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Abstra
t

In this paper we study the existen
e and asymptoti
 stability of periodi


solutions of the di�erential equation

ẍ + f(x)ẋ + g(x) = h(t),

where f(x) is positive and g(x) is stri
tly monotoni
ally in
reasing and has

one or two weak singularities. The method of proof for existen
e is based on

original arguments by M. Nagumo.
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1 Introdu
tion

In this paper we deal with the existen
e and stability of T -periodi
 solutions of a

se
ond order di�erential equation of Liénard-type

ẍ + f(x)ẋ + g(x) = h(t), (1)
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where h(t) is a 
ontinuous and T -periodi
 fun
tion, f, g : ]l1, l2[→ R are lo
ally Lip-

s
hitz 
ontinuous fun
tions.

In prin
iple, −∞ ≤ l1 < l2 ≤ +∞ but we are interested in the 
ase where at least

one of them is �nite.

The study of s
alar se
ond order equations with singularities 
an be tra
ed ba
k

to a paper by Nagumo [9℄ published in 1944. It is important to remark this fa
t

be
ause it seems to be little known, and up to our knowledge it is not re
orded in

the related literature. The available reviews [8, 11, 12℄ register as early referen
es

some papers by Forbat, Huaux and Derwindué in the sixties [4, 5, 2℄. Although the

�rst appli
ation of topologi
al degree is due to Fauré [3℄, the papers [7, 6℄ 
onstitute

the landmarks on this topi
.

In the study of equations with singularities, the so-
alled strong for
e assumption

has played a prominent role. To explain it, let us de�ne x as the minimum of the

values of ]l1, l2[ su
h that g(x) = 0 and let us de�ne the potential

G(x) :=

∫ x

x

g(s)ds.

Then, it is said that g has a strong singularity at l1 (resp. l2) if

lim
x→l+

1

G(x) = +∞. ( resp. lim
x→l−

2

G(x) = +∞)

On the other hand, when su
h a limit is �nite, we speak about a weak singularity.

All the 
lassi
al papers mentioned before assume a strong for
e 
ondition. In fa
t, in

the seminal paper of Lazer and Solimini [7℄ it is shown that su
h a 
ondition 
an not

be dropped without further assumptions. On this basis, su
h a 
ondition be
ame

standard in the related works. However, in the latter years the interest on weak

singularities has in
reased and some 
onditions for existen
e of periodi
 solutions

[1, 10, 13, 14, 15, 16, 17℄ 
an be found. Our purpose in this paper is to re
over the

original method of Nagumo developed in [9℄ for strong singularities and show that it

is suitable to deal also with weak singularities.

In order to formulate our main result, let us de�ne the following fun
tions

F (x) :=

∫ x

x̄

f(s)ds, (2)

W (x) :=
F 2(x)

4
+ 2G(x), (3)

Z(x) :=
F 2(x)

2
+ 2G(x). (4)

In the following, ‖.‖
∞

stands for the usual supremum norm.

Theorem 1. Let us assume that
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(H1) C∗ := inf{W (l1),W (l2)} < ∞.

(H2) There exists f0 > 0 su
h that f(x) ≥ f0 for every x ∈]l1, l2[.

(H3) g(x) is stri
tly in
reasing and there exists x ∈]l1, l2[ su
h that g(x) = 0.

Fix 0 < C < C∗ and let l′1 < l′2 be the solutions of Z(x) = C. De�ne the fun
tion

R(x) = −1

2
|F (x)| +

√

C∗ − W (x), (5)

and �x the following positive 
onstants

K1 = min
i=1,2

{

|g(l′i)|
f0

,

√

2g(l′i)F (l′i)

f0

}

,

K2 = min
i=1,2

{

1

2
R(l′i),

1

|F (l′i)|
R2(l′i)

}

.

Then, under the assumption

‖h‖
∞

<
f0

2
min{K1, K2}, (6)

there exists at least one T -periodi
 solution ϕ(t) of eq. (1). Su
h solution veri�es

l′1 ≤ ϕ(t) ≤ l′2 for all t. (7)

Some 
omments are pertinent here. Condition (H1) is a weak for
e assumption. (H2)
is a dissipative 
ondition. Finally, (H3) implies that the statement is 
onsistent. In

fa
t, if g(x) and f(x) satisfy (H2) − (H3) then fun
tions W (x), Z(x) satisfy

W ′(x), Z ′(x) < 0, x ∈]l1, x̄[

W ′(x), Z ′(x) > 0, x ∈]x̄, l2[.

Hen
e Z(x) and W (x) have an absolute minimum at x and W (x) = Z(x) = 0.
Moreover, for all 0 < C ≤ C∗ the equation Z(x) = C has exa
tly two solutions l′1, l

′

2

with l′1 < x < l′2. Finally, the fun
tion R(x) is positive for x ∈]l′1, l
′

2[ (see Lemma 1)

and therefore the 
onstant K2 is in fa
t positive.

2 Proof of the main result

We begin with a preliminary lemma.

Lemma 1. The fun
tion R(x) is positive for x ∈]l′1, l
′

2[.
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Proof. If x ∈]l′1, l
′

2[, we have Z(x) = W (x) +
1

4
F 2(x) < C and C∗ − W (x) >

C∗ − C +
1

4
F 2(x) > 0. Then

√

C∗ − W (x) >

√

C∗ − C +
1

4
F 2(x) >

1

2
|F (x)|.

With this lemma, K2 > 0 and the assumptions of Theorem 1 are 
onsistent. Now,

let us rewrite (1) as a system

{

ẋ = y − F (x)

ẏ = −g(x) + h(t)
. (8)

The proof of Theorem 1 will 
onsist on establish a positively invariant region for

system (8). To this purpose, let us de�ne the energy fun
tional

P (x, y) =

(

y − F (x)

2

)2

+ W (x). (9)

Obviously, the inequality P (x, y) ≤ C∗ is equivalent to

F (x)

2
−

√

C∗ − W (x) ≤ y ≤ F (x)

2
+

√

C∗ − W (x). (10)

Moreover, it is easy to realize that P (x, y) = C∗ is a simple 
losed 
urve. The goal

is to prove that the simply 
onne
ted set de�ned by

D = {(x, y) : l′1 ≤ x ≤ l′2, P (x, y) ≤ C∗} ,

is positively invariant for system (8).

The following auxiliary result will be useful. For 
onvenien
e, in the rest of the

se
tion we will 
all H = ‖h‖
∞
.

Lemma 2. Under the 
onditions of Theorem 1, if x ∈]l′1, l
′

2[ and P (x, y) ≥ C∗ then

the following inequalities are ful�lled

|y − F (x)| ≥ 4H

f0

, (11)

(y − F (x))2 >
2H

f0

|F (x)|. (12)

Proof. In order to prove (11), we must meet that

y >
4H

f0

+ F (x),
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or

y < −4H

f0

+ F (x).

Sin
e P (x, y) ≥ C∗, from (10) we have

y ≥ F (x)

2
+

√

C∗ − W (x),

or

y ≤ F (x)

2
−

√

C∗ − W (x).

Therefore, it is su�
ient to prove

F (x) +
4H

f0

<
F (x)

2
+

√

C∗ − W (x),

F (x) − 4H

f0

>
F (x)

2
−

√

C∗ − W (x),

for all x ∈]l′1, l
′

2[, that is,

H <
f0

4

(

−|F (x)|
2

+
√

C∗ − W (x)

)

. (13)

Note that from the de�nition of l′1, l
′

2 we have
√

C∗ − W (x) ≥ 1

2
|F (x)| for all x ∈

]l′1, l
′

2[. On the other hand, it is easy to verify that R′(x) > 0 for x ∈]l′1, x̄[ and
R′(x) < 0 for x ∈]x̄, l′2[. Therefore min

x∈[l′
1
,l′
2
]
R(x) = min

i=1,2
R(l′i). By using the 
ondition

(6),

H <
f0

2
K2 ≤

f0

4
min
i=1,2

R(l′i) ≤
f0

4
R(x),

whi
h is just inequality (13), thus (11) is proved.

Similarly we have that H satis�es (12) if

0 < H <
f0

2|F (x)|

(

−|F (x)|
2

+
√

C∗ − W (x)

)2

. (14)

Note that

d

dx

(

1

|F (x)|R
2(x)

)

> 0 x ∈]l′1, x̄[

d

dx

(

1

|F (x)|R
2(x)

)

< 0 x ∈]x̄, l′2[.

Therefore min
x∈[l′

1
,l′
2
]

R2(x)

|F (x)| = min
i=1,2

R2(l′i)

|F (l′i)|
. By using (6),

H <
f0

2
K2 ≤

f0

2

R2(l′i)

|F (l′i)|
≤ f0

2

R2(x)

|F (x)| ,
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l′2 l2l1 l′1

Case 1

Case 2

D

P (x, y) = C∗

y

x

Figure 1: The white region D is positively invariant for system (8).

whi
h is just inequality (14).

Now, we are ready to prove the main theorem.

Proof of Theorem 1. Let us de�ne the set

D = {(x, y) : l′1 ≤ x ≤ l′2, P (x, y) ≤ C∗} .

We are going to that the region D is positively invariant. It is su�
ient to prove

that

Ṗ (x, y) < 0, (x, y) /∈ D, (15)

where Ṗ is the total derivative of P .

Taking into a

ount (9) and (8),

Ṗ = [y + (y − F (x))]ẏ + [−f(x)(y − F (x)) + 2g(x)]ẋ

= [2y − F (x)](h(t) − g(x)) + [2g(x) − f(x)(y − F (x))](y − F (x))

= h(t)[2y − F (x)] − g(x)[2y − F (x)] − f(x)(y − F (x))2 + 2g(x)(y − F (x))

= −f(x)(y − F (x))2 + 2h(t)(y − F (x)) − F (x)g(x) + F (x)h(t).

(16)

We distinguish two 
ases (see Figure 1):

• Case 1. Let be x ∈]l1, l
′

1] ∪ [l′2, l2[. Note F (x)g(x) and |g(x)| are nonnegative

fun
tions with an absolute minimum in x̄ and su
h that they are de
reasing in

]l1, l
′

1] and in
reasing in [l′1, l2[. By (6), we have that H <
f0

2
K1, and 
onsidering

the de�nition of K1 and the previous argument, the following inequalities hold

F (x)g(x) >
2H2

f0

, |g(x)| > 2H
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for all x ∈]l1, l
′

1] ∪ [l′2, l2[. In 
onsequen
e,

−f(x)(y − F (x))2 ≤ −f0(y − F (x))2

2h(t)(y − F (x)) ≤ 2H|y − F (x)|
F (x)h(t) − F (x)g(x) < |F (x)|H − F (x)g(x)

< |F (x)| |g(x)|
2

− F (x)g(x),

≤ −1

2
F (x)g(x) < −H2

f0

.

Introdu
ing the above inequalities in (16), it follows

Ṗ < −
(

√

f0|y − F (x)| − H√
f0

)2

≤ 0,

for all x ∈]l1, l
′

1] ∪ [l′2, l2[ and y ∈ R.

• Case 2. Let be x ∈]l′1, l
′

2[ and P (x, y) ≥ C∗. By Lemma 2, the inequalities

(11)-(12) are satis�ed and therefore

−f(x)(y − F (x))2 ≤ −f0(y − F (x))2,

F (x)h(t) − F (x)g(x) ≤ H|F (x)| <
f0

2
(y − F (x))2.

Hen
e,

Ṗ < |y − F (x)|
(

−f0

2
|y − F (x)| + 2h(t)

)

< |y − F (x)| (−2H + 2h(t)) < 0,

for all x ∈]l′1, l
′

2[ and y ∈ R su
h that P (x, y) ≥ C∗.

Therefore, 
ombining Case 1 and Case 2 we get (15).

Finally using (15), equation (1) has a T -periodi
 solution by a basi
 appli
ation of

Brouwer's �xed point theorem. Denote by (x(t; t0, x0, y0), y(t; t0, x0, y0)) the unique

solution of the Cau
hy problem for system (8). Using the fa
t that D is positively

invariant if (x0, y0) ∈ D, we have that the solution x(T ) := x(T ; 0, x0, y0), y(T ) :=
y(T ; 0, x0, y0) belongs also to D. Considering that D is 
ompa
t and simply 
on-

ne
ted, the Poin
aré map has a �xed point, whi
h of 
ourse is the initial 
ondition

of a T -periodi
 solution ϕ(t) of system (8), and su
h solution veri�es (7).

3 Asymptoti
ally stability of periodi
 solutions

In this se
tion we 
ombine the bounds obtained in the proof for existen
e with the

results in [18℄ in order to get a uniqueness and stability 
riterion.
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Theorem 2. Under the 
ondition of Theorem 1, assume moreover that g has a


ontinuous derivative in its domain. Let us 
all

m = min
x∈[l′

1
,l′
2
]
f(x), M = max

x∈[l′
1
,l′
2
]
f(x)

and �x the 
onstants

β = (M − m)/2, γ = (M + m)/2, α = (π/T )2 + γ2/4.

If the following 
ondition holds

0 < max
x∈[l′

1
,l′
2
]
g′(x) ≤ α − β(γ + α1/2), (17)

then the periodi
 solution found in Theorem 1 is unique and asymptoti
ally stable.

Proof. The uniqueness follows by using the argument of the proof of [18, Proposition

4.3℄. Con
erning the asymptoti
 stability, the solution found in Theorem 1 has

index 1 be
ause it 
omes for Brouwer's �xed point theorem, then we 
an apply [18,

Proposition 1.2℄ (see also Remark 1 in this paper).

4 Examples and 
omparison with related results

It is important to remark that the equation with weak singularities and nonlinear

fri
tion term has been s
ar
ely explored until now. A re
ent referen
e is [17℄. In

order to 
ompare the respe
tive results, let us take the model equation

ẍ + f(x)ẋ + xµ − 1

xδ
= a cos (wt) , (18)

where a, µ, δ, w > 0. This 
orresponds to eq. (1) with g(x) = xµ − 1

xδ
and h(t) =

a cos (wt). Of 
ourse T = 2π
w
. If (H2) holds, [17, Theorem 1.1℄ establishes the

existen
e of a positive T -periodi
 solution under the 
ondition

f0 >

√
T ‖h‖2

g−1(−a)
=

π
√

2a

g−1(−a)w
. (19)

If 
ompared with this 
ondition, our main assumption (6) has the advantage that it

does not depend on the frequen
y w. Therefore both assumptions are independent

and it is easy to 
onstru
t examples verifying (6) but not (19), just taking w small

enough. For instan
e, �x f(x) = 1, µ = 1, δ = 1
2
, if we take C = 1 in Theorem 1, l′1, l

′

2


an be 
omputed numeri
ally giving l′1 = 0.340298, l′2 = 1.73068. As a 
onsequen
e,

K1 = 0.970549, K2 = 0.589254. Then, 
ondition (6) reads a ≤ 1
2
min{K1, K2} =

0.294627. Under su
h 
ondition, (18) has a T -periodi
 solution for all w. If a = 1
4
, a
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numeri
al 
omputation shows that (19) does not hold if w < 0.189215. As a further

example, if we take µ = 2, δ = 1
2
, f(x) ≡ 4, l′1 = 1

2
, and C = Z(l′1), then l′2 = 1.49107,

K1 = 0.698446, K2 = 0.291053, 
ondition (6) reads a ≤ 2 min{K1, K2} = 0.582107
and 
ondition (17) reads

max
x∈[l′

1
,l′
2
]
g′(x) = 3.25676 < 4 +

w2

4
,

for any frequen
y w > 0. Therefore, if we 
hoose a = 1
2
, Theorems 1 and 2 guarantee

the existen
e of a unique T -periodi
 solution whi
h is asymptoti
ally stable for all

w, but a numeri
al 
omputation shows that (19) does not hold if w < 0.698132.

Other interesting referen
e is [10℄. In this paper, the authors study the equation with

linear fri
tion term (f(x) ≡ c 
onstant) by a 
ombination of the method of upper

and lower solutions and the ideas from [18℄. In parti
ular, for the equation

ẍ + cẋ − 1

xδ
= −1 + a cos (wt) , (20)

with a, c > 0, Theorem 1.2 (see also Example 3.1) gives the existen
e of a unique

T -periodi
 solution whi
h is asymptoti
ally stable under the 
ondition

1 + a ≤
(

1

4δ

(

w2 + c2
)

)δ/(δ+1)

. (21)

Again, the 
ondition depends expli
itly on the frequen
y w, hen
e it is essentially

independent from 
ondition (6), being not di�
ult to derive expli
it examples to

illustrate this fa
t. We omit further details.
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