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Abstract

A Newtonian equation in the plane is considered. There is a central
force (attractive or repulsive) and an external force Ah(t), periodic in
time. The periodic second primitive of h(t) defines a planar curve and
the number of periodic solutions of the differential equation is linked
to the number of loops of this curve, at least when the parameter X is
large.
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1 Introduction and main results

Consider the second order equation in the plane

. z
where ¢ > 2, A > 0 is a parameter and h : R — C is a continuous and
2m-periodic function satisfying

2
/ h(t)dt = 0.
0

This equation models the motion of a particle under the action of a
central force F(z) = :F‘Z'% and an external force Ah(t). The force F' can
be attractive or repulsive depending on the sign + or — in the equation (1).
For ¢ = 2 the vector field F' becomes the classical gravitational or Coulomb
force. For general information on this type of problems we refer to [1].

For the repulsive case it is known that (1) has no 2m-periodic solutions
when A is small enough (see [8] and [2]). In this paper we will discuss the
existence of 2w-periodic solutions when A is large. Before stating the main
result we recall the notion of index as it is usually employed in Complex
Analysis (see [5]). Given a continuous and 2m-periodic function v : R — C
and a point z lying in C \ 7(R), the index of z with respect to the circuit
is an integer denoted by j(z,7). When 7 is smooth, say C!, this index can
be expressed as an integral,
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It is well known that z — j(z,7) is constant on each connected compo-
nent Q of C\ y(R). From now on we write j(£2,) for this index. Let ¢(t)
be a 27m-periodic solution of (1), the index j(0, ¢) is well defined and can be
interpreted as the winding number of the solution ¢ around the singularity
z = 0.

Theorem 1.1. Let H(t) be a 2w-periodic solution of

and let Q1,...,8, be bounded components of C\ H(R). Then there ex-
ists A« > 0 such that the equation (1) has at least r different solutions
d1(t), ..., 0p(t) of period 2w if A > .. Moreover,

30, ¢r) = j(u, H), k=1,...,m
Next we discuss the applicability of the theorem in three simple cases.

Example 1.2. h(t) = 0.
We also have H(t) = 0 and so C\ H(R) = C\ {0}. This set has no
bounded components and so the theorem is not applicable. This is reason-
z

able since the equation Z — T = 0 has no periodic solutions. This is easily

checked since all solutions satisfy
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On the contrary, in the attractive case the equation (1) has many periodic
solutions for h = 0. Notice that ¢(t) = '+ is a 27 periodic solution for
any ¢ € R. In particular this shows that the number of bounded components
r is just a lower bound of the number of periodic solutions.

Example 1.3. h(t) = e*.

The second primitive of —h is H(t) = ¢* and C\ H(R) has one bounded
component, the open disk {|z| < 1}. The theorem asserts the existence of
a 2m-periodic solution ¢q(t) with j(0,¢1) = 1 for A large enough. Indeed
this result can be obtained using very elementary techniques. The change
of variables z = e"w transforms (1) into

. . w

w+22w—w:|:W—)\.
This equation has, for large A, two equilibria w4 and w_ with |wy| — oo
and |{w—_| — 0 as A — oo. These equilibria become 27-periodic solutions



with index one in the z-plane. Our method of proof can be seen as a con-
tinuation from infinity and this explains why we cannot detect the small
solution. After lengthy computations it is possible to find the spectrum of
the linearization of the w equation around the equilibria. This allows to
apply Lyapunov center theorem in some cases to deduce the existence of
sub-harmonic and quasi-periodic solutions in the z-plane (see [7] for more
details on this technique).

Example 1.4. h(t) = ¥ + 273,
The function H(t) = e + 33" is a parametrization of an epicycloid.
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We observe that C\ H(R) has five bounded connected components with
corresponding indices 3,2, 2,1, 1. Hence we obtain five 2w-periodic solutions.

For some forcings h(t) the set C\ H(R) has infinitely many bounded
components. In such a case the previous result implies that the number of
2m-periodic solutions grows arbitrarily as A — oo.

2 Brouwer degree and weakly nonlinear systems

This section is devoted to describe a well known result on the existence of
periodic solutions of the system

i=ceg(t,a;e), x€UCR? (2)

where U is an open and connected subset of R?, ¢ € [0, ¢,] is a small param-
eter and g : R x U x [0,&,] — R? is continuous and 27-periodic with respect
to t. Later it will be shown that our original system (1) can be transformed
into a system of the type (2). Following the ideas of the averaging method,
we define the function
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Next we assume that GG does not vanish on the boundary of a certain open
set W, whose closure W is compact and contained in U. In such a case the
degree of G on W is well defined.

G(o)

Proposition 2.1. In the above conditions assume that
deg(G, W,0) # 0.

Then the system (2) has at least one 2mw-periodic solution x.(t) lying in W
for e > 0 sufficiently small.

This result is essentially contained in Cronin’s book [4]. We also refer to
the more recent paper by Mawhin [6] containing more general results and
some history.

Before applying this Proposition to (1) it will be convenient to have some
information on the behaviour of z.(t) as € \, 0. The function g is bounded
on the compact set [0,27] x W x [0,&,] and so

|7 ]lc = O(e) as e \, 0.

Let £, \, 0 be a sequence such that z., (0) converges to some point ¢ in W.
Then ., (t) converges uniformly to the constant ¢ in [0, 27]. Integrating the
equation (2) over a period we obtain

27
/ gt ze (1) 2n)dt = 0
0

and letting n — oo we deduce that G(c) = 0. In other words, as € \, 0
the solutions z.(t) given by the previous Proposition must accumulate on
G~1(0), the set of zeros of G.

3 Reduction to a problem with small parameters

Let us start with the original equation (1) and consider the change of vari-
ables



In principle this equation can have solutions passing through H(R) but
we will look for solutions lying in one of the components € of C\ H(R).
On this domain the equation (3) is equivalent to a first order system of the
type (2) with z = (w,£) € C%, U = Q x C and

) : w — H(t)
w = eg, f::l:&“m-

The averaging function is

G(Cl,CQ) = (62,@(01)), c1 € Qp, coeC

1 [?™ ¢ —H(t)
o) =F— | A=W
(c1) 4327T/0 o — H (D)o dt

In the next section we will prove the following

and

Claim 3.1. For each k =1,...,r there exists an open and bounded set €1,
whose closure is contained in y,, and such that

D(c1) #0 if 1 € 09, deg(P,Q5,0) = 1.

Assuming for the moment that this claim holds, we notice that G does
not vanish on the boundary of W = Qj x B where B is the unit disk |co| < 1.
Moreover GG can be expressed as

G=Lo(d xid)

where L : C2 — C? is the linear map (c1,c2) — (c2,c1) and id is the identity
in C. If we interpret L as an endomorphism of R* then it can be represented

by the 4 x 4 matrix <IOQ 102

map, the value of the determinant is one. The general properties of degree
imply that

). Hence, if L is understood as a R-linear

deg(G,W,(0,0)) = sign(detL) - deg(® x id, Qr x B, (0,0))

= deg(P,,0) = 1.

In consequence Proposition 2.1 is applicable and we have proved the
first part of the theorem 1.1. Namely, the existence of 27-periodic solutions
1(t),. .., (t) for large A (or small €).

Notice that ¢ (t) = A(Yx(t) — H(t)), where vy, is a 2m-periodic solution
of (3) lying in Q. For convenience we make explicit the dependence of ¢y,
with respect to € and write ¢ (t) = ¢i(t, ).

To prove the identity



when ¢ is small enough, we proceed by contradiction. Let us assume that
for some sequence g, N\, 0, j(0,0x(.,en)) # j(Q, H). After extracting
a subsequence of g, we can assume that y(t,e,) — z, @Z}k(t,en) — 0,
uniformly in ¢, where z is some point in Q} C Q; with ®(z) = 0. This is a
consequence of the discussion after Proposition 2.1. Computing indexes via
integrals and passing to the limit

1 2 &(t,en) — H(t)

“om o wlhen —HOM T

](07¢k(75n)) =
2 "
H%m 0 f%dt:ﬂz,m:jmkﬂ)-

Since we are dealing with integer numbers, j(0, ¢x(., €, )) and j(Q, H) must
coincide for large n. This is a contradiction with the definition of €,,. By now
the proof of the main theorem is complete excepting for the above claim.

4 Degree of gradient vector fields

The purpose of this section is to prove the claim concerning the function
®. To do this we first prove a result valid for general gradient maps in the
plane.

Proposition 4.1. Let ) be a bounded, open and simply connected subset of
R? and let V : Q — R be a continuously differentiable function. In addition
assume that

V(z) = 400 as z — 00 . (4)
Then there exists an open set *, whose closure is contained in §2, such that
1. VV(2) # 0 for each z € OQ*
2. deg(VV,Q*,0) =1

Remark. The condition (4) says that V' blows up in the boundary of .
More precisely, given r > 0 there exist § > 0 such that if z € Q with
dist(z,08) < 0 then V(z) > r.

Notice also that, by the properties of degree in two dimensions,

deg(VV,Q*,0) = deg(—VV,Q*,0) .

Proof. By Sard lemma we know that V' has many regular values in the
interval | ming V, +o00|. Let us pick one of these values, say «. Then the set
M = V~1(a) is a one-dimensional manifold of class C*. Since V blows up
at the boundary, M is compact and so it has to be composed by a finite



number of disjoint Jordan curves. Let v be one of these Jordan curves and
let us define Q* as the bounded component of R?\ v. Notice that the closure
of Q* is contained in €2 because ) is simply connected.

We know that

V(z) =aand VV(2) #0if z € v

and so VV(z) must be colinear to n(z), the outward unitary normal vector
to the curve 7. This implies that (VV'(z),n(z)) does not vanish on the curve
~. Assume for instance that

(VV(2),n(z)) > 0if z € ~,

the other case being similar. Then it is easy to prove that VV'(z) is linearly
homotopic to any continuous vector field which is tangent to v on every
point of this curve. The proof is complete because it is well known that
these tangent vector fields have degree one. See for instance Th. 4.3 (Ch.
15) of [3]. O

We are ready to prove the claim concerning the function

1 [?™ z—H()

where €, is a bounded component of C \ H(R).
To do this we will apply Proposition 4.1 and the crucial observation is
that @ is a gradient vector field. Namely

® =FVV on Q4

where V' is the real analytic function on ,

1 2m dt
VO =5 ) FoHEET

To check the assumptions of Proposition 4.1 we must prove that 2y is simply
connected. This is done using very standard arguments of planar topology.

Lemma 4.1. Let T be a closed and connected subset of R? and let  be a
bounded, connected component of R2\T'. Then §) is simply connected.

Proof. Given a Jordan curve « in the plane, the bounded and unbounded
components of R?\ v are denoted by R;() and R.(7) respectively. The set
) is open and connected and it is sufficient to prove that, for any Jordan
curve 7y contained in €2, the bounded component R;(+y) is also contained in
Q. Since v C Q € R?2\ T, we deduce that either I' C R;(y) or I' C Rc(7).
Here we are using that I' is connected. Assume first that I' C R;(y). Then
YU Re(7) is a connected subset of R?\ T" and so it must be contained in one



of the components. Since 7 is contained in {2 we deduce that that also Re ()
is contained in this component. This is impossible because €2 is bounded.
We conclude that the second alternative must hold. Once we know that
I' C R.(y) we repeat the previous reasoning, after changing the roles of
Ri(v) and Re(7), to conclude that v U R;(7y) is inside €2. O

It remains to check that (4) holds. We finish this paper with a proof of
this fact.

Lemma 4.2. In the above setting,
V(z) — 400 as z — 0.

Proof. By a contradiction argument assume the existence of a sequence {z, }
in Q with dist(zy,082) — 0 and such that V(z,) remains bounded. Since
Q. is bounded it is possible to extract a subsequence (again z,) converging
to some point p € Q. Let us define the set A = {t € [0,2n] : H(t) = p}
and the function

u(t) = meeer €021\ 4 (5)
400, te A
Then the sequence of functions W converges to u pointwise. By

Fatou’s Lemma

2 o 2m dt o

Hence pu(t) is integrable in the Lebesgue sense. In particular the set A
has measure zero. Since the boundary of € is contained in H(R), the set
A is non-empty and we can fix 7 € [0,2n] with H(7) = p. The previous
discussion shows that

1
MO =T~ H T

a.e. t € [0,27].
Let L > 0 be a Lipschitz constant for H, then

/,L(t) Z m a.e. t e [O, 271']

At this point the condition ¢ > 2 plays a role,

27 1 21 dt
t)dt > —— - =
fo = i [ e = o

and this is a contradiction with the integrability of u. O
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