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Abstract

We consider second-order Euler-Lagrange systems which are periodic in time. Their
periodic solutions may be characterized as the stationary points of an associated action
functional, and we study the dynamical implications of minimizing the action. Ex-
amples are well-known of stable periodic minimizers, but instability always holds for
periodic solutions which are minimal in the sense of Aubry-Mather.
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1 Introduction

Consider the Euler-Lagrange equations

d

dt

[
∇ẋL

(
t, x(t), ẋ(t)

)]
= ∇xL

(
t, x(t), ẋ(t)

)
. (1)

Here the lagrangian L = L(t, x, ẋ) is given, and may depend on the variables t ∈ R (time),
x ∈ Rd (position) and ẋ ∈ Rd (velocity). Assume that the dependence on time is T -periodic;
then the T -periodic solutions of the system may be seen as the critical points of an associated
action functional. In this paper we consider the following question:

What can be said about periodic solutions which minimize the action? More
precisely, what can be said about the dynamics of such solutions?

This problem is an old one, having being studied by Carathéodory. In a result attributed
to Poincaré ([2], Chapter 17, Theorem 1) he was interested in characterizing periodic mini-
mizers, i.e., solutions of the periodic variational problem

min

∫ T

0

L(t, x(t), ẋ(t))dt , x ∈ C1(R/TZ,Rd) .
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de Andalućıa.
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Without using these names, Carathéodory studied the connections between the mentioned
periodic minimizers and periodic minimals, i.e., T -periodic solutions which have lower action
than if modified on a compact interval (see Section 2 for a more precise formulation of these
notions). Carathéodory observed that periodic minimals are always periodic minimizers
and also that the converse holds in the 1-dimensional case d = 1. This equivalence has
consequences in the linear dynamics: one dimensional periodic minimizers are never elliptic.

In the nondegenerate case (when the Hessian quadratic form of the action functional
is positive definite) one-dimensional periodic minimizers are hyperbolic, and, in particular,
unstable (instability in this paper is understood as the logical negation of Lyapunov stability).
In the degenerate case, the periodic minimizer is parabolic and dynamics are not decided at
a linear level; nevertheless, instability still holds, as it was shown by Dancer and Ortega [3]
and Ortega [8, 9] in the isolated and the analytical cases, and the author [12, 13]. These
results cannot be directly generalized to higher dimensions d ≥ 2 since already Carathéodory
([2], Chapter 17, §411) gave an example of an elliptic periodic minimizer in two dimensions
(see also [7], Chapter 2, p. 78).

Apparently unrelated, the classical Lagrange-Dirichlet Theorem states the stability of
the strict minima of the potential for autonomous natural mechanical systems L = K −
U . Motivated by the search of a converse, Hagedorn [4] showed that the local maxima of
the potential are unstable. This result was subsequently extended in many works; we just
mention two of them which are specially related with this paper. Bolotin and Kozlov [1]
considered general lagrangians and showed the instability of the equilibrium q0 assuming
that it minimizes the lagrangian in the sense that L(t, x, ẋ) ≥ L(t, q0, 0) for any (t, x, ẋ).
Hagedorn and Mawhin [5] used variational techniques to give a simple proof to Hagedorn’s
Instability Theorem under minimal regularity assumptions.

The results by Hagedorn are related with those by Carathéodory because the maxima of
the potential are periodic minimals. Also the assumptions of the generalizations above imply
that the solution under consideration is a periodic minimal. Our initial question may now
be formulated more precisely:

Is it true that periodic minimals are always unstable?

On the other hand, Rabinowitz [10, 11] has established the existence of heteroclinic orbits
connecting periodic minimizers of a class of Hamiltonian systems which are reversible in time.
The link to the problem which occupies us here comes from the fact that the reversibility
assumption implies that every periodic minimizer is actually a periodic minimal1. In some
sense, Rabinowitz’s results are stronger than ours because they do not only show instabil-
ity, but the existence of heteroclinic orbits; on the other hand, they require some form of
isolatedness assumptions.

Using also a variational approach Mather [6] showed the existence of solutions connecting
Aubry-Mather sets inside a Birkhoff region of instability of the two-dimensional cylinder.
He subsequently generalized these facts to higher dimensions and developed a corresponding
theory of action-minimizing measures. But once again, when one tries to apply these results
to prove the instability of a particular periodic orbit one needs it to be isolated.

1see Lemma 2.2.
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In the next section we present our main results. Theorem 2.1 answers affirmatively to the
question formulated two paragraphs above. Theorem 2.4 is a global version of the result in
which we show the existence of quasi-asymptotic solutions starting from the periodic minimal
and arriving to any chosen position

Theorem 2.1 was suggested to me by R. Ortega. I am also indebted to him for his
encouragement to write this paper.

2 The main results

Let the real-valued lagrangian L = L(t, x, ẋ) be continuously defined on some open set
Ω ⊂ (R/TZ) × Rd × Rd. We recall the meaning of this notation: a point (t, x, ẋ) belongs
to Ω if and only if the same happens with (t + T, x, ẋ); moreover L is T -periodic in time.
Throughout this paper we shall further assume

(a) Smoothness. L : Ω → R is twice continuously differentiable with respect to (x, ẋ).

(b) Legendre convexity condition. The Hessian matrix
(
∂2L/∂ẋ2

)
(t, x, ẋ) is positive

definite at every point.

It will be convenient to denote by F to the family of C1-smooth functions x : R → Rd

traveling inside Ω for all time:

F =
{
x ∈ C1(R,Rd) : (t, x(t), ẋ(t)) ∈ Ω ∀t ∈ R

}
.

By a periodic minimal we mean a function x∗ ∈ F which is T -periodic and verifies∫
R

(
L(t, x∗ + ϕ, ẋ∗ + ϕ̇)− L(t, x∗, ẋ∗)

)
dt ≥ 0

for any test function ϕ with compact support and such that x∗ + ϕ ∈ F . Equivalently (see
[2], Chapter 17, Theorem 1), periodic minimals might be defined as a T -periodic functions
x∗ ∈ F such that ∫ nT

0

L(t, x∗(t), ẋ∗(t))dt ≤
∫ nT

0

L(t, x(t), ẋ(t))dt

for any nT -periodic x ∈ F .
The notion of minimality expressed above is weak because, depending on the set Ω, it may

happen that the action on x∗ is compared only to curves which are close in the C1 topology.
At a first glance it may seem a unnecessary generalization of the global periodic minimals
of the Aubry-Mather theory; however, this is the concept considered by Carathéodory in [2],
Chapter 17, §412− 413.

It is well-known that periodic minimals must be solutions of the Euler-Lagrange equations
(1). The main result of this paper states the instability of these solutions.

Theorem 2.1. Every periodic minimal is unstable.
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A remark on the meaning on instability. It will be understood as the logical negation of
Lyapunov stability. Our system being Hamiltonian, past and future instability are equivalent.

Theorem 2.1 may be criticized on the grounds that it may be not so easy to show the
existence of periodic minimals. The classical direct methods of the Calculus of Variations,
usually designed to find minima of functionals defined on Banach spaces, are more adapted
to show the existence of periodic minimizers, i.e., T -periodic functions x∗ ∈ F such that∫ T

0

L(t, x∗(t), ẋ∗(t))dt ≤
∫ T

0

L(t, x(t), ẋ(t))dt

for any T -periodic x ∈ F .
As mentioned in the Introduction, Carathéodory showed that in the one-dimensional case

d = 1 periodic minimizers are periodic minimals. In more dimensions the result is false in
general, but continues to hold when the lagrangian is reversible, i.e.

(t, x, ẋ) ∈ Ω if and only if (−t, x,−ẋ) ∈ Ω , L(t, x, ẋ) = L(−t, x,−ẋ) .

Indeed, the arguments of Proposition 2.2 and Corollary 2.10 of [10] may be repeated in
our framework, to show

Lemma 2.2. Let the lagrangian L be reversible. Then every periodic minimizer is a periodic
minimal.

The combination of Theorem 2.1 and Lemma 2.2 immediately yields the following result:

Corollary 2.3. Let the lagrangian L be reversible. Then periodic minimizers are unstable.

In Sections 3 and 4 we will be interested in results of global nature. Correspondingly, we
shall further need the following global assumptions:

(c) The lagrangian is globally defined. With the notation used above this means that
Ω = (R/TZ)× Rd × Rd.

(d) The lagrangian grows quadratically with respect to ẋ. By this we mean that

(d1) There is some constant M > 0 such that

L(t, x, ẋ) ≥ |ẋ|2

2M
−M ,

∂2L

∂ẋ2
(t, x, ẋ) ≥ 1

M
,

for any (t, x, ẋ) ∈ (R/TZ)× Rd × Rd.

(d2) Given any compact set K ⊂ Rd there exists some constant N = NK > 0 such that

L(t, x, ẋ) ≤ N
(
1+|ẋ|2

)
,

∣∣∇xL
(
t, x, ẋ

)∣∣ ≤ N
(
1+|ẋ|2

)
,

∣∣∇ẋL
(
t, x, ẋ

)∣∣ ≤ N
(
1+|ẋ|

)
,

for any (t, x, ẋ) ∈ (R/TZ)×K × Rd .
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We point out that the second inequality in (d1) means

v∗
(
∂2L

∂ẋ2
(t, x, ẋ)

)
v ≥ |v|2

M
∀v ∈ Rd .

Some of these assumptions are similar to those employed in Chapter 2 of [7]; the differences
are motivated by the facts that we are dealing with several space dimensions instead of just
one, that our lagrangian is not periodic on x, and that we do not assume smoothness with
respect to time. In Section 4 we will prove the following

Theorem 2.4. Assume (a),(b),(c),(d) above. Assume further that x∗ is a periodic minimal.
Then for every x0 ∈ Rd and every ϵ > 0 there exists some solution u = u(t) of (1) with

u(0) = x∗(0) , |u̇(0)− ẋ∗(0)| < ϵ , u(t0) = x0 ,

for some t0 > 0.

In view of Lemma 2.2, Theorem 2.4 also holds for periodic minimizers of reversible sys-
tems. We close this Section with an example in which this result is applied to systems of the
type considered by Rabinowitz in [10, 11]. Consider the Hamiltonian system

q̈ +Wq(t, q) = f(t) , (HS)

where q ∈ Rd and the functions W and f satisfy

(W ) W ∈ C2(R× Rd,R) and is T -periodic in t and Ti periodic in qi, 1 ≤ i ≤ d ,

(f1) f ∈ C(R,Rd) and is T -periodic in t,

(f2)
1
T

∫ T

0
f(t)dt = 0,

(V1) V (t, q) = W (t, q)− f(t)q is even in t.

Well known arguments show that under these assumptions the set K1 of periodic mini-
mizers is nonempty. Assuming further that K1 consists of isolated points it was observed in
[10], p. 818 that its elements are unstable. The isolatedness assumption was replaced by a
weaker ones in [11]. Now we can forget it completely; the price is that, instead of heteroclinic
connections we just obtain quasi-asymptotic solutions.

Corollary 2.5. Assume (W ), (f1), (f2), (V1). Then, every T -periodic solution q∗ ∈ K1 has
the following property: for any q0 ∈ Rd and every ϵ > 0 there exists some solution q = q(t)
of (HS) with

q(0) = q∗(0) , |q̇(0)− q̇∗(0)| < ϵ , q(t0) = q0 ,

for some t0 > 0 .
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3 Minimals on a compact interval

In this Section we assume (a),(b),(c),(d). The notion of minimals, borrowed from Carathéodory
([2], Chapter 17, §412 − 413) as well as the Aubry-Mather theory, will be a key ingredient
in our discussion. Let us fix real numbers a < b and denote by H1([a, b],Rd) to the usual
Sobolev space of absolutely continuous functions with square-integrable derivative. A func-
tion x = x(t) in this space is called minimal between a and b (or simply minimal when the
interval is clear from the context) provided that∫ b

a

L(t, x(t), ẋ(t)) dt ≤
∫ b

a

L(t, y(t), ẏ(t)) dt ,

for any y ∈ H1([a, b],Rd) with y(a) = x(a) and y(b) = x(b). The set of all functions
x : [a, b] → Rd which are minimal between a and b will be denoted by M([a, b]).

The remaining of this section is devoted to point out certain well-known properties of this
class of functions which will be needed in the sequel. We start with a regularity result.

Lemma 3.1. Every function x ∈ M([a, b]) is a C1 solution of the Euler-Lagrange equations
(1).

Observe that, since the lagrangian L is not assumed smooth with respect to time, this
does not imply x to be C2; however, the function t 7→ ∇ẋL(t, x(t), ẋ(t)) must be C1 on [a, b]
and the equality (1) must hold pointwise. We do not include a proof of Lemma 3.1 since,
under slightly different assumptions, it may be found, for instance, in [7], pp. 39-40.

There is a second fact which will play an important role in the next section. This is
an elementary version of the more general Tonelli Theorem, and provides the existence of
minimals connecting any two given points.

Lemma 3.2. For any xa, xb ∈ Rd there exists some x ∈ M([a, b]) with x(a) = xa and
x(b) = xb.

Again this result is well known, and its proof can be transcribed, step by step, from the
proof of Theorem 2.2.1 of [7], which states the same result in a related framework. Thus, we
do not include it in this paper.

Before closing this section we present a related statement which asserts the compactness
of certain subsets of M([a, b]) under quite mild assumptions.

Lemma 3.3. Let the sequence {xn}n ⊂ M([a, b]) be such that{
xn(a)

}
n
,

{
xn(b)

}
n

are both bounded. Then there is a partial subsequence of {xn} which converges to some
function x ∈ M([a, b]) in the C1 topology.

To keep the pace of the exposition, we accept this result now and postpone its proof to
the end of the paper.
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4 A sequence of quasi-asymptotic solutions

In this Section we prove Theorem 2.4. With this aim we assume (a),(b),(c),(d) and the
existence of a periodic minimal x∗.

Before going into the details of the proof we observe that there is no loss of generality in
assuming that

x∗ ≡ 0 , L(t, 0, 0) ≡ 0 , (2)

as otherwise we would replace our lagrangian L by L(t, x, ẋ) = L(t, x + x∗(t), ẋ + ẋ∗(t)) −
L(t, x∗(t), ẋ∗(t)). It will help us to simplify the notation.

Let us start by fixing some point x0 ∈ Rd\{0}. Using Lemma 3.2 we may find, for each
n ∈ N, some function un ∈ M([0, nT ]) with

un(0) = 0 , un(nT ) = x0 ,

u1
x0

u2

un

T 2T nT0

Rd

. . . t→

Figure 1: un joins the positions 0 and x0 on the time interval [0, T ].

(see Fig. 1). Our proof will consist in showing that

u̇n(0) → 0 as n→ +∞ ;

with this aim an important role will be played by the sequence of real numbers

cn :=

∫ nT

0

L(t, un(t), u̇n(t)) dt .

First Step: {cn}n is decreasing.
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To check this statement we choose some n ∈ N and consider the piecewise C1 function
w : [0, (n+ 1)T ] → Rd defined by

w(t) :=

{
0 if t ∈ [0, T ] ,

un(t− T ) if t ∈]T, (n+ 1)T ] .

Then, w and un+1 coincide at t = 0 and t = (n + 1)T . The minimality of un+1 implies
that

cn+1 =

∫ (n+1)T

0

L(t, un+1(t), u̇n+1(t))dt ≤
∫ (n+1)T

0

L(t, w(t), ẇ(t))dt = cn ,

(see Fig. 2(a)). It shows this step.

Second Step: {cn}n is bounded from below.

To show this fact we fix some C1 function φ : [0, T ] → Rd with φ(0) = x0 and φ(T ) = 0.
Choose some n ∈ N and define w : [0, (n+ 1)T ] → Rd by

w(t) :=

{
un(t) if t ∈ [0, nT ] ,

φ(t− nT ) if t ∈]nT, (n+ 1)T ] .

It vanishes at times t = 0, (n+ 1)T and, x∗ being a periodic minimal, we deduce

0 ≤
∫ (n+1)T

0

L(t, w(t), ẇ(t))dt =

∫ nT

0

L(t, un(t), u̇n(t))dt+

∫ T

0

L(t, φ(t), φ(t))dt ,

so that cn ≥ −
∫ T

0
L(t, φ(t), φ(t))dt, see Fig. 2(b). The step is proved.

un

w

un(t− T )

x0

0 T . . . nT (n+ 1)T

Figure 2(a): The action on w is cn.

x0
w

un

0 T nT. . . (n+ 1)T

φ

Figure 2(b): The action on w is nonnegative.

Third Step: There exists some 0 < t∗ < T such that {un(t∗)}n is bounded.

To check this fact we define, for each n ∈ N,

tn := min
{
t > 0 : |xn(t)| = |x0|

}
.

This step will be proved by showing that {tn}n is bounded away from zero. It will be
helpful to establish firstly the following

Claim. The sequence
∫ nT

tn
L(t, un(t), u̇n(t))dt is bounded from below.
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Proof of the claim. Fix φ : [0, T ] → R as in the second step, choose some n ∈ N and define
w : [−T, (n+ 1)T ] → Rd by

w(t) :=


(

t+T
tn+T

)
un(tn) if − T ≤ t ≤ tn ,

un(t) if tn ≤ t ≤ nT ,

φ(t− nT ) if nT ≤ t ≤ (n+ 1)T .

Since w(−T ) = w((n+ 1)T ) = 0, the minimality property of x∗ ≡ 0 gives∫ (n+1)T

−T

L(t, w(t), ẇ(t))dt ≥ 0 ,

from where the claim follows.

Since from the first step we also know that {cn}n is bounded from above, we conclude
that ∫ tn

0

L(t, un(t), u̇n(t)) dt = cn −
∫ nT

tn

L(t, un(t), u̇n(t)) dt

is also bounded from above. Remembering the first part of assumption (d1) we see that
(1/M)

∫ tn
0

|u̇n(t)|2dt − Mtn is also bounded from above, and, combining Cauchy-Schwarz

inequality with the fact that
∫ tn
0

|u̇n(t)|dt ≥ x0 for all n, we obtain that the sequence
{|x0|2/(Mtn) − Mtn}n is bounded from above. Thus, {tn}n is bounded away from zero,
concluding the step.

u1

x0

u2

unk

T 2T nkT0

u∗

. . . t→

Figure 3: The partial subsequence {unk
}k converges to u∗ on [0, t∗].

Final Step: The end of the proof.
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It follows from the third step and Lemma 3.3 that there is a partial subsequence {unk
}k

which converges, in the C1([0, t∗],Rd) sense, to some u∗ : [0, t∗] → Rd, see Fig. 3.
All what remains to see now is that u̇∗(0) = 0. We argue by a contradiction argument

and assume instead that u̇∗(0) ̸= 0. The function

w(t) :=

{
0 if 0 ≤ t ≤ T ,

u∗(t− T ) if T ≤ t ≤ T + t∗

is only piecewise C1, and by Lemma 3.1, it cannot be minimal. Thus, Lemma 3.2 states the
existence of some minimal function v : [0, T + t∗] → Rd satisfying

v(0) = 0 , v(T + t∗) = u∗(t∗) ,

∫ T+t∗

0

L(t, v(t), v̇(t))dt <

∫ t∗

0

L(t, u∗(t), u̇∗(t))dt .

Let us choose some ϵ > 0 such that∫ T+t∗

0

L(t, v(t), v̇(t))dt <

∫ t∗

0

L(t, u∗(t), u̇∗(t))dt− 2ϵ ,

and define, for every k ≥ 1, the piecewise C1 function

wk(t) =

{
v(t) +

(
t/(T + t∗)

)(
unk

(t∗)− u∗(t∗)
)

if t ∈ [0, T + t∗] ,

unk
(t− T ) if t ∈ [T + t∗, (nk + 1)T ] .

Since wk → v in the C1 sense on [0, T + t∗] and unk
→ u∗ in the C1 sense on [0, t∗], we may

find some k0 such that∫ T+t∗

0

L(t, wk(t), ẇk(t))dt <

∫ t∗

0

L(t, unk
(t), u̇nk

(t))dt− ϵ , k ≥ k0 .

v

x0

unk
(t− T )

T
w

wk

T + t∗ · · ·0 nkT (nk + 1)T

Figure 4: The action on wk decreases a fixed quantity the action on unk
.

Consequently, ∫ (nk+1)T

0

L(t, wk(t), ẇk(t))dt < cnk
− ϵ ,
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and, in particular,
cnk+1 < cnk

− ϵ , k ≥ k0 ,

(see Fig. 4). It contradicts the fact that, as stated by the first and second steps the decreasing
sequence {cn} is convergent, and concludes the proof.

5 From the global theorem to a local one

Even though both results deal with instability, Theorem 2.4 is a global result, while Theorem
2.1 is local. The path to arrive to the latter from the first is given by the following extension
result.

Proposition 5.1. Let the lagrangian L : Ω → R verify assumptions (a),(b) and let x∗
be an associated periodic minimal. Then there exists a modified lagrangian L̃ verifying
(a),(b),(c),(d) which coincides with L on some neighborhood of x∗ and for which x∗ remains
a periodic minimal.

As we already observed in the proof of Theorem 2.4, there is no loss of generality in
assuming (2), and this will be done throughout this section. This will help us to simplify the
notations. For instance, the neighborhood of x∗ mentioned above must contain some set of
the form

N̄R :=
{
(t, x, ẋ) : t ∈ R/Z, |x| ≤ R, |ẋ| ≤ R

}
which should be contained in Ω. Another example: x∗ ≡ 0 is a periodic minimal for L̃
provided that∫ +∞

−∞
L̃(t, ϕ(t), ϕ̇(t))dt ≥ 0 for any ϕ ∈ C1(R,Rd) with compact support.

This property is perhaps the least direct to check in particular cases and we shall obtain
it next from the following feature of L̃: there are numbers τ > S > R such that N̄τ ⊂ Ω and

(L̃1) L̃(t, x, ẋ) = L(t, x, ẋ) on N̄R.

(L̃2) L̃(t, x, ẋ) ≥ L(t, x, ẋ) on N̄τ .

(L̃3) L̃(t, x, ẋ) = Ψ(|ẋ|) on
(
(R/TZ) × Rd × Rd

)
\N̄τ . Here Ψ : [0,+∞[→ R is some C2

function with

Ψ(v), Ψ′′(v) > 0 on [0,+∞[, Ψ′(0) = 0, Ψ(v) = v2/2 + C if v ≥ S , (3)

for some constant C ∈ R.

The assertions in (3) may be roughly described by saying that Ψ mimics the behavior of
a positive quadratic polynomial. Correspondingly, (L̃3) states that outside N̄τ the modified
lagrangian L̃(t, x, ẋ) depends only on ẋ, looks like |ẋ|2/2 + C and is always positive.
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Lemma 5.2. Let the lagrangian L : Ω → R verify (a),(b) and let x∗ ≡ 0 be an associated pe-
riodic minimal. Let the lagrangian L̃ verify (a),(b),(c),(d) and assume that there are numbers
0 < R < S < τ such that N̄τ ⊂ Ω and (L̃1), (L̃2), (L̃3). Then x∗ ≡ 0 is a periodic minimal
for L̃.

Proof. Using a contradiction argument, we assume instead that there exists some x ∈
H1(R,Rd) with compact support, say, contained in [a, b], such that∫ b

a

L̃(t, x(t), ẋ(t))dt < 0 .

Remembering Lemma 3.2 we see that there is some function in M([a, b]) vanishing at
t = a, b. The action on this function cannot be greater than the action on x, and then it is
not restrictive to assume that x solves the Euler-Lagrange equations associated to L̃ on the
time interval [a, b].

On the other hand, (L̃1) − (L̃2) imply that there must exist some time t0 ∈ [a, b] with
either |x(t0)| > τ or |ẋ(t0)| > τ . But in view of (L̃3), in a neighborhood of (t0, x(t0), ẋ(t0))
our lagrangian has the form L̃(t, x, ẋ) = Ψ(|ẋ|), whose associated Euler-Lagrange equations
are

(d/dt)F (ẋ(t)) = 0 , (4)

where F : Rd → Rd is given by

F (ẋ) :=


Ψ′(|ẋ|)
|ẋ|

ẋ if ẋ ̸= 0 ,

0 if ẋ = 0 .

This mapping is a diffeomorphism from Rd to itself, and hence, the Euler-Lagrange equa-
tions (4) are equivalent to ẍ ≡ 0. From here and the boundary conditions x(a) = 0 = x(b)
one easily arrives to a contradiction.

In view of this result, Proposition 5.1 and hence Theorem 2.1 will be proved if we are
show the following

Lemma 5.3. For any lagrangian L : Ω → R verifying (a),(b) and having x∗ ≡ 0 as a periodic
minimal there exists some L̃ under the assumptions of Lemma 5.2.

This will be our goal in the remaining of this section. We start with the construction of
a function of two real variables satisfying certain properties.

Lemma 5.4. Given numbers 0 < R < S there exists a C2 function g : [0,+∞[×[0,+∞[→ R
with

(g1) g(u, v) ≥ 0, ∂2g
∂v2

(u, v) ≥ 0 on [0,+∞[×[0,+∞[,

(g2)
∂g
∂v
(u, 0) = 0 = ∂g

∂u
(v, 0) for any u, v ≥ 0,

(g3) g ≡ 0 on [0, R]× [0, R].
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(g4) g(u, v) = Ψ(v) on
(
[0,+∞[×[0,+∞[

)
\
(
]0, S[×]0, S[

)
. Here Ψ : [0,+∞[→ R is some

C2 function verifying (3).

Proof. Choose C1 functions ϕ, ψ : [0,+∞[→ R with

• ϕ(v) = 0 if 0 ≤ v ≤ R; ϕ′(v) > 0 for any v ∈]R, S[; ϕ(v) = v if v ≥ S .

• ψ(0) = 0; ψ′(v) > 0 on [0, S];
∫ S

0
ψ(v)dv <

∫ S

0
ϕ(v)dv; ψ(v) = v if v ≥ S .

Let now m : [0,+∞[→ R be a C2 cut-off function with

m(u) = 0 on [0, R], 0 ≤ m(u) ≤ 1, m(u) = 1 on [S,+∞[ ,

and define

g(u, v) :=
(
1−m(u)

)
Φ(v) +m(u)Ψ(v) , (u, v) ∈ [0,+∞[×[0,+∞[ ,

the functions Φ and Ψ being, respectively, the primitives of ϕ and ψ verifying

Φ(0) = 0, Ψ(0) =

∫ S

0

ϕ(v)dv −
∫ S

0

ψ(v)dv > 0 .

One immediately checks that Ψ satisfies (3), while g satisfies (gi), 1 ≤ i ≤ 4. It concludes
the proof.

Let g be given by the previous Lemma and define

h(x, ẋ) := g(|x|, |ẋ|), (x, ẋ) ∈ Rd × Rd .

Then, (g2) implies that h is a C2 function on Rd ×Rd, while (g1) and (g2) together imply
that the Hessian matrix ∂2h/∂ẋ2 is positive semidefinite everywhere. We are led to the
following multidimensional extension of Lemma 5.4:

Corollary 5.5. Given 0 < R < S there exists a C2 function h : Rd × Rd → R such that

(h1) h(x, ẋ) ≥ 0,
(
∂2h/∂ẋ2

)
(x, ẋ) ≥ 0 on Rd × Rd.

(h2) h(x, ẋ) = 0 if |x|, |ẋ| ≤ R.

(h3) h(x, ẋ) = Ψ(|ẋ|) if max(|x|, |ẋ|) ≥ S. Here Ψ : [0,+∞[→ R is some C2 function
verifying (3).

We point out that the second inequality of (h1) is just another way of saying that the
matrix

(
∂2h/∂ẋ2

)
(x, ẋ) is positive semidefinite at each point. On the other hand, straight-

forward computations show that, if Ψ : [0,+∞[→ R has class C2 and verifies (3), then the
Hessian matrix of the C2 function ẋ ∈ Rd 7→ Ψ(|ẋ|) is positive definite everywhere. Thus,
the function h of Corollary 5.5 verifies

(h4) h(x, ẋ) > 0,
∂2h

∂ẋ2
(x, ẋ) > 0 if max(|x|, |ẋ|) ≥ S ,
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(the first inequality follows immediately from (3)). We are now prepared to complete the
(almost) last step which remained in our way to Theorem 2.1.

Proof of Lemma 5.3. Choose numbers R < S < τ such that N̄τ ⊂ Ω and pick some cut-off
function k : Rd × Rd → R of class C2 such that

k(x, ẋ) = 1 if |x|, |ẋ| ≤ S , k(x, ẋ) = 0 if max{|x|, |ẋ|} ≥ τ .

Choose now some function h : Rd → Rd as in Corollary 5.5. In view of (h4) we may find
some number γ > 0 such that L̃(t, x, ẋ) := k(x, ẋ)L(t, x, ẋ) + γh(x, ẋ) verifies

L̃(t, x, ẋ) ≥ L(t, x, ẋ) ,
∂2L̃

∂ẋ2
(t, x, ẋ) > 0 on N̄τ (5)

One easily checks that L̃ verifies all the assumptions of Lemma 5.2. The proof is complete.

The last task remaining is the proof of Lemma 3.3, which was skipped in Section 3.

Proof of Lemma 3.3. For any n ∈ N we consider the linear curve

yn(t) :=

(
b− t

b− a

)
xn(a) +

(
t− a

b− a

)
xn(b) , t ∈ [a, b] .

It joins the points xn(a) and xn(b) on the time interval [a, b], and the minimality property
of xn implies ∫ b

a

L(t, xn(t), ẋn(t))dt ≤
∫ b

a

L(t, yn(t), ẏn(t))dt ,

and since {yn}n is bounded on the C1 topology, the sequence of integrals in the left side of
the inequality must be bounded from above. Remembering the first part of assumption (d1)
we see that {xn}n must be bounded in the H1 topology and the inclusion H1([a, b],Rd) ⊂
C([a, b],Rd) being compact, after possibly passing to a subsequence we may assume that
xn → x uniformly on [a, b].

We consider the sequence {ηn}n of functions defined by

ηn(t) := ∇ẋL(t, xn(t), ẋn(t)) , t ∈ [a, b] . (6)

The last statement of assumption (d2) implies that this sequence is bounded in the L2

topology. On the other hand, all the the ηn’s have class C1 and verify

η̇n(t) = ∇xL(t, xn(t), ẋn(t)) , t ∈ [a, b] , (7)

and the second part of assumption (d2) gives that {η̇n}n is bounded in the L1 topology. It
follows that {ηn}n is uniformly bounded.

The combination of the middle part of assumption (d1) with the Implicit Function The-
orem implies the existence of a continuous function S : (R/TZ)× Rd × Rd → Rd such that

∇ẋL(t, x, ẋ) = y if and only if ẋ = S(t, x, y) .
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In this way, (6) may be rewritten as

ẋn(t) = S(t, xn(t), ηn(t)) , t ∈ [a, b] . (8)

It follows that {ẋn}n is uniformly bounded, and (7) implies that {η̇n}n is uniformly
bounded. The Ascoli-Arzelà Lemma then gives that, after possibly passing to a subsequence,
ηn → η∗ uniformly on [a, b], and in view of (8), also {ẋn}n converges uniformly on [a, b].
Thus, x is a C1 function and xn → x in the C1 topology. Since xn ∈ M([a, b]) for any n we
see that x ∈ M([a, b]). The proof is complete.
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