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Abstrat

In this paper we study the existene and asymptoti stability of periodi

solutions of the di�erential equation

ẍ + f(x)ẋ + g(x) = h(t),

where f(x) is positive and g(x) is stritly monotonially inreasing and has

one or two weak singularities. The method of proof for existene is based on

original arguments by M. Nagumo.
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1 Introdution

In this paper we deal with the existene and stability of T -periodi solutions of a

seond order di�erential equation of Liénard-type

ẍ + f(x)ẋ + g(x) = h(t), (1)

∗Partially supported by projet MTM2008-02502.
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where h(t) is a ontinuous and T -periodi funtion, f, g : ]l1, l2[→ R are loally Lip-

shitz ontinuous funtions.

In priniple, −∞ ≤ l1 < l2 ≤ +∞ but we are interested in the ase where at least

one of them is �nite.

The study of salar seond order equations with singularities an be traed bak

to a paper by Nagumo [9℄ published in 1944. It is important to remark this fat

beause it seems to be little known, and up to our knowledge it is not reorded in

the related literature. The available reviews [8, 11, 12℄ register as early referenes

some papers by Forbat, Huaux and Derwindué in the sixties [4, 5, 2℄. Although the

�rst appliation of topologial degree is due to Fauré [3℄, the papers [7, 6℄ onstitute

the landmarks on this topi.

In the study of equations with singularities, the so-alled strong fore assumption

has played a prominent role. To explain it, let us de�ne x as the minimum of the

values of ]l1, l2[ suh that g(x) = 0 and let us de�ne the potential

G(x) :=

∫ x

x

g(s)ds.

Then, it is said that g has a strong singularity at l1 (resp. l2) if

lim
x→l+

1

G(x) = +∞. ( resp. lim
x→l−

2

G(x) = +∞)

On the other hand, when suh a limit is �nite, we speak about a weak singularity.

All the lassial papers mentioned before assume a strong fore ondition. In fat, in

the seminal paper of Lazer and Solimini [7℄ it is shown that suh a ondition an not

be dropped without further assumptions. On this basis, suh a ondition beame

standard in the related works. However, in the latter years the interest on weak

singularities has inreased and some onditions for existene of periodi solutions

[1, 10, 13, 14, 15, 16, 17℄ an be found. Our purpose in this paper is to reover the

original method of Nagumo developed in [9℄ for strong singularities and show that it

is suitable to deal also with weak singularities.

In order to formulate our main result, let us de�ne the following funtions

F (x) :=

∫ x

x̄

f(s)ds, (2)

W (x) :=
F 2(x)

4
+ 2G(x), (3)

Z(x) :=
F 2(x)

2
+ 2G(x). (4)

In the following, ‖.‖
∞

stands for the usual supremum norm.

Theorem 1. Let us assume that
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(H1) C∗ := inf{W (l1),W (l2)} < ∞.

(H2) There exists f0 > 0 suh that f(x) ≥ f0 for every x ∈]l1, l2[.

(H3) g(x) is stritly inreasing and there exists x ∈]l1, l2[ suh that g(x) = 0.

Fix 0 < C < C∗ and let l′1 < l′2 be the solutions of Z(x) = C. De�ne the funtion

R(x) = −1

2
|F (x)| +

√

C∗ − W (x), (5)

and �x the following positive onstants

K1 = min
i=1,2

{

|g(l′i)|
f0

,

√

2g(l′i)F (l′i)

f0

}

,

K2 = min
i=1,2

{

1

2
R(l′i),

1

|F (l′i)|
R2(l′i)

}

.

Then, under the assumption

‖h‖
∞

<
f0

2
min{K1, K2}, (6)

there exists at least one T -periodi solution ϕ(t) of eq. (1). Suh solution veri�es

l′1 ≤ ϕ(t) ≤ l′2 for all t. (7)

Some omments are pertinent here. Condition (H1) is a weak fore assumption. (H2)
is a dissipative ondition. Finally, (H3) implies that the statement is onsistent. In

fat, if g(x) and f(x) satisfy (H2) − (H3) then funtions W (x), Z(x) satisfy

W ′(x), Z ′(x) < 0, x ∈]l1, x̄[

W ′(x), Z ′(x) > 0, x ∈]x̄, l2[.

Hene Z(x) and W (x) have an absolute minimum at x and W (x) = Z(x) = 0.
Moreover, for all 0 < C ≤ C∗ the equation Z(x) = C has exatly two solutions l′1, l

′

2

with l′1 < x < l′2. Finally, the funtion R(x) is positive for x ∈]l′1, l
′

2[ (see Lemma 1)

and therefore the onstant K2 is in fat positive.

2 Proof of the main result

We begin with a preliminary lemma.

Lemma 1. The funtion R(x) is positive for x ∈]l′1, l
′

2[.
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Proof. If x ∈]l′1, l
′

2[, we have Z(x) = W (x) +
1

4
F 2(x) < C and C∗ − W (x) >

C∗ − C +
1

4
F 2(x) > 0. Then

√

C∗ − W (x) >

√

C∗ − C +
1

4
F 2(x) >

1

2
|F (x)|.

With this lemma, K2 > 0 and the assumptions of Theorem 1 are onsistent. Now,

let us rewrite (1) as a system

{

ẋ = y − F (x)

ẏ = −g(x) + h(t)
. (8)

The proof of Theorem 1 will onsist on establish a positively invariant region for

system (8). To this purpose, let us de�ne the energy funtional

P (x, y) =

(

y − F (x)

2

)2

+ W (x). (9)

Obviously, the inequality P (x, y) ≤ C∗ is equivalent to

F (x)

2
−

√

C∗ − W (x) ≤ y ≤ F (x)

2
+

√

C∗ − W (x). (10)

Moreover, it is easy to realize that P (x, y) = C∗ is a simple losed urve. The goal

is to prove that the simply onneted set de�ned by

D = {(x, y) : l′1 ≤ x ≤ l′2, P (x, y) ≤ C∗} ,

is positively invariant for system (8).

The following auxiliary result will be useful. For onveniene, in the rest of the

setion we will all H = ‖h‖
∞
.

Lemma 2. Under the onditions of Theorem 1, if x ∈]l′1, l
′

2[ and P (x, y) ≥ C∗ then

the following inequalities are ful�lled

|y − F (x)| ≥ 4H

f0

, (11)

(y − F (x))2 >
2H

f0

|F (x)|. (12)

Proof. In order to prove (11), we must meet that

y >
4H

f0

+ F (x),
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or

y < −4H

f0

+ F (x).

Sine P (x, y) ≥ C∗, from (10) we have

y ≥ F (x)

2
+

√

C∗ − W (x),

or

y ≤ F (x)

2
−

√

C∗ − W (x).

Therefore, it is su�ient to prove

F (x) +
4H

f0

<
F (x)

2
+

√

C∗ − W (x),

F (x) − 4H

f0

>
F (x)

2
−

√

C∗ − W (x),

for all x ∈]l′1, l
′

2[, that is,

H <
f0

4

(

−|F (x)|
2

+
√

C∗ − W (x)

)

. (13)

Note that from the de�nition of l′1, l
′

2 we have
√

C∗ − W (x) ≥ 1

2
|F (x)| for all x ∈

]l′1, l
′

2[. On the other hand, it is easy to verify that R′(x) > 0 for x ∈]l′1, x̄[ and
R′(x) < 0 for x ∈]x̄, l′2[. Therefore min

x∈[l′
1
,l′
2
]
R(x) = min

i=1,2
R(l′i). By using the ondition

(6),

H <
f0

2
K2 ≤

f0

4
min
i=1,2

R(l′i) ≤
f0

4
R(x),

whih is just inequality (13), thus (11) is proved.

Similarly we have that H satis�es (12) if

0 < H <
f0

2|F (x)|

(

−|F (x)|
2

+
√

C∗ − W (x)

)2

. (14)

Note that

d

dx

(

1

|F (x)|R
2(x)

)

> 0 x ∈]l′1, x̄[

d

dx

(

1

|F (x)|R
2(x)

)

< 0 x ∈]x̄, l′2[.

Therefore min
x∈[l′

1
,l′
2
]

R2(x)

|F (x)| = min
i=1,2

R2(l′i)

|F (l′i)|
. By using (6),

H <
f0

2
K2 ≤

f0

2

R2(l′i)

|F (l′i)|
≤ f0

2

R2(x)

|F (x)| ,
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l′2 l2l1 l′1

Case 1

Case 2

D

P (x, y) = C∗

y

x

Figure 1: The white region D is positively invariant for system (8).

whih is just inequality (14).

Now, we are ready to prove the main theorem.

Proof of Theorem 1. Let us de�ne the set

D = {(x, y) : l′1 ≤ x ≤ l′2, P (x, y) ≤ C∗} .

We are going to that the region D is positively invariant. It is su�ient to prove

that

Ṗ (x, y) < 0, (x, y) /∈ D, (15)

where Ṗ is the total derivative of P .

Taking into aount (9) and (8),

Ṗ = [y + (y − F (x))]ẏ + [−f(x)(y − F (x)) + 2g(x)]ẋ

= [2y − F (x)](h(t) − g(x)) + [2g(x) − f(x)(y − F (x))](y − F (x))

= h(t)[2y − F (x)] − g(x)[2y − F (x)] − f(x)(y − F (x))2 + 2g(x)(y − F (x))

= −f(x)(y − F (x))2 + 2h(t)(y − F (x)) − F (x)g(x) + F (x)h(t).

(16)

We distinguish two ases (see Figure 1):

• Case 1. Let be x ∈]l1, l
′

1] ∪ [l′2, l2[. Note F (x)g(x) and |g(x)| are nonnegative

funtions with an absolute minimum in x̄ and suh that they are dereasing in

]l1, l
′

1] and inreasing in [l′1, l2[. By (6), we have that H <
f0

2
K1, and onsidering

the de�nition of K1 and the previous argument, the following inequalities hold

F (x)g(x) >
2H2

f0

, |g(x)| > 2H
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for all x ∈]l1, l
′

1] ∪ [l′2, l2[. In onsequene,

−f(x)(y − F (x))2 ≤ −f0(y − F (x))2

2h(t)(y − F (x)) ≤ 2H|y − F (x)|
F (x)h(t) − F (x)g(x) < |F (x)|H − F (x)g(x)

< |F (x)| |g(x)|
2

− F (x)g(x),

≤ −1

2
F (x)g(x) < −H2

f0

.

Introduing the above inequalities in (16), it follows

Ṗ < −
(

√

f0|y − F (x)| − H√
f0

)2

≤ 0,

for all x ∈]l1, l
′

1] ∪ [l′2, l2[ and y ∈ R.

• Case 2. Let be x ∈]l′1, l
′

2[ and P (x, y) ≥ C∗. By Lemma 2, the inequalities

(11)-(12) are satis�ed and therefore

−f(x)(y − F (x))2 ≤ −f0(y − F (x))2,

F (x)h(t) − F (x)g(x) ≤ H|F (x)| <
f0

2
(y − F (x))2.

Hene,

Ṗ < |y − F (x)|
(

−f0

2
|y − F (x)| + 2h(t)

)

< |y − F (x)| (−2H + 2h(t)) < 0,

for all x ∈]l′1, l
′

2[ and y ∈ R suh that P (x, y) ≥ C∗.

Therefore, ombining Case 1 and Case 2 we get (15).

Finally using (15), equation (1) has a T -periodi solution by a basi appliation of

Brouwer's �xed point theorem. Denote by (x(t; t0, x0, y0), y(t; t0, x0, y0)) the unique

solution of the Cauhy problem for system (8). Using the fat that D is positively

invariant if (x0, y0) ∈ D, we have that the solution x(T ) := x(T ; 0, x0, y0), y(T ) :=
y(T ; 0, x0, y0) belongs also to D. Considering that D is ompat and simply on-

neted, the Poinaré map has a �xed point, whih of ourse is the initial ondition

of a T -periodi solution ϕ(t) of system (8), and suh solution veri�es (7).

3 Asymptotially stability of periodi solutions

In this setion we ombine the bounds obtained in the proof for existene with the

results in [18℄ in order to get a uniqueness and stability riterion.
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Theorem 2. Under the ondition of Theorem 1, assume moreover that g has a

ontinuous derivative in its domain. Let us all

m = min
x∈[l′

1
,l′
2
]
f(x), M = max

x∈[l′
1
,l′
2
]
f(x)

and �x the onstants

β = (M − m)/2, γ = (M + m)/2, α = (π/T )2 + γ2/4.

If the following ondition holds

0 < max
x∈[l′

1
,l′
2
]
g′(x) ≤ α − β(γ + α1/2), (17)

then the periodi solution found in Theorem 1 is unique and asymptotially stable.

Proof. The uniqueness follows by using the argument of the proof of [18, Proposition

4.3℄. Conerning the asymptoti stability, the solution found in Theorem 1 has

index 1 beause it omes for Brouwer's �xed point theorem, then we an apply [18,

Proposition 1.2℄ (see also Remark 1 in this paper).

4 Examples and omparison with related results

It is important to remark that the equation with weak singularities and nonlinear

frition term has been sarely explored until now. A reent referene is [17℄. In

order to ompare the respetive results, let us take the model equation

ẍ + f(x)ẋ + xµ − 1

xδ
= a cos (wt) , (18)

where a, µ, δ, w > 0. This orresponds to eq. (1) with g(x) = xµ − 1

xδ
and h(t) =

a cos (wt). Of ourse T = 2π
w
. If (H2) holds, [17, Theorem 1.1℄ establishes the

existene of a positive T -periodi solution under the ondition

f0 >

√
T ‖h‖2

g−1(−a)
=

π
√

2a

g−1(−a)w
. (19)

If ompared with this ondition, our main assumption (6) has the advantage that it

does not depend on the frequeny w. Therefore both assumptions are independent

and it is easy to onstrut examples verifying (6) but not (19), just taking w small

enough. For instane, �x f(x) = 1, µ = 1, δ = 1
2
, if we take C = 1 in Theorem 1, l′1, l

′

2

an be omputed numerially giving l′1 = 0.340298, l′2 = 1.73068. As a onsequene,

K1 = 0.970549, K2 = 0.589254. Then, ondition (6) reads a ≤ 1
2
min{K1, K2} =

0.294627. Under suh ondition, (18) has a T -periodi solution for all w. If a = 1
4
, a
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numerial omputation shows that (19) does not hold if w < 0.189215. As a further

example, if we take µ = 2, δ = 1
2
, f(x) ≡ 4, l′1 = 1

2
, and C = Z(l′1), then l′2 = 1.49107,

K1 = 0.698446, K2 = 0.291053, ondition (6) reads a ≤ 2 min{K1, K2} = 0.582107
and ondition (17) reads

max
x∈[l′

1
,l′
2
]
g′(x) = 3.25676 < 4 +

w2

4
,

for any frequeny w > 0. Therefore, if we hoose a = 1
2
, Theorems 1 and 2 guarantee

the existene of a unique T -periodi solution whih is asymptotially stable for all

w, but a numerial omputation shows that (19) does not hold if w < 0.698132.

Other interesting referene is [10℄. In this paper, the authors study the equation with

linear frition term (f(x) ≡ c onstant) by a ombination of the method of upper

and lower solutions and the ideas from [18℄. In partiular, for the equation

ẍ + cẋ − 1

xδ
= −1 + a cos (wt) , (20)

with a, c > 0, Theorem 1.2 (see also Example 3.1) gives the existene of a unique

T -periodi solution whih is asymptotially stable under the ondition

1 + a ≤
(

1

4δ

(

w2 + c2
)

)δ/(δ+1)

. (21)

Again, the ondition depends expliitly on the frequeny w, hene it is essentially

independent from ondition (6), being not di�ult to derive expliit examples to

illustrate this fat. We omit further details.
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referene [9℄.
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