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Abstract

These notes are devoted to show that the topological degree is an useful tool
in the study of the properties of stability of periodic solutions of a scalar, time-
dependent differential equation of Newton’s type. Two different situations are
considered depending of whether the equation has damping or not. When there
is a linear friction the asymptotic stability of a periodic solution can be character-
ized in terms of degree. When there is no friction the equation has a hamiltonian
structure and some connections between Lyapunov stability and degree are dis-
cussed. These results are applied in two different directions: to prove that some
classical methods in the theory of existence lead to instability (minimization of
the action functional, upper and lower solutions) and to study the stability of
the solutions of a concrete class of equations (equations of pendulum-type).

The general results are presented in an abstract setting also applicable to
other two-dimensional periodic systems.

Introduction

Let us consider the differential equation
(1) = + ez’ = f(t,7)
where ¢ > 0 is a given constant and f : R x R — R is periodic in time; that is,
f(t+T,z) = f(t,z) for each (t,z) € R%.

This class of equations has a well known interpretation in the theory of forced oscilla-
tions in Mechanics and includes some famous second order equations such as the forced
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Duffing‘s equation or the equation of the pendulum with periodic torque. The model
includes the conservative or frictionless case (¢ = 0) and the damped case (¢ > 0). The
equation (1) can have different kinds of recurrent solutions: periodic solutions of pe-
riod 7', also called harmonic solutions; periodic solutions with minimal period nT, also
called subharmonics solutions; quasi-periodic solutions; etc. The periodic solutions of
period T are the simplest among all of them and play a role in the periodic equations
that is similar to the role played by the equilibria in the autonomous equations.

The theory of topological degree is one of the basic tools in the study of the periodic
problem for (1). This theory is normally employed to obtain result on the existence
and number of T-periodic solutions. Less often it is used in the analysis of the stability
properties of the solutions. However, there are connections between the theories of
degree and stability when one is restricted to the periodic problem for equation (1).
In fact, several authors have considered the question in a more or less explicit way. In
[26], Levinson already applied degree theory to deduce some relationships between the
number of stable and unstable periodic solutions of certain dissipative equations of the
class (1). These results were refined by Massera in [31] and it was required in both
papers that the periodic solutions were hyperbolic. In [46], Seifert considered a forced
equation of pendulum-type and applied the results in [26] to deduce the existence of an
unstable periodic solution from the value of a certain degree. Results on the existence
of an asymptotically stable periodic solutions based on similar ideas were obtained by
Cronin [11]) and by Mawhin [32], who obtained applications to the Duffing‘s equation.
In the book [22], Krasnoselskii deduced some implications of the asymptotic stability
on the degree that, in contrast to all the previous results, were also proved in the
non-hyperbolic case. Some other related references are included in [36] and [40].

In this notes we give a survey of some recent results on the connections between
stability and degree. For equation (1) and in the case ¢ > 0, it will be shown that the
asymptotic stability of a periodic solution can be completely characterized in terms of
the degree. In the case ¢ = 0 the connections between Lyapunov stability and degree
are not completely understood by the author and only partial results will be given. The
same kind of ideas can be applied in the study of other equations (Lienard equation
[2], prey-predator system [3], ...) For this reason it is convenient to present the results
in a more abstract setting and we shall study the stability properties of fixed points of
mappings. As it is well known, the link with the periodic problem for (1) is established
via the Poincaré map.

The rest of these notes is divided in three chapters. The first chapter develops
some general principles on stability of fixed points. These ideas are applied in the
second chapter to the periodic problem for (1). In particular, it is proved that two
of the classical methods in the theory of existence (upper and lower solutions and
minimization of the action functional) normally lead to unstable solutions. The last
chapter deals with a concrete equation: the forced equation of pendulum-type. The
previous results are applied to this case to obtain precise information on stability. We
remark that applications to other kinds of nonlinearities are also possible (see [37], [38],

[41]).
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Chapter 1 Stability and index of fixed points

1.1 Definition of stability

Let U be a domain of RY , N > 1, and let p € U be a given point. A map F: U — RV
belongs to the class H(U, p) if it is satisfies:

(i) F is continuous and one-to-one,

(ii) p is a fixed point of F; ie. F(p) =p.

A map F € M(U,p) is always a homeomorphism from U onto its image U, := F(U)
and U, is also a domain of RY. This can be proved using the theorem of invariance of
the domain.

Definition 1. Assume that F € H(U,p). The fized point p is stable in the sense of
Lyapunov if every neighborhood V of p contains another neighborhood W such that, for
each n > 0, F" (W) is well defined and F*(W) C V.

A set A C U is positively invariant if F(A) C A. The previous notion of stability
can be characterized in terms of positive invariance. This is shown by the following
well known result (see [48]). We leave the proof as an exercise.

Proposition 2. Assume that F € H(U,p). The following statements are equivalent:
(i) p is stable, .
(i1) There exists a basis of neighborhoods of p, {Ur}, such that Uy is positively
invariani.

Definition 3. Asume that F € H(U,p). The fized point p-is asymptotically stable if
it is stable and, in addition, there exists a neighborhood A of p such that

Jim F*(q) = p for each g € A.

It is not difficult to prove that the previous convergence is uniform on compact
subsets of A. In consequence, if p is asymptotically stable, one can find a disk D
centered at p such that ~

(2) Jim diam(F"(D)) =0,

where "diam” means the diameter of a set.

When F € C'Y(U,R") the principle of linearization can be used. Let A denote
the differential of F at p and let r{A) be corresponding spectral radius. If r(A) < 1
(resp. r(A) > 1) then p is asymptotically stable (resp. unstable). This is the so called
principle of linearization that is valid whenever r(A) # 1.

Sometimes it will be convenient to consider iterated maps. Given F' € H(U,p), & >
1, F* is defined in a recursive way by

k)
F* U y1—o RN, F*=Fo.--0F
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where U_;y = F-¢- (0 n..nFY{U)NTU.

It is clear that U_z41 is a domain in RY and F* € H(U_i+1,p), so that we can ask
about the stability or asymptotic stability of p with respect to F*. It is not hard to
show that F*-stability is equivalent to F-stability for each & > 2.

1.2 The topological degree

In what follows we shall only use the more classical versions of the degree theory:
Brouwer’s degree in finite dimensions and Leray-Schauder’s degree in Banach spaces.
It will be assumed that these theories are familiar to the reader. Some references on
degree theory are [27], [44].

Let X be a Banach space and let §2 C X be a bounded and open set. A map

.0 X

is of Leray-Schauder type if it satisfies

(i) ®(x) # 0 Vz € 9.

(ii) ® can be expressed in the form ® = I — ¢ where I is the identity in X and
@ : 0} = X is compact.
(Remark that (ii) is equivalent to the continuity of $ when X has finite dimension.)

Given ® of Leray-Schauder type in 2, the degree of ® in {2 is an integer denoted by
deg[®, 2.

The degree can be axiomatically characterized in terms of the properties of addition-
excision, homotopy invariance and normalization (see [27], [24]). It has many other
properties and perhaps the most important one is the following: if @ is of Leray-
Schauder type and deg [®, (] # 0 then there exists ¢ € {2 such that ®(x) = 0. It is this
property what makes degree theory useful in the proofs of existence theorems.

To compute the topological degree in applications one can use the. properties just
mentioned and also certain known criterions that can be of analytical ot topological
nature. The simplest analytical criterion for the computation of the degree is the
linearization principle. To simplify matters we assume that X = RV (see [44] for
general case). Given & € CY(Q?,RN) such that the equation

P(z)=0,2€0
has only a finite number of solutions z,,...,z, € § with ®'(z;) non singular for each
i =1,...,n, the degree can be computed by the formula
(3) deg[®, Q) = sign{det ®(z;)}.

i=1
When 0 is not a regular value of ® one can use sometimes more complicated ana-

lytical criterions that depend on the nonlinear terms of the Taylor expansion of ¢ at
z; (see [24]).
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A criterion for the computation of the degree of topological type is the following:

Assume that Q) is conver and & = I — ¢ is of Leray-Schauder type and such that
w(@) O,
then deg[®,Q] = 1.
This classical result has an easy proof because @ is linearly homotopic to the identity
if 0 € . An interesting variant that was inspired by Browder’s fixed-point-theorem

[8] is the following:

Assume that Q is convezr and ® = I — ¢ is of Leray-Schauder lype and there exists
no € N such that

(4) ") SO, ¢"(z) # 2, Yz € 3, n > n,,
then deg[®, (] = 1. (The proof is not simple, see [24]).

The computations of the degree are particularly simple in one dimension. Assuming

X=R, Q={(a,b), ®:(a,b) =R,
1 if B(a) < 0 < S(B)
deg[®, Q] = { 0 if ®(a)®(d) >0
~1 if ®(a) > 0 > &(b).

deg=-1 deg=1

deg=0
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1.3 The fixed point index

Let U be a domain of RY and let F : U — R" be a continuous map such that p € U
is an isolated fixed point of F. The fixed point index of F at p is defined as

i[F, p] = deg(I — F, B,)

where B, is a small ball centered at p that does not contain other fixed points of F.
The excision property of the degree shows that this definition is independent of the
radius p.

The linearization principle (3) for the degree shows that if F € C*(U,R") and
1 ¢ o(F'(p)) then

(5) ilF, P] = sign {det(I — F'(p))}.

(From now on, o(A) denotes the spectrum of the linear operator A.)
In dimension N =1 the index can only take the the values 1, —1, or 0. They appear
in the following situations:

In more dimensions the index can take any integer value. For instance, in two
dimensions and using complex notation, the maps F,(2,Z) = z + 2", F_,(z,Z) =
z+72" n = 1,2,... have an isolated fixed point at the origen and t[Fy,,0] = *n.
However, for N = 2, it is still possible to reduce the range of the index if one imposes
additional conditions.

Proposition 4. Assume N =2, F € CY(U,R?) and p is an isolated fized point of F.
a) If det[F'(z)] = 1 Vz € U (area-preserving condition) then i[F,p] < 1.
b) If 0 < det]F'(z)] < 1 Vo € U (area-coniracting condition) then [i[F,p}| < 1.

The statement a) is proved in {50]. In [23] it is proved that if N = 2 and F'(p)
is not the identity matrix then [¢[F,p]| < 1. The contracting condition implies that at
least one of the eigenvalues of F'(p) lies on the open unit disk, so that F'(p) # I in
case b).

A fixed point p of Fis also a fixed point of the iteration F™ for each n = 2,3,...
Assuming that p is isolated as a fixed point of F™ one can consider the iterated index
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i|F™ p]. In dimension one it is easy to check that the sequence of iterated indexes
{:[F", p]},,>1 is 2-periodic; that is ¢{[F™2, p] = i[F™, p]. For more dimensions, assuming
that F is C1, it can be proved that the sequence {i[F",p|}.>1 is k-periodic for some
period k > 1. (See [47], [12]).

1.4 The index of an asymptotically stable fixed point

A fixed point that is asymptotically stable is isolated. In consequence the index is well
defined in such case.

Theorem 5. Assume that F € H(U,p) and p is asymptotically stable. Then i[F,p| =
1.

This result was presented in [22] in the contex of periodic solutions of nonau-
tonomous differential equations. The proof given in [24] is based on Browder’s principle
(4). We reproduce it.

Proof. Since p is asymptotically stable there exists a small ball B, centered at p, and
such that F*(B) C B ¥n > no. This follows from (2). Now (4) holds and the Browder’s
principle stated in 1.2 applies. Thus

i[F,p|] = deg(I - F, B) = 1.

As already mentioned in 1.1, if p is asymptotically stable with respect to F, the
same property holds with respect to each iteration F”.

Corollary 8. Assume that F € H(U,p) andp is asymptotzcally stable. Then i[F"™,p] =
1 for each n > 1. .

1.5 The index of a stable fixed point

A fixed point that is Lyapunov stable is not necessarily isolated and, in consequence,
the index may be undefined. We assume that our fixed point is stable and isolated
and ask about the value of the index. We shall see that the answer depends on the
dimension N.

For N =1 it is easy to show that a stable and isolated fixed point is always asymptot-
ically stable. In consequence the index will be 1. For N = 2 we have

Theorem 7. Assume N =2, F € H(U,p), F is orientation-preserving and p is Lya-
punov stable and isolated. Then
iF,pl =1.

This result is stated without proof in [22]. Recently a proof has been presented in [14].
This proof is based on some specific aspects of the topology of the plane. In particular,
it uses a version of Brouwer’s lemma on translation arcs that is inspired by (7).

For N = 3 the situation changes and the index can be different from 1.



TOPOLOGICAL DEGREE AND STABILITY THEORY 3

Theorem 8. Assume that N = 3 and vy is an integer withy <1 or N 24 and v is
an arbitrary integer. Then there exisis F € H(B,,0) such that p = 0 is stable, isolated
and

i[va] =7
(B, is the unit ball of RN centered at the origin)

We give a proof of this result that is based on a similar theorem for equilibria of
vector fields that was presented in [24] (see also[15]). The result for vector fields is the
following:

"Given v in the conditions of the previous theorem, there ezists a C°-veclor field
f : RN = RY such that = = 0 is the only equilibrium on B, deg(—f, B)) = v and
z = () is stable with respect to the autonomous system z' = f(z)”

Proof of Theorem 8. Let ®;(x) be the solution of the previous system =’ = f(z)
satisfying ®o(x) = z. The result in [53] implies that there are no closed orbits contained
in B, and having a small minimal period. In fact, the period of a closed orbit in B,
must satisfy p > po where py = %, L = max{|| f'(z) ||l: = € B,} and || . || denotes
the spectral norm. By continuous dependence, there exist a small ball B; such that
®,(B;) C B), Vt € [0,po). The previous facts imply that

®,(x) #zVt € (0,p), x € Bs — {01

A direct argument of homotopy or [24] show that, if ¢ € (0, po),
deg(l — @, Bs] = deg[— f, Bs] = 7.’

In consequence an example as required in the theorem has been constructed with
F =&, t€(0,po) ' .
Remark. I thank Prof. E.N. Dancer for suggesting me the use of the results of [53]
in this proof.

1.6 Instability criterions in two dimensions

Theorem 7 can be employed to obtain results of instability of fixed points in two
dimensions; it is enough to verify in each case that the index is different from 1. There
are many results on the computation of the index that can be used (see [23]) and we
shall present two examples that are of historical interest. They are taken from [14] .

1.6.1 A criterion of Levi-Civita

We consider fixed points in two dimensions such that ¢(f'(p)) C {—1,1}. Poincaré
pointed out that, in a generic sense, one should expect instability for these points.
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Motivated by this statement, Levi-Civita obtained in 1901 several results of instability
in [25]. We now show how to obtain one of these results using degree theory.
Let F = F(z,y) be a C*map defined in a neighborhood of the origin with the
Taylor expansion
F(z,y) = Fo(z,y) + R(z,y),

Fo(z,y) = (z + a12® + aszy + aay®, y + biz® + by + bay?)
R(z,y) = o(a® +y*) as (z,y) — (0,0).

The inverse function Theorem implies that F' € H(U,0) for some U. A scaling argumenﬁ
proves that if the origin is an isolated fixed point of Fy then it is also isolated as a fixed
point of F' and

i[F, 0] = i[Fp,0].
To compute i{Fy,0] define
_{a a _ |92 as _| @ as — _ 2
D, = b b , Dy = by by y D3 = b by , D =4D,D; — Dj.

In ([24], page 38) and [23] it is proved that if D # 0 then 0 is isolated and the value
of the index is given by the following table

D<0 i Fp,0] = 0
D >0, D;>0|i[F,0 =2
D >0, D, <0|i[Fp,0] =-2

In consequence, if I} # 0, the origin is unstable.

1.6.2 Instability at the third root of unity
We now consider a C*-map F = F(z,y) with

F(0,0) = (0,0), F'(0,0) a rotation of angle%’r C o

and prove that in most cases instability ocurrs. This result is relevant in Celestial Me-
chanics in the understanding of strong resonances (See {48]). A proof using Lyapunov
functions is given in ([48], page 222). We now give a proof based on degree theory.
Using complex notation the map F' = F'(z,%7) has a Taylor expansion of the form

F(z,Z2) =wz+ a2’ + b2z + 22 + ...

where w is a primitive third root of unity (w?+w+1 = 0), a,b, ¢ € C. The linearization

principle shows that
i[F,0] = i{[F?,0] = 1.

However, the third iteration has the expansion

F32,7) = 2 + 3c@%° + ...
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If ¢ # 0 the origin is isolated with respect to F° and
i[F3,0] = —2.

In consequence z = 0 is unstable with respect to F.

1.7 A sufficient condition for asymptotic stability in terms
of the index

In this section we ask about the possibility of proving the asymptotic stability of a
fixed point using information on the corresponding sequence of indexes. In general the
answer to this question is negative and the reason is that the converse of Corollary 6.
is not valid. This is shown by the following example.

Example 1

N=2 Fz)=lx (A>1).

The origin repels the rest of the orbits and it is easﬂy seen, using the principle of
linealization (5), that = 0 is unstable and i[F™,0] = 1 for each n > 1.

The previous example assumes N = 2, and one can create similar examples when
N > 2. The case N =1 is different and is discussed in the next examples.

Example I1

N =1, F € H({U,p), F increasing.

An argument based on the monotonicity of F, proves that p is asymptotically stable
if and only if there exists § > 0 such that

(z—f@))z-p)>0 if0<|z—p|<é

This is equivalent to i[F,p] = 1. In this case the index i[F,p] characterizes the
asymptotic stability.

Example II1

N=1 Fe 'H(U p), F decreasing.

Assum.mg that p is isolated with respect to F, the index i[F, p] is always one (see the
figure in Section 1.3). Therefore this index does not discriminate between stable and
unstable fixed points. However the second iteration F? is in the conditions of example
II. Now, it is the second index i[F?, p] the right one to characterize asymptotic stability.

The next result extends the previous remarks to a more general setting. First we
introduce some notation. Let A be a square matrix of dimension N having r different
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eigenvalues
o(A)={A,..., A}, r <N,

It is assumed that they are arranged so that
Al 2.0 2 A

The corresponding algebraic multiplicities are denoted by uy,..., .. It is said that
the matrix A satisfies the condition (C) 1f at least one of the following alternatives
holds:

Al <1, or Ao < 1,1 =11

Theorem 9. Assume that N is arbitrary and F € C'(U,RN) NH(U,p). In addition it
is assumed that

p is isolated with respect to F? and F'(p) satisfies (C,).

Then the following statements are equivalent:

i) p is asymptotically stable
ii} p is stable
i) i{F?,p] = 1.

This result is stated and proved in [40]. A similar result can be found in [13]. In [13]
the assumption on the spectrum of F'(p) is replaced by a condition of monotonicity of
F that in particular implies that F'(p) satisfies (Cy). This monotonicity condition is
applicable in the case of parabolic equations but it does not work in the applications
to Newton’s equa.tlons

A way of proving the theorem is based on the use of the Center Manifold Theorem
([30], [19], [18]). The details are given in [40] but we now give a sketch. The difficult
case is Ay = %1 because otherwise one can use linearization principles. Since gy = 1 the
Center Manifold is in this case a curve ¥ that is locally invariant and locally attracting.

. -

U

The map F can be restricted to a neighborhood of p in X, say X' in such a way
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that F(£') C ¥. The map Fy : ' — X is such that the asymptotic stability of p
with respect to F' and with respect to Fy are equivalent (see [18] page 262). Now Fy
is a one-dimensional homeomorfism and one uses the ideas of examples II and III to
conclude. The delicate step is the connection between the index of F and Fy. The
previous theorem allows to characterize asymptotic stability in terms of index when
the map is planar and area-contracting.

Corollary 10. Assume N =2 and F € CY(U,R*) N H(U,p). In addition,
0<detF'(z) <1 VzeU.

Then,
p is asymptotically stable <=> p is isolated with respect to F? and i[F?,p] = 1.

Proof.
F'(p) satisfies (C)) since we are in two dimensions and det F'(p) € (0,1).

1.8 Remarks on the area-preserving case
In this section we assume that N = 2 and F € CY(U,RY) n H(U, p) satisfies

det[F'(z)]=1 Vz e U.

The linearization principle shows that if p is stable and )1, A; are the eigenvalues
of F'(p) then one of the following alternatives hold: -

i) Ay =2z, | AL |=l A2 [=1, A ¢ R (elliptic case)

ii)A) = A, = %1, (parabolic case)
(of course, the possibility of satisfying condition (C;) of the previous section is now
excluded).

A characterization of stability in the line of Corollary 10. is not possible. In fact, it
is not difficult to construct an area preserving analytic map with the Taylor expansion

F(z,2) =wz+7%...

where w? + w + 1 = 0. For this construction one can use the technique of generating
functions (see [4]). According to the results of section 1.6 the fixed point z = 0 is
unstable and i[F,0] = i[F?,0] = 1. In general, given g € N, g > 3, it is possible to
find a mapping F that is area-preserving and analytic and satisfies

F(0) =0, o(F(0)) = {e¥,e7 %),
i(Fr0l=1, n=1,..,4— Li[F* 0] # 1.

(See [48], [42].)
This examples show that, if a characterization of stability in terms of the degree
is going to be possible for area-preserving mapping, it should use the whole sequence
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{¢[F™,p]}n>1. There are some partial answers to this question when F is analytic. They
depend on the spectrum o(F'(p)) = {A, A} with | A |= 1. When X is not a root of unity,
(5) implies that i{F™,p] = 1 for each n > 1. On the other hand in [45] it is shown that
if
n ¢
| A —1|>;, n=12,.. (c,v>0)

then p is always stable.

In particular this condition says that X is not a root of unity and is in fact *far away
from roots of unity” in an arithmetic sense. In the other extreme we have the case of
when A is a root of the unity. This case can be reduced to the parabolic case using
iterations. There are interesting ideas in [49] on parabolic fixed points that perhaps
could be useful to obtain a characterization of stability in terms of index when A is a
root of unity.

Chapter 2 The index of a periodic solution

From now on we consider the differential equation (1) where¢>0and f:RxR - R
is continuous and T-periodic in time. In most cases it will be assumed that the initial
value problem associated to (1) has a unique solution.

To each isolated T-periodic solution, ¢(t), we can associate an integer called the
index of y of period 7. This index can be defined in different (but essentially equivalent)
forms depending on the way the periodic problem for (1) has been reduced to a fixed
point equation. We shall review two of such reductions. -

2.1 Definition of the index via the Poincaré map

In this section we assume uniqueness for the initial value problem associated to (1).
Given ¢ = (&1,&;) € R?, let z(t; £) be the solution satisfying '

z(0) = &, 2'(0) = &.

The Poincaré map is defined as the mapping
PT : DT - H2 — R2, PT(g) = (w(T; E)!xI(T; 6))1

where Dy = {¢£ € R?: z(t;€) is defined in [0, T}.

The standard theory of the Cauchy problem says that Dy is open in R% and PT
is a homeomorphism between D7 and Pr(D7). In addition, the fixed points of Pr
correspond to the initial conditions of the T-periodic solutions and the search of T-
periodic solutions is reduced to the study of the equation in R?,

(6) £ = Pr(§).
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Let ¢(t) be a T-periodic solution of (1) and £ = (¢(0),'(0)). The solution ¢ is
said to be isolated (period T) if {; is an isolated fixed point of Pr. In such case the
index of ¢ is defined in terms of the following formula

1r{¢) = i[Pr, &ol-

This is the definition employed in [22].

2.2 The index in the space of periodic functions

Let X7 = C(R/TZ) be the space of functions p : R — R that are continuous and
T-periodic with the uniform norm. We wish to formulate the periodic problem for (1)
as a fixed point equation in Xr. Given A > 0 and p € X7, consider the linear problem

(7) " + ez’ — Az = p(t), z € Xr.

It follows from the Fredholm alternative that it has a unique solution z = L;p. In
addition, the linear operator L, : Xy — Xr, p — z, can be expressed by means of
the Green’s function as an integral operator and it is easy to verify that it is compact.
The periodic problem for (1) is equivalent to

(8) :.-:=L),(N.1:—/\x), z € Xr,

where N : X7 — X7, Nz = f(-,z(:)).

Since the operator ®, = Ly(N — A} is compact, the Leray-Schauder degree can be
applied to this case.

Given a T-periodic solution ¢(t) of (1} and A > 0, assuming that ¢ is an isolated
fixed point of ®,, we define the new index,

‘TT(’P) = _‘i[‘bb (P]

It is easy to prove that, when there is uniqueness for the initial value problem, ¢ is
an isolated fixed point of ®) for some A > 0 if and only if  is isolated (period T') in the
sense of section 2.1. Also, a homotopy argument shows that the previous definition is
independent of the value of A (A > 0). The condition of positivity on A in the definition
has been imposed to make sure that (7) has a unique solution. Using the coincidence
degree {17] and the principles of relatedness [24], it is possible to construct equivalent
definitions of 7() that employ (7) with A > 0.

The two indexes yr and 47 have been defined in different ways but it follows from
([24), Chapter 3) that they coincide whenever Pr is well defined. The negative sign in
the definition of 37 had the intention of getting this coincidence.

It is interesting to discuss a little the advantages and disadvantages of each of the
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previous approaches. The following table sums up the most obvious differences

Index v1(®) Fr{e)
Space R?, dim = 2 X7, dim = oo
Py (defined implicitly

Operator from the equation) &, (explicitly known)
Assumption Uniqueness of the
on (1) initial value problem

There are other differences between both approaches. Since Pr is intimately con-
nected with the dynamics of (1), the first approach is more direct in dynamical questions
such as stability. On the other hand ®, has certain properties of monotonicity that
may be very useful in monotone methods. Also, the second approach can be employed
to analyze questions related to the convergence of Picard iterations.

2.3 The iterated index

The differential equation (1) is periodic in time with period T. In consequence it can
also be seen as a periodic equation with period nT for each n > 2. The new Poincaré
map corresponding to this period is

Por : Doy C R? — Rz’ PnT(E) = (x(nT;‘f)sx’(nT; 6))
(n

It can also be expressed as the composition P,y =Pro:--0 Pr.
The equation -

(9) §=Pr() (n22)
can have more solutions than (6). The solutions of the differential equation correspond-
ing to these initial conditions are periodic solutions of period nT. A periodic solution
of (1) with minimal period nT (n > 2) will be called a subharmonic solution of order
n.

Let o(t) be a T-periodic solution of (1). This solution is isolated (périod nT) if
the initial condition & = (o(0), h(0)) is an isolated solution of (9). In such case, the
index of ¢ of period nT is defined as

7nT(‘P) = i[PﬂT! £D]°

The previous definition requires the uniqueness of the initial value problem for (1).
An alternative definition (valid in the general case) can be given using the Banach
space X, and the operators

L/\,ﬂ : XﬂT —+ XﬂT! Nn : XnT — XnTs q’),n = Lz\,n o (Nn - ’\I)

defined in an obvious way according to section 2.2
The iterated index is now defined as

Fnr(p) == —i[®n, o).
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2.4 The computation of the index

The computation of the index of a periodic solution may be a difficult task in general,
however there are some simple cases. Probably the most direct way to compute the
index is the linearization. Assume that f € C%(R x R) and ¢ is a T-periodic solution.
The linearization of (1) at ¢ is the Hill’s equation

(10) v +af = f(t ().

Let py, pt2 be the characteristic multipliers of this equation. They are the eigenvalues
of any monodromy matrix of (10). In addition, Pr € C'(Dr,R?) and the derivative
of Pr at & = (p(0),4'(0)) is precisely a monodromy matrix of {10). (See for instance
[22]). Assuming that pu; # 1, ¢ = 1,2, we can use the the linearization principle for the
index to deduce that ¢ is isolated (period T') and

¥r(wp) = i[Pr, o] = signdet[] — Pr(&)] =
sign{(1 — p1)(1 — pa)}.

When u; = 1 for some ¢, the previous technique does not work and the index of ¢
depends not only on (10) but also on the nonlinear terms of the Taylor expansion of
f. The following example will illustrate this fact.

Example

" +ex' =a(t)z”, n>2. T
It is assumed that a € C(R/TZ) does not change the sign and does not vanish identi-

cally; that is .
a(t) 20 ViR or a(t)<0 VIER

j:|a|>0.

The equilibrium z = 0 is a T-periodic solution with linearized equation

and

yn + cyr = 0.

The characteristic multipliers are in this case g3 = 1, uz = e™7 and therefore the
method of linearization does not apply. Next we prove that £ = 0 is isolated (period
T) and
0 if n is even
1r(0) = { —sign(a) if n is odd.
To prove that z = 0 is isolated we show that any other T-periodic solution of the

equation must satisfy :
lzlz=' 2 77—
T{fal
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(Notice that this inequality will prove the isolation in the sense of section 2.2).
Let z(¢) be such solution and integrate the equation over one period to get

T
jo a(t)z(t)"dt = 0.

Since a does not change sign, z(¢) must vanish at some ¢, € R. Thus, using Cauchy-
Schwarz inequality, '
t ¢
| o(t) |=| j 2'(3)ds |< V= Tol j 2'(s)*ds)/? if t € [to,to + T
to o
and
Izl < VT)fa'||z-

Multiplying the equation by z and integrating again,

T T
ll2'llze = — [ ax™*'dt<| | a||lzliz%
0 0

The estimate is obtained by a combination of both inequalities.
To compute the index when n is even we argue by contradiction. ¥ 47(0) # 0,the
properties of the degree would imply that the equation

" + ex’ = a(t)z™ + ¢

has a T-periodic solution when ¢ is a small constant. However this equation has not
T-periodic solutions if ¢ has the same sign of a because a T-periodic solution z(t) must
satisfy

T
fo a(t)z(t)"dt + T =0. -

To compute the index when n is odd one can proceed as follows. Let ¢ € R be of same
sign of @ and such that | € |<| JT a | and consider the homotopy

2" + ez’ = da(t)z” + (1 — Aex, A € [0,1].

As before one shows that any nontrivial T-periodic solution of this parametrized
equation satisfies ||z||}=' > Ff-lr—l Now the homotopy invariance of the Leray-Schauder
° 3

degree proves that it is sufficient to compute the index when A = 0. This can be done
by linearization to conclude that y7(0) = —signe.

In the previous examples the index was always 1, -1 or 0. The next result determines
the possible values of the index when f is smooth.

Proposition 1. Assume that f € C*(R x R) and let ¢ be a T'-periodic solution that
is isolated (period T').
Then
r(e) <1ife=0 and |(e)|S1ifc>0.
This is a consequence of Proposition 4. of the first chapter because the Liouville for-
mula shows that the Poincaré map is area-preserving when ¢ = 0 and area-contracting
when ¢ > 0.
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2.5 Index and stability of a periodic solution

Let ©(t) be a T-periodic solution of (1) and denote by & = (¢(0),4'(0)) the cor-
responding initial condition. Assuming uniqueness for the initial value problem and
using the continuous dependence of the solutions it is easy to prove that  is stable or
asymptotically stable with respect to (1) if and only if € has the same property as a
fixed point of Pr. In consequence we can combine ideas of the previous sections with
chapter 1 and obtain the following result

Theorem 2. Assume that there is uniqueness for the initial value problem associated
to (1) and let (t) be a T-periodic solution that is stable and isolated (period T). Then

1r{p) = 1.

This is a consequence of theorem 7. of chapter 1 since Pr is an orientation-preserving
homeomorphism.

Theorem 3. Assume f € C*'(R x R) and ¢ > 0. Let ©(t) be a T -periodic solution.
Then

@w(t) is asymplotically stable <>  is isolated (period 2T) and yor(p) = 1

This result follows from Corollary 10. of chapter 1. It was first obtained in [38] for
the hyperbolic case and in the general case in [40]. The need of the index of double
period in this characterization can be explained in terms of bifurcations. Consider
a T-periodic solution ¢,(t) that depends of a parameter (of course, (1) will depend
also of ) and assume that ¢, experiences a bifurcation to second order subharmonic
solutions as in the diagram

= stable
2T subharmonic

The exchange of stability at Ay can not be detected by <7 since the new stable
solutions are not of period T
We conclude with a simple application of this results.

Example (continuation)
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Again we consider the example of section 2.4.
" 4 ez’ = a(t)z", n > 2

with
a€CR/TZ) and a>0 or a<0,a#0.

If n is even or n is odd and a > 0, 47(0) # 1 and = = 0 is unstable.
If ¢ >0, nisodd and a < 0 we have y7(0) = 7,r(0) =1 and = = 0 is asymptotically
stable.

The previous results do not apply to the case ¢ = 0, a £ 0. In such case one could
use techniques in the line of [42].

2.6 The metod of lower and upper solutions for first and
second order equations

The method of lower and upper solutions is well known as a method of proving the
existence of periodic solutions of a first or second order differential equation. We now
ask a different question about this method: what can be said about the stability prop-
erties of the solution obtained with it?. For equations of first order this method usually
captures an asymptotically stable solution. This fact is not only true for ordinary equa-
tions but also for parabolic equations [21] or even for some abstract periodic equations
such that the Poincaré operator preserves the order [13]. However, for second order
equations the solution lying between the lower and upper solution is usually unstable.
We notice that in this case the solutions of the initial value problem are not ordered.

Although our interest is in second order equations, it is useful to review some known
facts for first order equations. '

2.6.1 The first order equation
In this paragraph we consider the equation

(11) ¢ = f(t,z)

with f € C(R/TZ x R). It is also assumed that there is uniqueness for the initial value
problern.
Let a,8: [0,7] — R be C" functions satisfying :

(12) o(t) 2 flt,a(t)), B() = f(2,8(2),Vt€[0,T]
(13) a:=a(0)<ao(T)< B(T) £ p(0):=b

(the simbol < means that the inequality is strict on some subinterval of [0, T7] ).
We say that o and B are a couple of strict lower and upper solutions that are
ordered.
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Let z(t,£) be the solution of (11) with z{0) = £. The theory of diferential inequal-
ities implies that for each £ with a < £ < b one has o(T) < z(¢,£) < B(T). The
Poincaré map Pr is in this case a strictly increasing function, Pr : R — R such that
Prla, ¥ C (a,b). In consequence if Pr has a finite number of fixed point lying in (e, ),
at least one of them must be asymptotically stable. This can be proved using example
I1 of section 1.7. We have prove the following result.

Proposition 4. Asume that there ezist functions a,f € C[0,T] satisfying (12) and
(13). In addition assume that the number of T-periodic solutions of (11) with initial
condition x(0) € (a,b) is finite. Then there ezxists an asymptotically stable T-periodic
solution  verifying

aft) < o(t) < f(t) vte[o,T).

An analogous result can be obtained reversing the order in (12) and keeping inequality
(13). For proving it, it is sufficient to look toward the past and consider the operator
P_r. However the conclusion will now be the existence of an unstable solution.

2.6.2 The second order equation

We now go back to our equation (1). A couple of ordered strict lower and upper
solutions of (1) is given by two functions «, # € C*(R/T'Z) satisfying

(14) o"(t) + co/(t) = f(t,at)), B'(®)+B8(t) X f(t.B8() VteR
(15) a(t) < B(t)Vt € R

It is well known that under these assumptions there exist at least ome T-periodic
solution between o« and 8 (see [6], [33]). The next result sharpens the conclusion
assuming that the number of T-periodic solutions is finite.

Theorem 5. Assume that f is locally Lipschitz continuous with respect to x and let
o, B be T-periodic functions of class C? satisfying (14), (15). In addition assume that
the number of T-periodic solutions of (1) satisfying

at) <e(t) < f(t) VieR
18 finite. Then al least one of them is unstable.

Remarks. 1. A very similar result was proved in [39] in the case ¢ > 0 and in [14] for
¢ =0. An extension to Lienard’s equation was presented in [2] .

2. By analogy with the first order equation one could think that a result of stability
could be obtained by reversing inequality (14). However in such case it is easy to con-
struct examples of linear equations without periodic solutions or having only unstable
solutions.
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The proof in [39], [14] used the definition of index based on the Poincaré map. We
now give a proof that is similar to the proof in {33] and is based on the second definition
of the index and the following maximum principle for the periodic problem {see [43]) :

” Let x € C*(R/TZ) be a solution of the differential inequality
"4 ecx' = Az <0

for some XA 2 0. Then 2(t) >0 VtecR.”

Proof of the theorem. We choose A > 0 large enough in order to guarantee that
the function f*(t,z) = f(t,z) — Az is strictly decreasing with respect to z in the set
{(t,z): t €R, a(t) £ z < B(¢)}. Following section 2.2 we rewrite the periodic problem
for 1 as the fixed point equation

= 0)(z), z € X.
The set = {x € X : at) < z(t) < §(t) Vt € R} is convex and open in X, we prove

8,() C 0. Given z € 0}, @ < = < B we check that y = ®,(x) satisfies y < G (the
inequality y > a is verified in an analogous way). In fact y is a solution of

y' + ey’ — Ay = f7(t,2(t))
and, since f*(¢,z) > f*(¢, B), the function z = g —y satisﬁee;'_
2" +ecd — Az %0,

and the maximum principle implies that z > 0.
Now the degree of I — @, in the sense of Leray-Schauder is well defined in  and

.

deg[I — ®,,0] = 1.

By assumption ®, has a finite number of fixed points in ), say ¢,,...,9,. The
properties of the degree imply that

-1= i;'ﬂ‘(&oi)

and in consequence some ¢; must have negative index and thus it is unstable,

Remark. The previous proof gives some information on the index of a solution (it
must be negative). This can be combined with Proposition 1. to obtain multiplicity
results.
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Example
The equation

2" +ex’ + %a: —3sinz =sint {¢c>0)
has at least three 2x-periodic solutions.

To prove this we can assume that it has only a finite number of 2x-periodic solutions
(otherwise it is already proved). The constants a = —% , § = J are strict lower and
upper solutions so that there exist a 2x-periodic solution wywith y2.(p1) < 0.

It is easy to show that the 2x-periodic solutions of

" +ex’ + %x—&\sinx:z\sint, A€|0,1]

have a bound independent of A. The homotopy invariance of the degree implies that

deg[l ~ P, B} = i'ﬁf(‘?i) =L

=1
We know that vo.(¢1) < 0 and, by Proposition 1., y2.(¢:) < 1 Vi . Therefore, there
exist at least two more solutions with index 1.

2.7 The action functional: instability of minimizers

In this section we consider the equation (1) when ¢ = 0, that is

(16) 2" = f(t,z) . |

where f € C(R/TZ x R) and there is uniqueness for the initial value problem. In this
case the equation has a variational structure and can be seen as the Euler equation of
the action functional. The periodic problem for (16) is reduced to the search of critical
points of the functional

T
A H-R, AD)= [ {%f(t)? — V(t, 2(t))}dt
where H is the Sobolev space

H={z:R—> R; zis absolutely continuous, T-periodic and =’ € L*(R/TZ)}

with inner product

T T
@ nu= [ OO+ [y,
and V is the potential defined by V(¢,2) = — fy f(¢,y)dy.
The simplest critical points of A appear with the minima. We now prove that the
corresponding T-periodic solutions are unstable.

Theorem 6. Let ¢ be a T-periodic solution of (16) that is isolated (period T} and
such that A reaches a local strict minimum at ¢. Then ¢ is an unstable solution of

(16).
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Proof. We reproduce the proof from [14]. To start we compute the gradient of A with
respect to the inner product (.,.)y. Define the operator T': H — H, Tx = z where 2
the is the periodic solution of

2" =2 = f(t,z(t)) — =(2).

It is easy to prove that T is a compact nonlinear operator satisfying

T T T T .
(Tx,y);,r:fo z'y'+zy=—f0 z”y+f0 zy=—fo [f(t,z) —z]y Vz,ye H.

Computing the differential of A we obtain

T T
(VAlal,y)r = dAlely = [ o'y +1(t,2)y = @)+ [ {£(t,2)=2}y = (@—T=, s

In consequence VA = I — T and the theory of degree can be applied to this operator.
It is known that the degree of a gradient field in the neighborhood of a minimum is 1

(see [1]). In our case
deg{lI - T,B] =1

where B is a small neighborhood of ¢ in H.

Going back to the definition of the index in the space of functions we notice that
T is essentially the same as ®_;, only the domain of definition changes. In fact,
dom(®_,) = X, dom T = H, H C X and &_,z = Tz, Vz € H. LetBasmall
neighborhood of ¢ in X. Since ¢ is an isolated fixed point-of ®_, and T, B and B
have a common core in the sense of [24]. The principle of relatedness shows that

deg[l — T, B] = deg[I — ®_,, B].

Thus yr(v¢) = —i(®_1,¢) = —1 and Theorem 2 implies that ¢ is unstable.

Chapter 3 Stability of periodic solutions of pendulum-
type equations

In this chapter we consider the equation
(17) "+ ez’ =g(t,z)+ p(t) — p

where 4 is a real parameter, p : R — R is continuous, T-periodic and with mean value
zero (T p =0), ¢ > 0 and g € C®'(R x R) is T-periodic in ¢ and such that

g(t,z+27) = g(t,z) VY(t,z)eRxR.

The forced pendulum equation is the model of this class of equations and corresponds
to the case g(t,2) = —Asinz. There are many other related equations such as the
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equation of the swing or pendulum of variable length (¢(t,2) = —A(t)sinz, p=0, g =
0).

The configuration space of this equation can be the real line or the circle. In
what follows it is always assumed that £ € R. This is important because the class
of periodic solutions of this equation on the line and on the circle may not coincide.
Given a solution z(t) of (17), the periodicity in z of the equation implies that 2(¢)+2nr
is also a solution for each integer n. In what follows we identify these solutions and
consider them as one single solution.

The existence of periodic solutions of equations of pendulum-type has been studied
by many authors (See [35] and the references there). The stability properties of the
periodic solutions have been treated in [46], [37], [39].

We wish to combine the results of the previous chapter with the information on the
degree derived from the known existence theory to obtain new results on stability.

3.1 Existence of periodic solutions

The existence of T-periodic solutions of (17) imposes some restrictions on the parameter
¢. An obvious necessary condition for existence is derived as follows.

Define
gm(t) = supg(t, z), go(t) = inf g(¢,z),
zeR zeR

and

1 T 1T .
g=7 [ ot g=7 [ ol

Let z(t) be a T-periodic solution of (17). By integratir}'g_ the equation over one
period one gets

T
fo g(t,z(t))dt = pT

and this implies
g<p=<g

This condition is not sufficient in general. The next result shows the form of the
necessary and sufficient condition for existence. The proof can be seen in [34] or [20].

See also [9].
Proposition 1. There exist constants pi_, p, satisfying

gSp-Spse £9

such that (17} has a T-periodic solution if and only if

- S B S py
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Remarks 1. When g is not in the interval [u_, g4 ] then every solution of the equation
is unbounded. This is a consequence of the second theorem of Massera.

2. Sometimes it may happen that the existence interval degenerates and g = py. In
that case it can be proved that there exists always a continuum of T-periodic solutions
for g = p+. This phenomenon appears for the linear equation (¢ = 0) and also for
some nonlinear equations (See the example in [5]). However it can be proved that this
case is in some sense excepcional ([29]) and we shall analize the situation p. < py4.

3.2 Index of periodic solutions

Proposition 2. Assume that the set of T-periodic solutions of (17) is finite and given
by ©1,-..,9n. Then

S yries) = 0.

i=1

Before the proof we need a preliminary result on the computation of a degree in
two dimensions. We give an elementary proof taken from [37].

Lemma 3. Consider the rectangle
R={o=(01,02) ER? :a_ <01 <ay, B.<0o2<f;}, a- <oy, B- <B4,
and let F = (F1, F3) : R — R? be a continuous function satisfying
Fla_,03) = Flay,02) # 0, 0 € [B_,8,], Fi(oy,84) <0, Fi{oy,8-) >0, 0y € [o-, 4],

Then deg[F, R} = 0.

B K % “ E R

. o,

Proof. It is not restrictive to assume a_ = §_ = —1, a, = 8, = 1. Define
F*(0y,0,) = F(—01,02). From the previous assumptions AF* + (1 — A)F, A € [0,1] is
a homotopy. Hence deg{F, R] = deg[F™=, R]. On the other hand the definition of degree
implies that deg[F, R] = — deg[F~, R].
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Proof of proposition 2. Let P(zo,y) = (2(T; 2o, ¥0), 2'(T; Zo, ¥o)) be the Poincaré
operator of (17). Since g is bounded, it follows from the equation that there exists
p > 0 such that if |yo| > p then

sign(yo) [=(T'; 2o, Yo) — %o] > 0.
Consider the rectangle
R ={(zo,0) €ER*: a<zp<a+2r,|y| <p}
where a # ¢;(0), ¢t = 1,...,n. It follows from Lemma 3. that
deg[] — P, R] = 0.

Since R contains all the fixed points of P (after the identification =(t) = z(t) +2nr)
the result follows.

The previous result allows us to obtain precise information on the values of the
indexes.

Corollary 4. In the conditions of the previous proposition,
() If b= py orpi_,

yr(i) =0 for eachi=1,...,n.
(i) If u— < p < py, there exist iy,i3 € {1,...,n} such that _

yr(pi,) < 0, y7(i,) = 1.

Proof. (i) follows form the continuity of the degree. If some index were not zero, there
should exist periodic solutions for g4 + € or g_ — € and € small.

(i) The periodic solutions corresponding to the value of the parameter for u, and
fi— can be seen respectively as strict upper and lower solutions of (17). By adding or
substracting 2nx it can be assumed that they are ordered. In consequence, the proof
of Theorem 5. of Chapter 2 implies that there exists i; such that y7(p;,) < 0. Now
proposition 1. of Chapter 2 and proposition 2. imply the existence of .

Remark. The previous corollary implies the existence of at least two T-periodic
solutions when u € (., u4.). This result was first obtained in [16] using Leray-Schauder
degree.

3.3 The number of asymptotically stable T-periodic solu-
tions

In what follows we assume ¢ > 0 and obtain general estimates and bounds on the
number of asymptotically stable T-periodic solutions of (17). The presentation of the
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results is inspired by [31). Let N(1) denote the number of T-periodic solutions of (17)
and N,(1) (resp. N,(1)) denote the number of asymptotically stable (resp. unstable)
T-periodic solutions.

Proposition 5. Assume that N(1) < oo, then
N,(1) £ N,(1).

Proof. Let ¢y,...,¢p, be the T-periodic solutions of (17), n = N(1). Since the index
can only take the values 1,—1 or 0 (Proposition 1. of chapter 2) the set {1,...,n} is
decomposed in the three subsets

I,\ = {z 'TT(W:') = /\}, A= 1,—1,0.

It follows from Theorem 2 of Chapter 2, that N,(1) < |[1| and Ny(1) 2 |I_1| + |fo|. On
the other hand |I;| = |I.,| because the sum of all indexes must be zero (Proposition
2.). This completes the proof.

A periodic solution z(t) with minimal period kT, for some k& > 2, is called a
subharmonic solution of order k. It is clear that z(t + jT), j = 1,...,k — 1, are also
subharmonic solutions. Let N{k) be the number of subharmonic solutions of order k.

The number N (k) is divided by k.

Proposition 6. Asume that N(1) < oo,

(i) If p = ps, N,(1) =0.
(i) If p € (py 4 ),
N@2)=0=N,(1)>1

SN2 < oo =3k 2 1: N,(2%) > 2%,
k>3

Proof. (i) follows from Corollary 4. and Theorem 2. of chapter 2.

(ii) We apply corollary 4. with period 2T to obtain the existence of a 27-periodic
solution ¢ such that v,7(¢) = 1. Since N(2) = 0, ¢ is not a subharmonic and it must
be T-periodic. We apply Theorem 3. of chapter 2, to deduce that ¢ is asymptotically
stable. To prove the second implication let &* be such that N(2*'t!) = 0. Then we
apply the previous result with initial period 2*'T to deduce the existence of a 2¥ 7T-
periodic solution that is asymptotically stable.

Remark. It would be interesting to determine the exact restrictions for the numbers
N(k), N,(k) and N,(k) in the class of equations of pendulum-type. This is meant in
the sense of [31].
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3.4 The region of asymptotic stability

In this section we assume that ¢ > 0 and ¢ is a real entire function with respect to z;
that is

g(t,z) = i an(t)e™, |z| < o0

n=0

where a,, € C(R/TZ). In addition
r C2
(18) gz(tix) 2 _{(T)2 + I] V(t?x) € R xR.
Theorem 7. In the previous assumptions, if u € (p., py), the set of T-periodic solu-

tions is finite and at least one of them is asymptotically stable and another unstable.

Remarks. 1.This result was obtained in [39] under the assumption (more restrictive
than (18))
2

(19) gz(t,2) 2 _cz V(t,z) eRxR.
2. A related result was obtained in [46) assuming that p was fixed and c large enough

(depending on p). This kind of assumptions allows the use of local methods. In
contrast, in the previous theorem the function p was arbitrary.

The previous result will be a consequence of Proposition 6. if we prove
N(2)=0, N(1) <.

The non-existence of second order subharmonic solutions is a;;onsequenoe of (18) while
the analyticity conditions on g imply that the set of T -perlodlc solutions is finite. This
facts are collected in the next two lemmas. :

Lemma 8. In the assumptions of the theorem,
N(2) =

Proof. Let z(t) be a 2T-periodic solution of (17), we shall prove that a:(t) is T-periodic.
Define y(t) = (¢ + T') — z(t), then y(t) is anti-periodic of period T (y(t + T') = —y(t))
and it satisfies

v'+ey' = oft)y
where a is a T-periodic function such that

a(tyy(t) = g(t, =(t + T)) ~ g(t, 2(t)).
It follows from (18) that « satisfies

G+ S

Using the Sturm comparison theory we deduce that if y is nontrivial the distance
between two consecutive zeros is strictly greater than T'. Since y is anti-periodic this
is not possible unless y = 0. This proves that x is 7T-periodic.
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Lemma 9. In the assumptions of the theorem and assuming that u_ # p,
N(1) < .

The proof of this lemma is lengthy. It combines the alternative method and the real
analytic version of the implicit function theorem. The details can be seen in [39]. See
also [52].

The condition (18) was imposed to guarantee the non-existence of second order
subharmonic solutions. The next example shows that in a certain sense the constant
(F)? is optimal in the theorem.

Example. A pendulum of variable length

Given a positive and T-periodic function a(t), we consider the equation
"oyt .
(20) z" + cz' + [a(t) + Z] sinz = 0.

The equilibria # = 0 and * = 7 are always T-periodic solutions of this equation. We
shall prove that for each v > (%)? there exists a € C®(R/TZ), 0 <a<-yand ¢ >0
such that if 0 € ¢ < ¢ the equation (20) has exactly two T-periodic solutions, z = 0
and r = 7, and both are unstable with indexes

11(0) = 1, %2r(0) = -1, v7() = mar(x) = —1.
Notice that if we consider for such a the parametric equa&ion
2
" + ez’ + [a(t) + Z] sinr = p
-
then pg_ < 0 < p, because there are solutions with nonzero index for ¢ = 0. This

example shows that Theorem 7. is not valid if {%)? is replaced by + in (18).
We construct the example after several steps.

Step 1. There exist ¢, § > 0 such that if
Y
||'f¥-(§)2 lze< 8, 0<ec<$

then the only 7-periodic solution of (20} satisfying || z ||c2< € [resp. || £ — 7 ||c2< €]
is = 0 [resp. = «}].

It is easy to check that the only T-periodic solutions of z” + (§)?sinz = 0 are the
equilibria z = 0 and = = #, moreover they are nondegenerate. (This means that the
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only T-periodic solution of the corresponding linearized equation is the trivial solution.)
This fact allows us to apply the implicit function theorem to the equation F = 0 with

F:C*R/TZ) x C(R/TZ) xR — C(R/TZ), (z,a,c) = 2" +cz' +[a(t) + é] sin ©

and find a unique solution z = z(e,c¢) in a neighborhood of the points (0, (F)?,0),
(m,($)%,0).

Step 2. If || a — (%)? |[z~ and ¢ are sufficiently small, the only T-periodic solutions of
(20} arez =0, z =7.

By contradiction assume the existence of sequences z,,, &, ¢, such that o, — (%)?
uniformly, ¢, | 0 and z, is a nonconstant solution of the corresponding equation of
the kind (20). It is easy to obtain uniform bounds on |} #, ||c2. Using the equation
and a compactness argument one extracts a subsequence z, — z in C?, where z is
a T-periodic solution of z” + (¥)?z = 0. Thus £ = 0 or z = 7 and this fact is not
consistent with Step 1.

Step 3. For each a € C*°(R/TZ), a > 0,

yr(7) = Yor(7) = -1.

The linearization of (20) at = is
” ) c2
v’ +eoy —lat) +4ly=0.

It is well known (see [10] for the case ¢ = 0) that if a + % > 0 then the Floquet
multipliers satisfy
r>1> >0

The conclusion follows from the results of Section 2.4.

Step 4. There exists @ € C°(R/TZ) with || a — (§)? ||z~ arbitrarily small such that
if ¢ is close to zero then

v(0) = 1, 1r(0) = ~1.

Since the equation z”+(Z)?2 = 0 has the double Floquet multiplier —1 with respect
to period T', it is possible to find a Hill’s equation z” + a(t)z = 0 with a close to (F)?
and multipliers satisfying
pr<-l<pu; <0



REFERENCES 31
(see [28]). For such a the linearization at z = 0 of the original equation (20) is

c?
vy +ey +[aft) + -4~]y = 0.

This equation is reduced to the previous Hill’s equation by the change of variables
y = e~5'z. In consequence the multipliers are u; = e~T/2u3, uy = e=T2u3. K cis
small we still have

< —l<pu <0

and applying again Section 2.4.,
yr(0) = sign{(1 — ;)1 — p2)} = 1, 72r(0) = sign{(1 — p3)(1 — p3)} = L.

3.5 Some remarks

1. The condition (18) iz optimal for the non-existence of subharmonic solutions of the
second order. When it holds Lemma 8. shows that N(2) = 0. On the other hand, in
the example of the pendulum of variable length one always has N(2) > 2. This follows
from the values of the indexes of period 2T of 0 and = together with Proposition 2.

2. The extension of Massera’s convergence theorem by R.A. Smith [51] implies that
every bounded solution of (17) converges to a T-periodic solution when (19) holds.
In this case the dynamics of the equation is simple and, in particular, N(k) = 0, for
each k > 2. It would be interesting to decide if (19) is opfimal with respect to the
appearance of complicated dynamical behavior in the equation.

3. Theorem 7. is false when ¢ = 0. However it seems possiblé to obtain in such case a
generic result in the line of [37].
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