must accumulate on
G−1(0), the set of zeros of G.

3 Reduction to a problem with small parameters

Let us start with the original equation (1) and consider the change of vari-
ables

z = λ(w −H(t))

where w = w(t) is the new unknown. Then (1) is transformed into

ẅ = ∓ε2 w −H(t)
|w −H(t)|q+1

(3)

with ε2 = 1
λq+1 .
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In principle this equation can have solutions passing through H(R) but
we will look for solutions lying in one of the components Ωk of C \ H(R).
On this domain the equation (3) is equivalent to a first order system of the
type (2) with x = (w, ξ) ∈ C2, U = Ωk × C and

ẇ = εξ, ξ̇ = ∓ε w −H(t)
|w −H(t)|q+1

.

The averaging function is

G(c1, c2) = (c2,Φ(c1)), c1 ∈ Ωk, c2 ∈ C

and

Φ(c1) = ∓ 1
2π

∫ 2π

0

c1 −H(t)
|c1 −H(t)|q+1

dt .

In the next section we will prove the following

Claim 3.1. For each k = 1, . . . , r there exists an open and bounded set Ω∗k,
whose closure is contained in Ωk, and such that

Φ(c1) 6= 0 if c1 ∈ ∂Ω∗k, deg(Φ,Ω∗k, 0) = 1.

Assuming for the moment that this claim holds, we notice that G does
not vanish on the boundary of W = Ω∗k×B where B is the unit disk |c2| < 1.
Moreover G can be expressed as

G = L ◦ (Φ× id)

where L : C2 → C2 is the linear map (c1, c2) 7→ (c2, c1) and id is the identity
in C. If we interpret L as an endomorphism of R4 then it can be represented

by the 4 × 4 matrix
(

0 I2
I2 0

)
. Hence, if L is understood as a R-linear

map, the value of the determinant is one. The general properties of degree
imply that

deg(G,W, (0, 0)) = sign(detL) · deg(Φ× id,Ω∗k ×B, (0, 0))

= deg(Φ,Ω∗k, 0) = 1.

In consequence Proposition 2.1 is applicable and we have proved the
first part of the theorem 1.1. Namely, the existence of 2π-periodic solutions
φ1(t), . . . , φr(t) for large λ (or small ε).

Notice that φk(t) = λ(ψk(t)−H(t)), where ψk is a 2π-periodic solution
of (3) lying in Ω∗k. For convenience we make explicit the dependence of φk

with respect to ε and write φk(t) = φk(t, ε).
To prove the identity

j(0, φk(., ε)) = j(Ωk,H)
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when ε is small enough, we proceed by contradiction. Let us assume that
for some sequence εn ↘ 0, j(0, φk(., εn)) 6= j(Ωk,H). After extracting
a subsequence of εn we can assume that ψk(t, εn) → z, ψ̇k(t, εn) → 0,
uniformly in t, where z is some point in Ω∗k ⊂ Ωk with Φ(z) = 0. This is a
consequence of the discussion after Proposition 2.1. Computing indexes via
integrals and passing to the limit

j(0, φk(·, εn)) = − 1
2πı

∫ 2π

0

ψ̇(t, εn)− Ḣ(t)
ψ(t, εn)−H(t)

dt→

→ 1
2πı

∫ 2π

0

Ḣ(t)
z −H(t)

dt = j(z,H) = j(Ωk,H).

Since we are dealing with integer numbers, j(0, φk(., εn)) and j(Ωk,H) must
coincide for large n. This is a contradiction with the definition of εn. By now
the proof of the main theorem is complete excepting for the above claim.

4 Degree of gradient vector fields

The purpose of this section is to prove the claim concerning the function
Φ. To do this we first prove a result valid for general gradient maps in the
plane.

Proposition 4.1. Let Ω be a bounded, open and simply connected subset of
R2 and let V : Ω → R be a continuously differentiable function. In addition
assume that

V (z) → +∞ as z → ∂Ω . (4)

Then there exists an open set Ω∗, whose closure is contained in Ω, such that

1. ∇V (z) 6= 0 for each z ∈ ∂Ω∗

2. deg(∇V,Ω∗, 0) = 1 .

Remark. The condition (4) says that V blows up in the boundary of Ω.
More precisely, given r > 0 there exist δ > 0 such that if z ∈ Ω with
dist(z, ∂Ω) < δ then V (z) > r.

Notice also that, by the properties of degree in two dimensions,

deg(∇V,Ω∗, 0) = deg(−∇V,Ω∗, 0) .

Proof. By Sard lemma we know that V has many regular values in the
interval ] minΩ V,+∞[. Let us pick one of these values, say α. Then the set
M = V −1(α) is a one-dimensional manifold of class C1. Since V blows up
at the boundary, M is compact and so it has to be composed by a finite
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number of disjoint Jordan curves. Let γ be one of these Jordan curves and
let us define Ω∗ as the bounded component of R2 \γ. Notice that the closure
of Ω∗ is contained in Ω because Ω is simply connected.

We know that

V (z) = α and ∇V (z) 6= 0 if z ∈ γ

and so ∇V (z) must be colinear to n(z), the outward unitary normal vector
to the curve γ. This implies that 〈∇V (z), n(z)〉 does not vanish on the curve
γ. Assume for instance that

〈∇V (z), n(z)〉 > 0 if z ∈ γ,

the other case being similar. Then it is easy to prove that ∇V (z) is linearly
homotopic to any continuous vector field which is tangent to γ on every
point of this curve. The proof is complete because it is well known that
these tangent vector fields have degree one. See for instance Th. 4.3 (Ch.
15) of [3].

We are ready to prove the claim concerning the function

Φ : Ωk → C, Φ(z) = ± 1
2π

∫ 2π

0

z −H(t)
|z −H(t)|q+1

dt

where Ωk is a bounded component of C \H(R).
To do this we will apply Proposition 4.1 and the crucial observation is

that Φ is a gradient vector field. Namely

Φ = ∓∇V on Ωk

where V is the real analytic function on Ωk,

V (z) =
1

2π(q − 1)

∫ 2π

0

dt

|z −H(t)|q−1
.

To check the assumptions of Proposition 4.1 we must prove that Ωk is simply
connected. This is done using very standard arguments of planar topology.

Lemma 4.1. Let Γ be a closed and connected subset of R2 and let Ω be a
bounded, connected component of R2 \ Γ. Then Ω is simply connected.

Proof. Given a Jordan curve γ in the plane, the bounded and unbounded
components of R2 \ γ are denoted by Ri(γ) and Re(γ) respectively. The set
Ω is open and connected and it is sufficient to prove that, for any Jordan
curve γ contained in Ω, the bounded component Ri(γ) is also contained in
Ω. Since γ ⊂ Ω ⊂ R2 \ Γ, we deduce that either Γ ⊂ Ri(γ) or Γ ⊂ Re(γ).
Here we are using that Γ is connected. Assume first that Γ ⊂ Ri(γ). Then
γ ∪Re(γ) is a connected subset of R2 \Γ and so it must be contained in one

7



of the components. Since γ is contained in Ω we deduce that that also Re(γ)
is contained in this component. This is impossible because Ω is bounded.
We conclude that the second alternative must hold. Once we know that
Γ ⊂ Re(γ) we repeat the previous reasoning, after changing the roles of
Ri(γ) and Re(γ), to conclude that γ ∪Ri(γ) is inside Ω.

It remains to check that (4) holds. We finish this paper with a proof of
this fact.

Lemma 4.2. In the above setting,

V (z) → +∞ as z → ∂Ωk.

Proof. By a contradiction argument assume the existence of a sequence {zn}
in Ωk with dist(zn, ∂Ωk) → 0 and such that V (zn) remains bounded. Since
Ωk is bounded it is possible to extract a subsequence (again zn) converging
to some point p ∈ ∂Ωk. Let us define the set A = {t ∈ [0, 2π] : H(t) = p}
and the function

µ(t) =

{
1

|H(t)−p|q−1 , t ∈ [0, 2π] \A
+∞, t ∈ A.

(5)

Then the sequence of functions 1
|H(t)−zn|q−1 converges to µ pointwise. By

Fatou’s Lemma∫ 2π

0
µ(t)dt ≤ lim inf

n→∞

∫ 2π

0

dt

|H(t)− zn|q−1
= 2π(q − 1) lim inf

n→∞
V (zn) <∞.

Hence µ(t) is integrable in the Lebesgue sense. In particular the set A
has measure zero. Since the boundary of Ωk is contained in H(R), the set
A is non-empty and we can fix τ ∈ [0, 2π] with H(τ) = p. The previous
discussion shows that

µ(t) =
1

|H(t)−H(τ)|q−1
, a.e. t ∈ [0, 2π].

Let L > 0 be a Lipschitz constant for H, then

µ(t) ≥ 1
Lq−1|t− τ |q−1

a.e. t ∈ [0, 2π].

At this point the condition q ≥ 2 plays a role,∫ 2π

0
µ(t)dt ≥ 1

Lq−1

∫ 2π

0

dt

|t− τ |q−1
= +∞

and this is a contradiction with the integrability of µ.
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