Proceedings of the International Workshop
Future Directions in Difference Equations.
June 13-17, 2011, Vigo, Spain.
PAGESip—fp

A difference equation arising in Mechanics

Rafael Ortega
Universidad de Granada, Spain

rortega@ugr.es

Abstract

A family of second order difference equations is presented. They have a variational struc-
ture and appear often in Mechanics.

1 The equation
Let us consider the second order difference equation
82h(0n—17 en) + 81h(9n7 en—‘rl) - 07 (1)

whereh = h(6,0’) is a given function. Her&;, = % andd, = %. This equation appears in
some physical problems, see [1, 4]. The prototype of generating functidh be

hp(6,0") = (0 — 0')",

defined ord’ > 6. The exponenp can be any real number exceptifignd1l. Whenh = h, the
equation becomes

p(en - anl)p_l - p(9n+1 - en)p—l =0,
and this is equivalent to

Op+1 — 0, = constant = w > 0.

Finally we find the solution#,, = 6y + nw. Results on the equation (1) for functiohsclose
to h, find applications in conservative Mechanics of low dimension. There are several reasons
explaining why this equation is useful in Mechanics and we will present two of them.

2 Discrete Lagrangian systems

Assume that) = ¢(t) models the motion of a particle on a circle. The Lagrangian function
L =L(6,0) is defined as
L=T-YV,
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whereT is the kinetic energy anll’ is the potential. The motions can be obtained as the critical
points of the action functional

They satisfy Euler-Lagrange equation

oL _d oL,
09 dt op

Assume now that we want to model the motion with a discrete sequ@nee(6,,). By formal
analogy we can replace the derivatiV@y the finite difference\d = 6,,.1 — 6,, and consider a
Lagrangian

L=L(0n,0h+1 —0,) = h(0h,0n11).

The integral in the functional is replaced by a sum,
AB] = (B, On11)

and the "motions” are obtained as critical points4fThe variable),, only appears in two terms
of the sum defining,

and so the equatioff;- = 0 leads to (1).

3 Symplectic twist maps

Let us consider a cylinder with coordinatés r) whered = 6 + 2. A diffeomorphism of the
cylinderM : (0,r) — (¢',r') is called symplectic if the differential forr# A dr is preserved,

df1 N\ dri = df A dr.

This is equivalent talet M’ = 1. M has twist if the derivativésl does not vanish. This last
condition has a simple geometrical interpretation. Assume for instance that

001
or
Given a segmerif = {0 = constant}, the imagd™; = M (I") will be a twisted arc, meaning that
the angle); goes forward as increases. Already Birkhoff found that these maps play an important
role in Hamiltonian dynamics, see [2]. Some considerations on differential forms together with the
implicit function theorem show that every symplectic twist mephas an associated generating
functionh = h(0,6’), see [6, 7]. This means that the map can be expressed in the form

[ r=0n(6,0)
M: { v = oph(0.6). 2)

> 0.

which formally resembles the structure of Hamiltonian systems.
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The functionh satisfies,
|012h(0,6")| > 0, 3)

whered,, = #;9,. This property reflects the twist condition at the level of the generating func-
tion. It allows to solve the equatioan= 91 h (6, 0") with respect t@’ = ¢'(6, r). This is important
to recover the map/ from A via the formulas in (2).

The equation (1) is crucial for the understanding of the dynamick/of Given a solution
(0 )nez We can produce afi/-orbit with the definitionr,, = 0,(6,,,0,+1). To illustrate the
previous discussion we go back to the prototypé, #') = (0 — 0')? and compute the associated
mapM,. From (2) we obtain,

r=p@ —0)Pt =4

equivalent to

r=r.

_1
M, : { =01

This is an integrable twist map having the invariant cireles constant. Notice that the map/,
becomes a rotation on each of these circles and the rotation number changes withe case
p < 1 orp > 2there is small twist at infinity, meaning th%% — 0 asr — oo.

Going back to a generall, we notice that the notion of symplectic map can be reformulated
in terms of the differential forry = r'd6’ — rdf. Actually M is symplectic whenever this form
is closed, that igln = 0. The mapM is called exact symplectic when the differential fornis
exact in the cylinder. This means that there is a functios: V (6, r), 2r-periodic inf and such
thatdV = n. In such a case the generating function satisfies the periodicity condition

h(0 + 2,0 + 27) = h(0,6"). (4)

The classical theory of exact symplectic twist maps on the cylinder can be viewed as collection of
results on the equation (1) when the functiosatisfies (3) and (4). In this connection we mention

the version on Moser’s invariant curve theorem formulated in [5] or [6, 7] for presentations of
Aubry-Mather theory in terms of this difference equation. In the recent paper [3], by Markus
Kunze and the present author, some results on the equation (1) have been obtained. They do not
assume (3) or (4) but must be close ta,, with p < —1. As could be expected from the previous
discussions they have found several applications in classical Mechanics.
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