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Abstract

A family of second order difference equations is presented. They have a variational struc-
ture and appear often in Mechanics.

1 The equation

Let us consider the second order difference equation

∂2h(θn−1, θn) + ∂1h(θn, θn+1) = 0, (1)

whereh = h(θ, θ′) is a given function. Here∂1 = ∂
∂θ and∂2 = ∂

∂θ′ . This equation appears in
some physical problems, see [1, 4]. The prototype of generating functionh will be

hp(θ, θ′) = (θ − θ′)p,

defined onθ′ > θ. The exponentp can be any real number excepting0 and1. Whenh = hp the
equation becomes

p(θn − θn−1)p−1 − p(θn+1 − θn)p−1 = 0,

and this is equivalent to
θn+1 − θn = constant = ω > 0.

Finally we find the solutionsθn = θ0 + nω. Results on the equation (1) for functionsh close
to hp find applications in conservative Mechanics of low dimension. There are several reasons
explaining why this equation is useful in Mechanics and we will present two of them.

2 Discrete Lagrangian systems

Assume thatθ = θ(t) models the motion of a particle on a circle. The Lagrangian function
L = L(θ, θ̇) is defined as

L = T − V,
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whereT is the kinetic energy andV is the potential. The motions can be obtained as the critical
points of the action functional

A[θ] =
∫ t1

t0

L(θ(t), θ̇(t))dt.

They satisfy Euler-Lagrange equation

∂L

∂θ
− d

dt
(
∂L

∂θ̇
) = 0.

Assume now that we want to model the motion with a discrete sequenceΘ = (θn). By formal
analogy we can replace the derivativeθ̇ by the finite difference∆θ = θn+1 − θn and consider a
Lagrangian

L = L(θn, θn+1 − θn) ≡ h(θn, θn+1).

The integral in the functional is replaced by a sum,

A[Θ] =
∑

n

h(θn, θn+1)

and the ”motions” are obtained as critical points ofA. The variableθn only appears in two terms
of the sum definingA,

A[Θ] = · · ·+ h(θn−1, θn) + h(θn, θn+1) + · · ·

and so the equation∂A∂θn
= 0 leads to (1).

3 Symplectic twist maps

Let us consider a cylinder with coordinates(θ, r) whereθ ≡ θ + 2π. A diffeomorphism of the
cylinderM : (θ, r) 7→ (θ′, r′) is called symplectic if the differential formdθ ∧ dr is preserved,

dθ1 ∧ dr1 = dθ ∧ dr.

This is equivalent todet M ′ = 1. M has twist if the derivative∂θ1
∂r does not vanish. This last

condition has a simple geometrical interpretation. Assume for instance that

∂θ1

∂r
> 0.

Given a segmentΓ = {θ = constant}, the imageΓ1 = M(Γ) will be a twisted arc, meaning that
the angleθ1 goes forward asr increases. Already Birkhoff found that these maps play an important
role in Hamiltonian dynamics, see [2]. Some considerations on differential forms together with the
implicit function theorem show that every symplectic twist mapM has an associated generating
functionh = h(θ, θ′), see [6, 7]. This means that the map can be expressed in the form

M :
{

r = ∂1h(θ, θ′)
r′ = −∂2h(θ, θ′),

(2)

which formally resembles the structure of Hamiltonian systems.
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The functionh satisfies,
|∂12h(θ, θ′)| > 0, (3)

where∂12 = ∂2

∂θ∂θ′ . This property reflects the twist condition at the level of the generating func-
tion. It allows to solve the equationr = ∂1h(θ, θ′) with respect toθ′ = θ′(θ, r). This is important
to recover the mapM from h via the formulas in (2).

The equation (1) is crucial for the understanding of the dynamics ofM . Given a solution
(θn)n∈Z we can produce anM -orbit with the definitionrn = ∂1(θn, θn+1). To illustrate the
previous discussion we go back to the prototypehp(θ, θ′) = (θ− θ′)p and compute the associated
mapMp. From (2) we obtain,

r = p(θ′ − θ)p−1 = r′

equivalent to

Mp :

{
θ′ = θ + ( r

p)
1

p−1 ,

r′ = r.

This is an integrable twist map having the invariant circlesr = constant. Notice that the mapMp

becomes a rotation on each of these circles and the rotation number changes withr. In the case
p < 1 or p > 2 there is small twist at infinity, meaning that∂θ′

∂r → 0 asr →∞.
Going back to a generalM , we notice that the notion of symplectic map can be reformulated

in terms of the differential formη = r′dθ′ − rdθ. Actually M is symplectic whenever this form
is closed, that isdη = 0. The mapM is called exact symplectic when the differential formη is
exact in the cylinder. This means that there is a functionV = V (θ, r), 2π-periodic inθ and such
thatdV = η. In such a case the generating function satisfies the periodicity condition

h(θ + 2π, θ′ + 2π) = h(θ, θ′). (4)

The classical theory of exact symplectic twist maps on the cylinder can be viewed as collection of
results on the equation (1) when the functionh satisfies (3) and (4). In this connection we mention
the version on Moser’s invariant curve theorem formulated in [5] or [6, 7] for presentations of
Aubry-Mather theory in terms of this difference equation. In the recent paper [3], by Markus
Kunze and the present author, some results on the equation (1) have been obtained. They do not
assume (3) or (4) buth must be close tohp with p < −1. As could be expected from the previous
discussions they have found several applications in classical Mechanics.
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