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Abstract. The maximum principle is a typical tool to be em-
ployed with elliptic and parabolic partial differential equations
when initial and/or boundary conditions are considered. On the
other hand, some of these principles have been proved for hyper-
bolic equations with initial conditions.

In this note we will see an example of maximum principle for
a hyperbolic equation with boundary conditions, namely, the tele-
graph equation

utt − ∆xu+ cut − λu = f(t, x).

In fact, when we look for periodic solutions in space and time, a
maximum principle arises in a natural way.

1. Introduction

In this note we consider the hyperbolic equation

utt − ∆xu+ cut + λu = f(t, x)

where f and u are periodic functions in each of its variables, that is

u(t+ Tt, x1, . . . , xn) = u(t, x1, . . . , xn);

u(t, x1, . . . , xi + Tx, . . . , xn) = u(t, x1, . . . , xi, . . . , xn), 1 ≤ i ≤ n.

The problem will be to determine the values of the parameters c and λ such that
there is a maximum principle. Loosely speaking, the maximum principle means
that

f ≥ 0 ⇒ u ≥ 0.

Maximum principles for elliptical and parabolic equations are well known. For
example, Protter and Weinberger’s book [8] is a classical reference. For hyperbolic
equations the situation is different. In the last chapter of [8] several maximum
principles for initial value problems are shown. These principles arose in the study
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of Tricomi’s equation, an equation of mixed type. The reference [3] can be consulted
as a recent paper in this line.

New results related to boundary problems are presented here. They have been
obtained in successive collaborations with J. Mawhin and R. Ortega [4, 5, 7]. There-
fore, the proofs and the details can be seen in these references. An application of
these results is to show the validity of the method of upper and lower solutions for
the study of the sine-Gordon equation

utt − ∆xu+ cut + a sinu = f(t, x).

The rest of this note is organized in three sections. In Section 2 the problem for
spatial dimension equal to one is studied. In Section 3 a numerical answer is given
to the question of computing c and λ for dimension one also. Finally, in Section 4,
we comment some results for higher dimensions and bounded solutions in time.

2. The case of spatial dimension one

We consider the problem

(1)
utt − uxx + cut + λu = f(t, x)

u(t, x) doubly periodic

}

where we suppose that f is doubly periodic too. In order to be clearer, the periods in
t and x are equal; moreover Tt = Tx = 2π. By integration over (0, 2π)×(0, 2π), it is
obvious that a maximum principle is possible only when λ > 0. The next examples
give us a first approximation to the answer of our problem: some relations between
c and λ.

Example 2.1. We consider the function u(t, x) = 1 − cos t cosx − ε cosnt, where
n ∈ Z such that n2 > λ and ε > 0 is small. This function changes sign and if we
calculate f when c = 0, we obtained

f(t, x) = λ(l − cos t cosx) + ε(n2 − λ) cosnt.

This function is positive and therefore it is not possible to obtain a maximum
principle for c = 0. From now on we will suppose that there is friction, c > 0.

By the way, we can study the case c < 0 with the change of variable s = −t,
that is, we take the time in the opposite direction.

Example 2.2. Now we suppose that f = f(x). In this case we are considering the
problem

−uxx + λu = f(x)

u(x) 2π−periodic

}

.

With the help of the most basic of the maximum principles [Chapter 1 of [8]], we

have that, if f ≥ 0 and
∫ 2π

0 f > 0, u > 0 for any λ > 0.
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Example 2.3. If f = f(t), we have

utt + cut + λu = f(t)

u(t) 2π−periodic

}

.

We can use the anti-maximum principle to conclude that, if f ≥ 0 and
∫ 2π

0
f > 0,

u > 0 if and only if

(2) 0 < λ ≤
c2

4
+

1

4
.

Remark 2.1. In examples 2.2 and 2.3, it is possible to compute the respective
Green’s functions and conclude the same conditions.

After these examples an initial conjecture would be that we will have a maximum
principle for (1) if and only if (2) holds. As we shall see later, we are going to need
a condition more restrictive than (2).

At this point it is convenient to precise our framework. If we define T = R/2πZ,
we can consider the problem

(3) utt − uxx + cut + λu = f in D
′(T2).

This problem is equivalent to (1) via the obvious projection from R
2 to T

2 (the
2-dimensional torus). By a solution of (3) we understand a function u ∈ L1(T2)
satisfying

∫

T2

u(φtt − φxx − cφt − λφ) =

∫

T2

fφ ∀φ ∈ D(T2).

As a first result we have the existence and the regularity of the solution.

Proposition 2.4. If c > 0 and λ > 0, (3) has a unique solution u. Moreover u is
continuous.

Remark 2.2. We can improve this result in two ways.

i) If f ∈ Lp(T2), 1 < p <∞, then u ∈ C0,α(T2), α = 1 − 1
p
.

ii) When the function f is replaced by a measure then (3) has a unique solution
u ∈ L∞(T2). This result is useful in order to compute the Green’s function
associated to problem (3).

The main result of this section is the following

Theorem 2.5. Let c > 0 be fixed. There exists a function

ν : (0,∞) → (0,∞), c 7→ ν(c)

such that there is a maximum principle for (3) if and only if

λ ∈ (0, ν(c)].

Moreover, the maximum principle is always strong, that is

f ≥ 0 a.e.T2,

∫ 2π

0

f > 0 ⇒ u > 0 T
2,

and the function ν satisfies
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i) c2

4 < ν(c) ≤ c2

4 + 1
4 ,

ii) ν(c) → 0 as c↘ 0,

iii) ν(c) − c2

4 →
j2
0

8π2 as c↗ +∞,

where j0 is the first positive zero of the Bessel function J0.

We finish this section with an useful remark which will be employed later.

Remark 2.3. Let us consider the Dirac’s measure concentrated on 0̄ ∈ T
2. In precise

terms,
< δ0, φ >= φ(0, 0) ∀φ ∈ C(T2).

If we replace f(t, x) by the Dirac’s measure in (3), the solution is the Green’s
function associated to problem (3), Gλ(t, x). Now, we have an explicit formula for
the solution of (3). Namely,

(4) u(t, x) =

∫

T2

Gλ(t− τ, x− ξ)f(τ, ξ) dτdξ.

From this expression, we can prove that u is positive if Gλ and f are positive too.
On the other hand, if Gλ is negative in some point then there will not be maximum
principle.

3. A numerical approximation to ν(c)

At this moment we can not compute the exact value of ν(c). But it is possible to
obtain a good enough approximation for c > 1.

Before exposing the idea for this approximation, we need a theoretical result.
We consider the evolution problem

(5)
utt − uxx + cut + λu = f(t, ·), t ∈ R, x ∈ T

u|t=0 = φ ∈ H1(T), u̇|t=0 = ψ ∈ L2(T)

}

with f ∈ C(T, L2(T)). Because the equation of (5) is asymptotically stable then
all the solutions converge to the doubly periodic solution. Moreover, if f is no

negative, and
∫ 2π

0 f > 0, then there exists T = T (φ, ψ) such that u(t, x) is positive
for all x ∈ T and t > T .

Remark 3.1. If c > 1 and λ < c2, we can use the Liapunov’s function

V (φ, ψ) =

∫

T

{ψ2 + (φ′)2 +
c2

2
φ2 + cφψ}

for prove that (5) is asymptotically stable.

Now we are ready. The idea is to solve (5) with f equal to the Dirac’s measure.
The solution in this case is Gλ for each value of λ. Finally, we must observe the
sign of Gλ.

In order to develop a numerical program, we consider a spatial discretization
of the telegraph equation (Figure 1). That is, we consider a finite set of points



MAXIMUM PRINCIPLES IN A CERTAIN HYPERBOLIC EQUATION 5

{X1, X2, . . . , XN} that move along parallel straight lines. Sometimes this procedure
is called the method of lines [2].

Figure 1. Discretization of the telegraph equation

In Figure 1 we have represented the term λu of (3) as the action of two springs
on each point Xi. Moreover, as it is usual, cut is a term of friction proportional to
the velocity of Xi.

Let us consider the function Si(t) = (yi(t), vi(t)), the position and the velocity of
the point Xi at time t. We have the system of differential equations with impulses

(6)



























(

yi(t)

vi(t)

)′

=

(

vi(t)

yi+1(t)−2yi(t)+yi−1(t)
(∆x)2 − cvi(t) − λyi(t)

)

, t ∈ (2nπ, 2(n+ 1)π)

(y1(2nπ+), v1(2nπ+)) = (y1(2nπ), v1(2nπ) + 1)

(yi(2nπ+), vi(2nπ+)) = (yi(2nπ), vi(2nπ) + 1), i = 2, . . . , N

with n ∈ N and ∆x = 2π
N

. Because we look for periodic solutions, we must observe
in (6) that y0(t) = yN (t) and yN+1(t) = y1(t). On the other hand, the Dirac’s
measure is represented by a periodic impulse on the first point.

Remark 3.2. Intuitively, the Dirac’s measure can be represented as a periodic im-
pulsive force on the point X1. Therefore, y1 is a continuous function but v1 changes
instantaneously with each impulse. For a rigorous result about this fact, see [Section
2, [6]].

To solve (6), we use the fourth-order Runge-Kutta’s method with ∆t = ∆x [2].
The initial values are Si(0) = (0, 0), 1 ≤ i ≤ N . Finally, having in mind the
asymptotic stability of (5), we get Gλ when

(7) |Si((j + 1)N∆t) − Si(jN∆t)| ≈ 0.
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Remark 3.3. We are looking for the Green’s function as the periodic solution of
(5) for a certain f . Because we have asymptotic stability for the periodic solutions
of (5), it is clear that (7) has to be the stop condition. In fact, we want that the
numerical solution does not change after one period of time, that is, 2π = N∆t.

Maybe we can think that (7) is restrictive but is better to simplify the numerical
program. In fact, we could have used

|Si((j +N)∆t) − Si(j∆t)| ≈ 0.

In the following picture (Figure 2) we see a comparative among the graphics of
the functions

i) f1(c) = c2

4 + 1
4 ,

ii) f2(c) = c2

4 + 1
4

j2
0

2π2 ,

iii) f3(c) = ν(c) (estimated values),

iv) f4(c) = c2

4 .

from top to bottom. In view of it, we can think that the asymptotic estimation of
ν(c), given by Theorem 2.5, is a good approximation to the exact value if c > 1.

Figure 2. Estimation of ν(c)

In order to state the accuracy of Figure 2, we finish this section with the following
table.

c 1 1.25 1.5 1.75 2
f2(c) 0.3232 0.46387 0.6357 0.8389 1.0732
f3(c) 0.3211 0.46384 0.6367 0.8404 1.0750

c 3 4 5 6 7
f2(c) 2.3232 4.0732 6.3232 9.0732 12.3232
f3(c) 2.3255 4.0758 6.3260 9.0763 12.3267
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4. Extensions to bounded solutions and higher dimensions

Another type of interesting solutions of the telegraph equation are the solutions
which are periodic in space and bounded in time [4], u ∈ L∞(R×T). Of course, in
this case we suppose that f ∈ L∞(R × T). Before giving the theorem in this case,
we are going to consider the telegraph equation up to spatial dimension three [5],

(8) utt − ∆xu+ cut + λu = f(t, x) in D
′(R × T

d)

with d = 1, 2, 3.
We sum up in the following theorem the results of [4] and [5].

Theorem 4.1. Let f be a function in L∞(R × T
d). Moreover, we consider c > 0

and 0 < λ ≤ c2

4 . Then

i) equation (8) has a unique solution u ∈ L∞(R × T
d);

ii) if d = 1, u ∈ W 1,∞(R × T);

iii) if d = 2, u is continuous;

iv) there is a maximum principle, that is

f ≥ 0 a.e. in R
1+d, then u(t, x) ≥ 0 a.e. in R

1+d.

Remark 4.1. For bounded in time solutions we have the exact value for ν(c). Indeed,
assume f = f(t) is T-periodic in Example 2.3. Then there is a maximum principle
if and only if

0 < λ ≤
c2

4
+
( π

T

)2

.

Since T is arbitrary, (8) has no maximum principle if λ > c2

4 .

Remark 4.2. The maximum principle is not strong. Indeed, if we define

u(t) =
(

t+
)3
e−at,

then f = u′′ + cu′ + λu is bounded and nonnegative if a = c−
√

c2−4λ
2 , λ ∈

(

0, c2

4

]

.

The situation changes completely for d = 4. It is possible to give an example in

order to prove that there is no maximum principle for (8) if λ = c2

4 and d = 4 [[5],
Section 5]. Therefore, the maximum principle is a peculiar property of dimensions
1, 2 and 3.

We return to the case of periodic solutions in time and space. We consider the
problem

(9) utt − ∆xu+ cut + λu = f(t, x) in D
′(Td)

with d ≥ 2. From theorem 4.1 it is easy to give another one that partially generalizes
Proposition 2.4 and Theorem 2.5 for d = 2, 3. Of course, following the ideas of [7],
there will be a result about ν(c) = ν(c, d), d = 2, 3. Finally, we expect that there
will exist an example of non existence of maximum principle for periodic solutions
and d=4. It will be a suitable modification of the example in the case of bounded
solutions.
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