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Abstract

This paper analyzes the effects of diffusion on the overall population size of the different
species of a metacommunity. Depending on precise thresholds, we determine whether increas-
ing the dispersal rate of a species has a positive or negative effect on population abundance.
These thresholds depend on the interaction type of the species and the quality of the patches.
The motivation for researching this issue is that spatial structure is a source of new biological
insights with management interest. For instance, in a metacommunity of two competitors,
the movement of a competitor could lead to a decrease of the overall population size of both
species. On the other hand, we discuss when some classic results of metapopulation theory
are preserved in metacommunities. Our results complement some recent experimental work
by Zhang and collaborators.

Keywords: Coexistence Mechanisms, Metapopulations vs Metacommunities, Dispersal Response,
Paradoxical Effects

1 Introduction

The uncontrolled expansion and intensification of human land-use have increased the habitat frag-
mentation of many ecosystems worldwide. In fact, habitat fragmentation is now a serious threat
for the viability of many endangered species [3,13]. To solve this problem, a possible conservation
strategy is the construction of ecological corridors, (path-ways that facilitate the movement of
individuals between two different patches [7,39]). The efficacy of corridors has been much debated
in the ecological literature [12,15,21,22,38]. Among their many benefits, the extinction risk can be
reduced by the colonization of new areas. At the same time, individuals may move from suitable
to unsuitable regions in which they die or their reproductive output is decreased, threatening the
viability of the population. For instance, Amstrom and Part [6] reported that the presence of
corridors might have a detrimental impact on the population abundance in laboratory experiments
with oribatid mites.

Understanding the precise implications of spatial fragmentation is of great importance for con-
servation and management, in particular, for the performance of ecological corridors [15–17,37]. In
nature, most species occupy large habitats with a heterogeneous distribution of resources and other
biological factors, with the interplay with other species as a typically relevant factor [10, 19]. Ac-
tually, a population generally exists as a metapopulation, that is, a set of subpopulations confined
in discrete patches among which an individual can move via dispersal routes [23]. Metapopulation

∗Department of Mathematics Faculty of Science, Oviedo University, Spain (ruizalfonso@uniovi.es).
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models are a valuable tool to guide population management [15–17, 37]. Nonetheless, drawing
biological insights from classical models is not an easy task since they are remarkably resistant to
analysis. It is worth noting that the dynamics of a single species that inhabits two different patches
is already quite complex [4,11,20,24,26]. A striking result is that, in heterogeneous landscapes, total
population size is a hump-shaped function when plotted on the dispersal rate [4,15,30,42]. In more
mathematical terms, the overall population increases as dispersal increases with a relatively low
dispersal rate, before reaching a maximum and then subsequently decreasing. The hump-shaped
response has been detected in laboratory experiments with duckweed (Lemmoideae). Specifically,
in a metapopulation with five patches, Zhang et al. [42] compared the total biomass with four
different diffusion rates, namely 0%, 6%, 10%, 20%. The non-zero values of the diffusion rate had
a positive effect on the total population size and the maximum was attained at 6%.

This biological result, among many others, is derived from single-species models in which the
biological parameters are fixed and independent of the densities of the interacting species [4, 12,
15, 25]. Nevertheless, any real population is limited by resources that are exploited and renewed;
or is subject to competition from a different coexisting species [1, 43]. Therefore, supposing that
the non-interaction of species is generally over-simplifying, approaches integrating predation or
competition are critically needed. In fact, it is widely recognized that the interplay between
dispersal and community structure plays an important role in the abundance and interaction
of organisms at a local, as well as at a regional scale [8, 28, 32]. For instance, Gilbert et al.
[18] have shown that the presence of ecological corridors increases the richness of species in a
system of microarthropods inhabiting moss patches in stones. Furthermore, Livingston et al. [29]
have demonstrated experimentally that the introduction of predators as a separate factor in prey
communities could lead to an increment in species sorting. We emphasize that many results from
metapopulation theory are not preserved in a metacommunity context. Recent experimental work
in spatially diffusing laboratory populations of the heterotrophic budding yeast Sacchraromyces
cerevesiae limited by an essential nutrient backs this claim. One of the main conclusions of Zhang
et al. [43] was that the aforementioned hump-shaped response of dispersal is not generally preserved
in metacommunities since the total population abundance was found to be higher in a homogeneous
environment than in a heterogeneous environment with diffusion (with the same total resource level
in both cases).

Despite significant progress in the understanding of the impact of spatial variables, most of this
knowledge is still under development. In this paper, we analyze how the dispersal rate of a mobile
species affects the population sizes of the species that inhabit a metacommunity. Specifically, our
aim is to provide precise thresholds that determine when dispersal is detrimental or beneficial for
the overall abundance of a specific species. Moreover, we will compare these quantities for the
different interactions, e.g. competition and predation, and we will discuss the biological situations
in which the results of single-species metapopulations are preserved. One of the motivations for
investigating this issue is that spatial structure is a source of new biological insights with interest
on management. Another goal is to complement the recent work of Zhang et al. [9, 42,43].

The structure of the paper is as follows. Section 2 presents a classical model of the Lotka-
Volterra type to analyze the dynamics of a metacommunity. Section 3 provides a theoretical
investigation on the impact of the dispersal rate of a mobile species on the population abundance
of the species. Our analysis covers both predator-prey and competition interactions. Furthermore,
we will discuss how the introduction of a new source (a high quality region) in the landscape
compensates any negative influence of predation and competition. Finally we will discuss the
biological implications of our results in Section 4.



3

2 Description of the model

We are going to analyze the dynamics of two interacting species that inhabit a landscape of two
patches. Species 1 can move between both patches and species 2 always remains in patch 2. A
possible biological model is

x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2
+ λy

)
+D(x1 − x2)

y′ = sy
(
1− y

R + µx2

) (2.1)

with xi(t) as the population abundance of species 1 in patch i and y(t) as the population abundance
of species 2. In system (2.1), Dxi is the emigration flow from patch i to the other patch, D ≥ 0. For
simplicity, we suppose that an individual moves from patch 1 to patch 2 with the same probability
as from 2 to 1. From this point of the paper, we suppose that the parameters with Latin letters
are always positive. Here, ri is the maximum growth rate of species 1 in patch i whereas ki

denotes the carrying capacity. Parameters s and R are associated with species 2 and have an
analogous meaning. Depending on the signs of λ, µ ∈ R, system (2.1) can cover any possible
interaction between the species. For instance, if λ < 0 < µ, a consumer-resource (predator-prey)
interaction exists in patch 2. Models like (2.1) have been widely used in theoretical ecology,
see [4, 19,26,27,36,42] and the references therein.

The patches occupied by a concrete species are generally classified as sources or sinks [35].
Sources are areas in which reproduction is sufficient to compensate mortality and sinks are patches
in which losses exceed births and growth. In the absence of interaction between the species (λ =
µ = 0), both patches in (2.1) are sources. In other words, the local populations persist in the
absence of dispersal. In the next sections, we will see that the competition or predation between
the species may alter this scenario. Another common notion in metapopulation theory is a pseudo-
sink, i.e. a patch that could survive as a source even if isolated but appears as if it were a sink when
connected with higher productivity patches due to net population influx, the patch’s population
above its natural carrying capacity (see [41]).

Most management and conservation plans aim to maximize the overall population size of a
target species, see [15] and the references therein. However, the behaviour of the overall population
size depending on the dispersal rate is quite subtle. As mentioned in the introduction, for single-
species models, the total population size can be higher than the sum of the carrying capacities of
the patches [4,15,30,42]. In more mathematical terms, let us consider a metapopulation given by x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2

)
+D(x1 − x2)

(2.2)

and assume that (p1(D), p2(D)) ∈ IntR2
+ = {(x1, x2) : x1 > 0, x2 > 0} is a global attractor for

(2.2). Denote by
TP (D) = p1(D) + p2(D)

the total population size depending on D. If there is a positive r − k relationship, that is, one of
the following cases

• r1 > r2 and k1 > k2

• r2 > r1 and k2 > k1

holds, then
TP (D) = p1(D) + p2(D) > k1 + k2
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for some range of small dispersal rates. The biological explanation of this fact is as follows ( see [43]
for more details): the number of emigrants from high-quality patches is greater than the loss to
emigration in low-quality patches. Moreover, the migrants with a low quality natal habitat will
have a higher reproduction rate than the individuals that do not move. See [31] for real situations
in nature in which the positive r − k relationship appears.
In Appendix 1, we show that

TP ′(0) =
(

1
r2
− 1
r1

)
(k1 − k2).

Therefore, if TP ′(0) > 0 (resp. TP ′(0) < 0), a range of dispersal rates exists so that the total
population increases (resp. decreases) as dispersal increases. Note that a big difference between
the carrying capacities of the patches leads to a large benefit of the dispersal rate on population
abundance. To avoid making misleading conclusions from the literature, we emphasize that Arditi
et al. [4] and Zhang et al. [43] referred to a positive r − k relationship if k1 > k2 and r1k2 > r2k1

or if k2 > k1 and r2k1 > r1k2. Note that our relationship is less restrictive than that considered
in [4, 43]. One disadvantage of our correlation is that gives information only for small dispersal
rates.

For the reader’s convenience, we summarize the analysis carried out in [4]. Assume that k1 < k2.
If r2/k2 ≥ r1/k1,

lim
D−→∞

TP (D) > k1 + k2.

If r1 < r2, TP (D) is greater than k1 + k2 for small values of D. Collecting all the information, if
r1 < r2 and r2/k2 > r1/k1, TP (D) is greater than k1+k2 for small values of D and TP (D) < k1+k2

for large values of D. See Section 2 in [4] for a detailed discussion.

3 Results for the metacommunity model

For each D ≥ 0, we assume that there exists an equilibrium (g1(D), g2(D), g3(D)) (that depends on
D) that is a global attractor of (2.1) for every non-trivial initial condition. The case of coexistence
of multiple attractors in (2.1), for instance, aR > 1 and bk2 > 1 in the next system, will be analyzed
in forthcoming papers. To analyze the influence on the overall population size of each species in
(2.1), we will study how

TP1(D) = g1(D) + g2(D)

and
TP2(D) = g3(D)

vary according to the dispersal rate. In fact, the aim of this paper is to study if increasing D
benefits/damages TP1(D) and TP2(D) for small dispersal rates.

Model (2.1) is studied by using analytical results that are presented in several appendices. In
the next figures, we will draw the asymptotic value of the solutions using t = 100, (more time does
not modify the figures).

3.1 The competitive case

Consider 
x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2
− ay

)
+D(x1 − x2)

y′ = sy
(
1− y

R − bx2

)
.

(3.1)
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where all the parameters are strictly positive. The influence of D on the total biomass of each
species depends on the dynamical behaviour of the species in patch 2 in the absence of dispersal,
i.e. {

x′2 = r2x2

(
1− x2

k2
− ay

)
y′ = sy

(
1− y

R − bx2

)
.

(3.2)

Next, we discuss the possible behaviours of TP1(D) and TP2(D) depending on the competition
outcomes of (3.2).
Case 1: Exclusion of species 1 in patch 2, (aR > 1 and bk2 < 1).
In this landscape, patch 1 is a source and patch 2 is a sink for species 1, whereas patch 2 is a
source for species 2 (the sedentary species). At a local scale, the movement of species 1 increases
species diversity in patch 2 via rescue effects, by which migrants re-establish the local population
that had been driven to extinction. The mobility of species 1 also leads to an increment in the
interspecific competition on species 2. As a result, the density of population of species 2 always
decreases by increasing D, (see Fig. 1, and Case 1 of Section 5.2.1). However, the influence of D
on the overall population of species 1 is more subtle. We have proved in Appendix 2 (case 1 of
Section 5.2.1) that

TP ′1(0) = k1

(
−1
r1

+
1

r2(aR− 1)

)
.

Therefore, if
r1 > r2(aR− 1), (3.3)

there is a range of dispersal rates that generate an increase of the total population size of species
1, (see Fig. 1 (A)). Note that inequality (3.3) is satisfied if r1 is large or if aR ≈ 1. The benefits of
D on the population size of species 1 for large values of r1 is a consequence of the exploitation of
a high quality patch without interspecific competition. On the other hand, the positive influence
when aR ≈ 1 fits directly with the analysis on the impact of a concrete route discussed in [36].
Specifically, if a sink is close to becoming a source, the connection is highly recommended.

Negative values of TP ′1(0) appear provided

r2(aR− 1) > r1.

This inequality is verified, for instance, if the competition rate a or the maximum growth rate of
species 2 are large (see Fig. 1(B)). In other words, patch 2 is a sink in which the survival of species
1 is extremely challenging due to the interspecific competition.

An apparently paradoxical effect is the possibility of a detrimental impact of the movement of
species 1 on the overall population size of both species (See Fig. 1 (B)). To understand this effect,
we remark that increasing D promotes the presence of species 1 in patch 2, increasing inter-specific
competition on species 2. In turn the negative effect on species 1 emerges when the recolonization
in patch 2 does not compensate for the loss of migration in patch 1. In more mathematical terms,
if

p1(D) + p2(D) < k1

in spite of the fact that
0 < p2(D).

Note that p1(0) = k1 and p2(0) = 0.
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Figure 1: Representation of TP1(D) and TP2(D) in system (3.1) when aR > 1 and bk2 < 1 (Case
1). (A) The parameters employed are: r1 = 2.5, r2 = 3, k1 = 2.5, k2 = 4, s = 1, a = 1.5,
b = 0.1, R = 1. Notice that r1 > r2(aR− 1). We can observe the positive influence on TP1(D) for
D ∈ (0, 0.5). In fact, function TP1(D) is unimodal. On the other hand, TP2(D) is a decreasing
function. We emphasize that TP ′1(0) and TP ′2(0) give information only for small values of D. (B)
The parameters employed are: r1 = 2, r2 = 5, k1 = 3.5, k2 = 4, s = 1, a = 1.5, b = 0.1, R = 1.
Note that r1 < r2(aR−1). In this case, both functions are strictly decreasing. For species 1, patch
2 is a sink in which the growth rate of the superior competitor is moderately high.

Case 2: Exclusion of species 2 in patch 2, (aR < 1 and bk2 > 1).
The dynamical behaviour of species 1 is essentially the same as in the absence of species 2 i.e.,
system (2.2), (see Appendix 2, section 5.2.1, Case 2). In fact,

TP ′1(0) =
(

1
r2
− 1
r1

)
(k1 − k2).

A notable result is that the random dispersal of species 1 cannot produce the coexistence of both
species despite species 2 being sedentary, (see Proposition 5.1 and Remark 5.1). This fact seems
to contrast with the coexistence mechanism coined as emigration mediated coexistence by Ama-
rasekare [1]. A natural guess would be that the mobility of the superior competitor from a much
higher quality patch could weaken interspecific competition and so, would allow the persistence of
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the inferior competitor. Although patch 2 could be of a much higher quality, we do not see the
emigration mediated coexistence in (3.1) because patch 1 is always a source. Actually, the impact
of maladaptive emigration is not so strong as to enable the survival of the inferior competitor.
Case 3: Coexistence of both species in patch 2, (aR < 1 and bk2 < 1).
Under a positive r − k relationship of type

r1 > r2 and k1 > k2,

the movement of species 1 always has a positive influence on its own overall population size and
a detrimental effect on the other species (see Proposition 5.2). Roughly speaking, the expected
response of the classical metapopulation theory when dispersal is rare is preserved for species 1.
The benefits on species 1 are simply a result of the exploitation of a high quality patch without
interspecific competition. In turn, species 2 is subject to a higher competition pressure, leading to
a decrease in population abundance, (see Fig. 2(A)).

The influence of D under a positive r − k relationship of type

r1 < r2 and k1 < k2,

is more complex. In Appendix 2 (case 3 Section 5.2.1), we have deduced that

TP ′1(0) =
(

1
r2
− 1− aR

r1

)(
k1

1− aR
− k2

1− abRk2

)
and

TP ′2(0) =
bR

r2

(
k2

1− abRk2
− k1

1− aR

)
.

Thus, the possible responses of D depend on the thresholds

α = k2(1− aR)− k1(1− abRk2)

and
β = r1 − r2(1− aR).

If α > 0 (resp. < 0), there is a positive (resp. negative) effect of the dispersal rate of species 1 on
the population abundance of species 2. On the other hand, the influence of D on species 1 relies
on the sign of α · β. A notable finding is that, in general, the presence of a competitor in patch 2
does not preserve the positive influence of D on species 1 predicted by the metapopulation theory,
(see Fig.2). Another marked result is that we can see, at the same time, a negative (resp. positive)
effect of the diffusion of species 1 on the population abundance of both species. See Fig. 2 (A)-(B).

3.2 The Consumer-Resource case

Here we assume an interaction of consumer-resource type between species 1 and 2. Most phenomena
of this subsection have already emerged in the competitive case. Therefore, we will omit some
similar discussions.

3.2.1 Species 1 is a consumer

Consider 
x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2
+ ay

)
+D(x1 − x2)

y′ = sy
(
1− y

R − bx2

)
.

(3.4)



8

P
op

ul
at

io
n

Sp
ec

ie
s

1

Dispersal Rate

0 0.25 0.5 0.75 1
2

2.5

3

(A)

P
op

ul
at

io
n

Sp
ec

ie
s

2
Dispersal Rate

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

P
op

ul
at

io
n

Sp
ec

ie
s

1

Dispersal Rate

0 0.25 0.5 0.75 1

5.829

5.83

5.831

5.832

(B)

P
op

ul
at

io
n

Sp
ec

ie
s

2

Dispersal Rate

0.25 0.5 0.75 1

0.53

0.54

P
op

ul
at

io
n

Dispersal Rate

Sp
ec

ie
s

1

0.25 0.5 0.75 1

4.3

4.5

4.7

(C)

P
op

ul
at

io
n

Sp
ec

ie
s

2

Dispersal Rate

0.25 0.5 0.75 1

0.3

0.4

P
op

ul
at

io
n

Dispersal Rate

Sp
ec

ie
s

1

0.25 0.5 0.75 1

5.85

5.9

5.95

6

(D)

P
op

ul
at

io
n

Dispersal Rate

Sp
ec

ie
s

2

0.25 0.5 0.75 1

0.72

0.73

0.74

0.75

Figure 2: Representation of TP1(D) and TP2(D) in system (3.1) when aR < 1 and bk2 < 1 (Case
3). (A) We have the positive correlation r1 > r2 and k1 > k2. The parameters employed are:
r1 = 3, r2 = 1, k1 = 2, k2 = 1, s = 1, a = 0.9, b = 0.8, R = 1. We observe that TP1(D) increases
whereas TP2(D) decreases. In fact, the negative effect of dispersal drives to the extinction to
species 2. In (B)-(C)-(D), we analyze the positive correlation r1 < r2 and k1 < k2. (B) α > 0
and β > 0. The parameters employed are: r1 = 2.2, r2 = 3, k1 = 2.7, k2 = 3.5, s = 1, a = 0.2,
b = 0.15, R = 1. The interspecific competition rates are moderately small. The benefit of dispersal
on species 2 is a consequence of the fact that there is a reduction of population of species 1 in patch
2. For species 1, we see the expected unimodal response of the classical metapopulation theory.
(C) α > 0 and β < 0. The parameters employed are: r1 = 2, r2 = 3, k1 = 1.5, k2 = 4, s = 1,
a = 0.5, b = 0.25, R = 1. Roughly speaking, this response appears when there is coexistence of
both species but the population abundance of species 2 in patch 2 is larger than that of species
1. (D) α < 0 and β > 0. The parameters employed are: r1 = 2, r2 = 5, k1 = 3.5, k2 = 4, s = 1,
a = 0.5, b = 0.1, R = 1. This response appears when there is coexistence of both species and there
is not a clear winner in the competition. Notice that the parameters are close to satisfy aR > 1
and bk2 > 1, (the situation that guarantees the saddle point dynamics in (3.1)).
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As above, the influence of D relies on the dynamics of the subsystem{
x′2 = r2x2

(
1− x2

k2
+ ay

)
y′ = sy

(
1− y

R − bx2

)
.

(3.5)

Case 1: Coexistence of both species in patch 2, (bk2 < 1).
As in the competitive case, if there exists a positive r−k relationship of type r1 < r2 and k2 < k1,
the diffusion of the consumer will always have a positive effect on its own density of population and
a negative effect on the population of the resource (see Appendix 2, Proposition 5.3). In fact, the
positive influence that comes from single-metapopulation models is magnified by the presence of a
new resource. Nevertheless, under the other positive r − k relationship, we can have any response
to D. Specifically, we have deduced in Appendix 2, (Case 1, Section 5.2.2), that

TP ′1(0) =
(

1
r2
− 1 + aR

r1

)(
k1

1 + aR
− k2

1 + abRk2

)
and

TP ′2(0) =
bR

r2

(
k2

1 + abRk2
− k1

1 + aR

)
.

From these expressions, we can observe that the signs of

α = k2(1 + aR)− k1(1 + abRk2),

β = r1 − r2(1 + aR)

determine the response of the dispersal rate of the consumer. Specifically, if α ·β < 0 (> 0), D has
a positive (resp. negative) impact on the population abundance of the consumer. On the other
hand, if α > 0 (resp. < 0) D has a beneficial (resp. detrimental) influence for the population size
of the resource.
Case 2: Exclusion of species 2 in patch 2 ( bk2 > 1).
This case (see Appendix 2, Section 5.2.2, Case 2) is similar to that of the competitive case. On the
one hand, D has a positive influence on the overall population size of species 1 under a positive
r − k correlation. On the other hand, a noteworthy result is the impossibility for the resource to
be rescued by the movement of the consumer. As suggested in [1, 33], random dispersal reduces
the strength of predation in patch 2 provided the consumer is mobile, the resource is immobile,
and patch 2 is of higher productivity than patch 1. However, this cannot cause the persistence of
the prey in our model. The rescue mentioned in [1, 33] would appear when the predator can not
survive in patch 2 in the absence of prey.

3.2.2 Species 1 is a mobile resource

System (2.1) now takes the form
x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2
− ay

)
+D(x1 − x2)

y′ = sy
(
1− y

R + bx2

)
.

(3.6)

The influence of D on each species depends on the local dynamics in patch 2, namely{
x′2 = r2x2

(
1− x2

k2
− ay

)
y′ = sy

(
1− y

R + bx2

)
.

(3.7)
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Case 1: Coexistence of both species in patch 2 (aR < 1).
Contrary to the competitive case, under a positive r − k correlation of type r1 > r2 and k1 > k2,
there is a positive influence of D on the total population size of both species, (see Proposition 5.4
in Appendix 2). In contrast, under the other positive correlation, the influence of the dispersal
rate of the resource depends on the thresholds

α = k2(1− aR)− k1(1 + abRk2),

β = r1 − r2(1− aR).

These expressions are derived from

TP ′1(0) =
(

1
r2
− 1− aR

r1

)(
k1

1− aR
− k2

1 + abRk2

)
and

TP ′2(0) =
bR

r2

(
k1

1− aR
− k2

1 + abRk2

)
,

(see Appendix 2, case 1, section 5.2.3).
There is a negative (resp. positive) impact of the movement of the resource on its own popu-

lation abundance if α · β < 0 (> 0). On the other hand, it is beneficial (resp. detrimental) for the
population size of the consumer, if α > 0 (resp. α < 0), (see Appendix 2, section 5.2.3 Case 1).
Case 2: Extinction of species 2 in patch 2 (aR > 1).
In this case, patch 1 is a refuge for the resource. As expected, the movement of the resource
promotes the coexistence of both species in patch 2, also producing an increment of population
abundance of the consumer, (see Appendix 2, section 5.2.3 Case 2). Furthermore, it is deduced in
this appendix that

TP ′1(0) = −k1

(
1
r1
− 1
r2(aR− 1)

)
.

Therefore, the influence of D on the overall population size of the resource depends on the threshold

α = r1 − r2(aR− 1).

Specifically, there is a beneficial (resp. detrimental) effect provided α > 0 (resp. <), (see Appendix
2, section 5.2.3 Case 2).

3.3 Adding a new region in model (2.1)

We know that under a positive r − k correlation, dispersal has a positive influence on the overall
population size in single-species metapopulation models. However, how this biological result is
preserved when two patches are placed into a complex metacommunity is not well understood.
Here, we study this issue in the landscape illustrated in Fig. 3.

x1 x3

x2, y

Figure 3: Pictorial illustration of a landscape studied in Section 3.3.
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The motivation from researching this issue also comes from population management. To reduce
the possible damages mentioned in Sections 3.1 and 3.2, a natural management strategy could be
the linkage, if possible, of an isolated region.

In our metacommunity, species 1 can occupy the three patches. The maximum growth rate
and carrying capacity for species 1 in patch i are ri and ki resp. for i = 1, 2, 3. Within patch 2,
species 1 is subject to the interaction of a sedentary species (as in (2.1)). A simple model for the
situation described takes the form

x′1 = r1x1

(
1− x1

k1

)
+D(x2 + x3 − 2x1)

x′2 = r2x2

(
1− x2

k2
+ λy

)
+D(x1 − x2)

x′3 = r3x3

(
1− x3

k3

)
+D(x1 − x3)

y′ = sy
(
1− y

R + µx2

)
(3.8)

Implicit in (3.8), we assume that an individual has no predilection for choosing a route (if it exists).
Moreover, the introduction of a new route increases the probability of dispersal. Another natural
scenario would be that the probability to stay in patch 1 is independent of the number of routes
leaving patch 1. In such a case, the model would be

x′1 = r1x1

(
1− x1

k1

)
+D(x2 + x3 − x1)

x′2 = r2x2

(
1− x2

k2
+ λy

)
+D(0.5x1 − x2)

x′3 = r3x3

(
1− x3

k3

)
+D(0.5x1 − x3)

y′ = sy
(
1− y

R + µx2

)
(3.9)

As expected, the influence of D in both systems is quite similar. The reader can consult [42, 43]
for a similar model with 12 patches.
In Appendix 3, we prove that

T̃P
′
1(0) = TP ′1(0) + (k3 − k1)

(
1
r1
− 1
r3

)
(3.10)

where TP1(D) is the total population size of species 1 in model (2.1). Since the second term of
(3.10) is always positive under a positive r−k relationship, any possible dispersal damage could be
regulated. Roughly speaking, (3.10) suggests that in the network presented in Fig.3, the dispersal
response in each route has to be analyzed in an independent manner. Then, both quantities are
averaged as indicated by (3.10), (see Fig. 4).
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Figure 4: Behaviour of the total population size in systems (3.8) (left) and (3.9) (right). The
red (thick) line represents the asymptotic value of the total population size of species 1 in the
landscape with the topology illustrated in Fig. 3 (with the red linkage). The blue line represents
the asymptotic value of the total population in the metapopulation with the topology illustrated in
Fig. 3 (without the connection). The parameters are r1 = 1, r2 = 3, r3 = 2, k1 = 1, k2 = 2, k3 = 2,
s = 1, a = 2, λ = −2, µ = 0.4, R = 1. In this case, the addition of a new region compensates the
negative effects of dispersal by the predation in patch 2.

It is well known that the arrangement of source and sink patches in a network has important
dynamical properties in the fate of the whole population, see [34]. We have discussed the topology
illustrated in Fig. 3 for simplicity. However, the arguments exposed in Appendix 3 could be
adapted to the network illustrated in figure 5, namely

x2, y x3

x1

Figure 5: Pictorial illustration of a landscape studied in Section 3.3.

T̃P
′
1(0) = TP ′1(0) + T̂P1

′
(0) (3.11)

where T̂P1(D) is the total population size of species 1 in model (2.1) considering patches 2 and 3.

4 Discussion

Dispersal between subpopulations is widespread in nature and has been recognized as a remarkable
factor in the dynamics and distribution of individuals [1, 10, 19]. The primary effect of diffusion
is associated with rescue events that promote the coexistence of species at local scale. With com-
petition among species, obvious benefits of dispersal are the use of refugia and the exploitation of
new resources for a limited group of competitors [1]. However, dispersal can also play a negative
role. For instance, random movements can drive the individuals to lower quality patches, reducing
their individual fitness [4,15], (see [6] for experimental results in this direction). Understanding the
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multiple implications of the movement of species in a metacommunity is, nowadays, a fundamental
issue in population and community ecology [1, 11, 12, 23]. Nevertheless, despite considerable the-
oretical and empirical advances, many important questions remain unsolved. The present paper
can be seen as a step toward a systematic comprehension of how the dispersal rate affects the
population abundance of the species in simple metacommunities. Our analysis was based on a
two patch model of Lotka-Volterra type that comprises a mobile species and a sedentary species.
The use of Lotka-Volterra models has been debated in a spatial context, see [5, 31, 40]. However,
the simplicity of the formulation allows to suggest simple management guides and to draw new
biological insights that complement recent promising experimental work [9, 42,43].

A noteworthy phenomenon in metapopulations is that population abundance in a fragmented
landscape can exceed the sum of local carrying capacities [4, 15, 30, 42]. For a landscape made
of two sources, this result requires a suitable positive correlation, namely, the carrying capacity
and the maximum growth rate of a source must be larger than those in the other source [4,
42]. One of the main goals of this paper was to investigate when this property is preserved in a
metacommunity. In the competitive case, if there are two different sources with growth rates and
carrying capacities which are positively correlated, the introduction of an immobile competitor into
the lower quality source maintains the positive effect of dispersal on the mobile species. However,
if we introduce the competitor into the source of a higher quality, the response may be beneficial or
detrimental, depending on the precise thresholds given in Section 3.1. Analogously, in a consumer-
resource system, the introduction of a sedentary resource into the source of a high quality preserves
the beneficial dispersal response predicted by the classic metapopulation theory. Nevertheless, a
more subtle response emerges when the limited resource is added to the lower quality region.
Very recently, Zhang et al. [43] suggested that the positive dispersal influence is not preserved
in metacommunities of consumer-resource type. Note that our results are in agreement with [43]
because we have shown situations in which it is and is not preserved.

In a recent review, Amarasekare [1], (see also [33]) described some coexistence mechanisms for
food-webs of two or three species. A mechanism coined as emigration-mediated coexistence consists
of the persistence of an inferior competitor as a result of the mobility of a superior competitor to a
lower quality patch. Specifically, the mobility of the superior competitor reduces the interspecific
competition rate and allows the survival of the inferior competitor when it is immobile. In our
paper, we have not detected this mechanism because both patches are sources and the possible
maladaptive movement is not so severe. The occurrence of emigration-mediated coexistence in
(2.1) would require patch 1 to be a sink.

A marked finding of this study is that increasing the dispersal rate of a competitor can produce,
at the same time, an increment (resp. decrease) of the total population size of both competitors.
Although this result seems somewhat paradoxical, a detailed analysis of the local populations
clarifies it: In a landscape of two different patches, the mobility of a competitor could imply
the exploitation of new resources and reduction of the interspecific competition on a sedentary
competitor. Certainly, these two phenomena together lead to an increment of the population of
both competitors. The discussion of a negative influence on both competitors would be analogous,
simply introducing a maladaptive movement in the mobile competitor. As suggested in Section
3.2, these phenomena also appear in consumer-resource systems. In this case, the introduction
of a limited resource could provoke a negative effect of dispersal on the population abundance of
the consumer. We emphasize that the complete classification of the possible effects of diffusion
in (2.1) is provided. These results have implications on conservation management. Regarding the
rescue effect, increasing dispersal rates is generally associated with an increment of the degree
of synchrony [12]. Classical metapopulation models suggest that this negative effect could be
compensated by an increment of the overall population size, especially in the connection of two
different sources [15]. In metacommunities, this property deserves some caution since the movement
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between sources can have a negative impact on the species depending on the type of species
inhabiting the patches.

Ecological corridors are a popular management strategy designed to reduce the effects of habitat
fragmentation [7, 39]). However, the provision of a corridor could be a double-edged sword [12,
15, 21, 22, 38]: Extinction risks can be reduced though the colonisation of new regions, regulating
the loss of other local populations. On the other hand, corridors can endanger the viability of the
population by synchrony events of by increments of predation forces. Regarding this strategy, our
results emphasize that its success in terms of the increase of the total population size depends on
the intrinsic features of the patches and the type of interaction between the involved species. As
in the context of metapopulations [36], an efficient design of corridors is often one that involves
source-sink systems with the sink close to becoming a source (or viceversa). In our context, a sink
appears when the species can not survive the inter-specific competition of the other species.

One of the main concerns of conservationists is the isolation of subpopulations [3, 13]. The
addition of an isolated region in a landscape is commonly suggested as a mechanism that suppresses
local extinctions [15]. However, its performance in real problems is a matter of debate. An obvious
benefit is the possibility of compensating for the predation or competition damages mentioned in
Section 3. Our results support this compensation mechanism and suggest that managers should
analyze the influence of each route in an independent manner, according to the results of Section
3; and then averaging both thresholds according to (3.10). Certainly, the expected regulation
behaviour mentioned above will appear under a positive r − k correlation between the introduced
region and the region without interspecific competition, (patches 1 and 3 in (3.8)).

In summary, our results have shown a source of rich new phenomena in metacommunities, which
are beyond the possible biological insights of models that neglect spatial variables. We conclude
that dispersal has, in general, neither a detrimental nor beneficial impact on the population abun-
dance of the species in a metacommunity. In fact, the influence of dispersal depends on the identity
of the species and the quality of the patches. The next step will be to analyze the situation where
both species co-exist in any patches. Despite its apparent simplicity, a new mathematical analysis
is required. Presumably, new surprising phenomena could emerge in this biological scenario.
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5 Appendices

5.1 Appendix 1

Consider  x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2

)
+D(x1 − x2).

(5.1)

To evaluate the influence on the population abundance of the dispersal rate, we have to analyze
such a dependence on the steady state. Let us denote TP (D) as the total population size of (5.1)
depending on D. Mathematically, TP (D) = p1(D) + p2(D) with 0 = r1p1(D)

(
1− p1(D)

k1

)
+D(p2(D)− p1(D))

0 = r2p2(D)
(

1− p2(D)
k2

)
+D(p1(D)− p2(D)).

(5.2)
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and (p1(D), p2(D)) a global attractor of (5.1) for any initial condition in {(x1, x2) : x1 > 0, x2 > 0}.
Notice that TP (0) = k1 + k2.

Theorem 5.1. The function TP (D) is derivable in a neighborhood of zero and

TP ′(0) =
(

1
r2
− 1
r1

)
(k1 − k2)

Proof. Consider G = (G1, G2) : R3 −→ R2 defined as

G(x1, x2, D) =
(
r1x1

(
1− x1

k1

)
+D(x2 − x1), r2x2

(
1− x2

k2

)
+D(x1 − x2)

)
.

Observe that G(k1, k2, 0) = (0, 0). Since the matrix

A =

(
∂G1
∂x1

(k1, k2, 0) ∂G1
∂x2

(k1, k2, 0)
∂G2
∂x1

(k1, k2, 0) ∂G2
∂x2

(k1, k2, 0)

)
=
(
−r1 0

0 −r2

)
has

detA 6= 0,

the Implicit Function Theorem (see [6]) guarantees the existence of a smooth map (φ1(D), φ2(D))
defined in I, a neighbourhood of zero, satisfying that

(φ1(0), φ2(0)) = (k1, k2),

G(φ1(D), φ2(D), D) = (0, 0) (5.3)

for all D ∈ I. Differentiating implicitly (5.3) and evaluating at D = 0, we obtain that(
φ′1(0)
φ′2(0)

)
= −A−1

(
k2 − k1

k1 − k2

)
=
( 1

r1
(k2 − k1)

1
r2

(k1 − k2)

)
.

Consequently,

TP ′(0) = φ′1(0) + φ′2(0) =
(

1
r2
− 1
r1

)
(k1 − k2).

5.2 Appendix 2

First, we recall the version of the Implicit Function Theorem (see [6]) that we employ in the results
of Section 3.

Theorem 5.2. Consider F (x1, x2, y,D) = (F1, F2, F3) : R4 −→ R3 a map of class C1. Let
(x∗1, x

∗
2, y
∗, 0) be a point that satisfies F (x∗1, x

∗
2, y
∗, 0) = (0, 0, 0). If det(A) 6= 0 with

A =


∂F1
∂x1

(x∗1, x
∗
2, y
∗, 0) ∂F1

∂x2
(x∗1, x

∗
2, y
∗, 0) ∂F1

∂y (x∗1, x
∗
2, y
∗, 0)

∂F2
∂x1

(x∗1, x
∗
2, y
∗, 0) ∂F2

∂x2
(x∗1, x

∗
2, y
∗, 0) ∂F2

∂y (x∗1, x
∗
2, y
∗, 0)

∂F3
∂x1

(x∗1, x
∗
2, y
∗, 0) ∂F3

∂x2
(x∗1, x

∗
2, y
∗, 0) ∂F3

∂y (x∗1, x
∗
2, y
∗, 0)

 .

then there is a smooth map g(D) = (g1(D), g2(D), g3(D)) defined in an interval of the form (−D̃, D̃)
with D̃ > 0 such that

F (g(D), D) = (0, 0, 0)

for all D ∈ (−D̃, D̃) with g(0) = (x∗1, x
∗
2, y
∗). Moreover,

(g′1(0), g′2(0), g′3(0))t = −A−1.
∂F

∂D
(x∗1, x

∗
2, y
∗, 0)t. (5.4)
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Note that for a system of differential equations of the form x′1 = F1(x1, x2, y,D)
x′2 = F2(x1, x2, y,D)
y′ = F3(x1, x2, y),

(5.5)

the equilibria are the points that satisfy

F (x1, x2, y,D) = (0, 0, 0).

Assume that (x∗1, x
∗
2, y
∗) is an equilibrium of (5.5) for D = 0 that is a global attractor for all initial

conditions in IntR3
+ := {(x1, x2, y) : x1 > 0, x2 > 0, y > 0}. To analyze the effect of diffusion on

the total population size, we are going to study how (g1(D), g2(D), g3(D)) varies with respect to
D. We remark that the total population sizes of species 1 and 2 are given by

TP1(D) = g1(D) + g2(D),

TP2(D) = g3(D).

Therefore, for small dispersal rates, the quantities

TP ′1(0) = g′1(0) + g′2(0), (5.6)

TP ′2(0) = g′3(0), (5.7)

determine if increasing D is beneficial or detrimental for the total population size of the species. In
more mathematical terms, there is a range of dispersal rates that generates an increase of the total
population size of species 1, if TP ′1(0) > 0 and the total population size of species 1 decreases,
if TP ′1(0) < 0. On the other hand, TP ′2(0) indicates whether the dispersal rate of species 1 is
beneficial or harmful for the total biomass of species 2. In the rest of this appendix, we will
compute (5.6) and (5.7) in the systems of Sections 3.1 and 3.2. In these systems,

∂F

∂D
(x∗1, x

∗
2, y
∗, 0) = (x∗2 − x∗1, x∗1 − x∗2, 0).

5.2.1 The competitive case

Consider 
x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2
− ay

)
+D(x1 − x2)

y′ = sy
(
1− y

R − bx2

)
.

(5.8)

Next we discuss the possible dynamical behaviours of (5.8) for D = 0.

Case 1: 1 < aR and bk2 < 1.
The equilibrium (k1, 0, R) is a global attractor in system (5.8) for D = 0. After some tedious but
simple computations,

A−1 =


−1
r1

0 0
0 1

r2(1−aR) ∗
0 bR

r2(aR−1) ∗

 .

In this case,

TP ′1(0) = k1

(
−1
r1

+
1

r2(aR− 1)

)



17

and
TP ′2(0) = k1

bR

r2(1− aR)
.

Notice that TP ′2(0) is always negative.

Case 2: aR < 1 and bk2 > 1.
The equilibrium (k1, k2, 0) is a global attractor in system (5.8) for D = 0. We have that

A−1 =

 −1
r1

0 0
0 −1

r2
∗

0 0 ∗

 .

In this case

TP ′1(0) = (k2 − k1)
(

1
r1
− 1
r2

)
and TP ′2(0) = 0. Note that TP ′1(0) is the same in (5.8) and (5.1).

Proposition 5.1. If TP2(0) = TP ′2(0) = 0 with 1 − bg2(0) 6= 0, then the derivative of any order
at zero is zero, that is

TP
n)
2 (0) = 0

for all n ∈ N.

Proof. By definition, TP2(D) = g3(D) (the coordinate of the equilibrium associated with species
2) satisfies that

0 = sTP2(D)
(

1− TP2(D)
R

− bg2(D)
)
.

Differentiating implicitly this expression, we have that

0 = sTP ′2(D)
(

1− TP2(D)
R

− bg2(D)
)

+ sTP2(D)
(
−TP

′
2(D)
R

− bg′2(D)
)
.

Now, if we differentiate this expression and evaluate at D = 0, we obtain

0 = sTP ′′2 (0)
(

1− TP2(0)
R

− bg2(0)
)

+ sTP ′2(0)(?) + sTP2(0)(?).

(? denotes a suitable mathematical expressions that does not affect in the discussion). Since
1 − bg2(0) 6= 0, we deduce that TP ′′2 (0) = 0. We conclude the proof by arguing in an inductive
way.

Remark 5.1. Since TP2(D) is a real analytic function, the previous proposition implies that
TP2(D) = 0 for all D ∈ [0, 1].

Case 3: aR < 1 and bk2 < 1.
The equilibrium (

k1,
−k2 + aRk2

−1 + abRk2
,
R(−1 + bk2)
−1 + abRk2

)
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is a global attractor in (5.8) for D = 0. We have that

A−1 =


−1
r1

0 0
0 1

r2(aR−1) ∗
0 bR

r2(1−aR) ∗

 .

In this case, we obtain

TP ′1(0) =
(

1
r2
− 1− aR

r1

)(
k1

1− aR
− k2

1− abRk2

)
and

TP ′2(0) =
bR

r2

(
k2

1− abRk2
− k1

1− aR

)
.

Proposition 5.2. Assume that 0 < aR < 1 and 0 < bk2 < 1. If r2 < r1 and k2 < k1 then
TP ′1(0) > 0 and TP ′2(0) < 0.

Proof. Using that aR < 1,then 0 < 1− aR < 1. On the other hand, r2 < r1 implies that

1
r1
<

1
r2
.

Collecting these two facts, we deduce that

1− aR
r1

<
1
r2

or equivalently
1
r2
− 1− aR

r1
> 0. (5.9)

Next, since 0 < bk2 < 1, we have that
abRk2 < aR.

This leads to 0 < 1− aR < 1− abRk2 < 1. Now, using that k2 < k1, we can deduce that

k2

1− abRk2
<

k1

1− aR
. (5.10)

Finally, (5.9) and (5.10) imply that

TP ′1(0) > 0 and TP ′2(0) < 0.

Case 4: 1 < aR and bk2 > 1.
In this case, system (5.8) exhibits bi-stability for D = 0. Specifically, there is a coexistence of two
stable attractors, namely (k1, 0, R) and (k1, k2, 0).
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5.2.2 Species 1 is a predator and Species 2 is a prey

Consider 
x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2
+ ay

)
+D(x1 − x2)

y′ = sy
(
1− y

R − bx2

)
.

(5.11)

Next we discuss the possible dynamical behaviours of (5.11) for D = 0.

Case 1: bk2 < 1.
The equilibrium (

k1,
k2(1 + aR)
1 + abRk2

,
−R(−1 + bk2)

1 + abRk2

)
is a global attractor in system (5.11) for D = 0. We find

A−1 =


−1
r1

0 0
0 −1

r2(1+aR) ∗
0 bR

r2(1+aR) ∗

 .

In this case,

TP ′1(0) =
(

1
r2
− (1 + aR)

r1

)(
− k2

1 + abRk2
+

k1

1 + aR

)
and

TP ′2(0) =
bR

r2

(
k2

1 + abRk2
− k1

1 + aR

)
.

Proposition 5.3. Suppose that bk2 < 1. If r1 < r2 and k1 < k2 then TP ′1(0) > 0 and TP ′2(0) < 0.

Proof. Using bk2 < 1, then abk2R < aR. Hence,

1
1 + abRk2

>
1

1 + aR
.

Since k2 > k1, we conclude that
k2

1 + abRk2
>

k1

1 + aR
. (5.12)

This inequality implies that TP ′2(0) < 0 because bR
r2
> 0. On the other hand, 1 < 1 + aR and

1
r2
<

1
r1

hold. Therefore,
1
r2
<

1 + aR

r1
. (5.13)

By using (5.12) and (5.13), we conclude that TP ′1(0) > 0.

Case 2: bk2 > 1.
The equilibrium (k1, k2, 0) is a global attractor in (5.8) for D = 0. Now,

A−1 =

 −1
r1

0 0
0 −1

r2
∗

0 0 ∗

 .
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In this case,

TP ′1(0) = (k2 − k1)
(

1
r1
− 1
r2

)
and

TP
n)
2 (0) = 0

for any order n. As in the competitive case, this implies that the branch TP2(D) is identically
zero, see Proposition 5.1.

5.2.3 Species 1 is a Prey and Species 2 is a Predator

Consider 
x′1 = r1x1

(
1− x1

k1

)
+D(x2 − x1)

x′2 = r2x2

(
1− x2

k2
− ay

)
+D(x1 − x2)

y′ = sy
(
1− y

R + by
)
.

(5.14)

Next we discuss the possible dynamical behaviours of (5.14) for D = 0.
Case 1: aR < 1.
The equilibrium (

k1,
k2(1− aR)
1 + abRk2

,
R(1 + bk2)
1 + abRk2

)
is a global attractor in (5.14) for D = 0. We have that

A−1 =


−1
r1

0 0
0 −1

r2(1−aR) ∗
0 bR

(−1+aR)r2
∗


In this case,

TP ′1(0) =
(

1
r2
− 1− aR

r1

)(
k1

1− aR
− k2

1 + abRk2

)
and

TP ′2(0) =
bR

r2

(
k1

1− aR
− k2

1 + abRk2

)
.

Proposition 5.4. Assume that aR < 1. If r2 < r1 and k2 < k1 then TP ′1(0) > 0 and TP ′2(0) > 0.

Proof. It is clear that
1− aR < 1 + abRk2.

Using that k2 < k1, we have that
k1

1− aR
>

k2

1 + abRk2
. (5.15)

This inequality implies that TP ′2(0) > 0. On the other hand, using r2 < r1, we get

1
r2
>

1− aR
r1

.

Collecting all the information, it is concludes that TP ′1(0) > 0.
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Case 2: aR > 1.
The equilibrium (k1, 0, R) is a global attractor in (5.14) for D = 0. We have that

A−1 =


−1
r1

0 0
0 1

r2(1−aR) ∗
0 bR

r2(1−aR) ∗

 .

In this case,

TP ′1(0) = −k1

(
1
r1
− 1
r2(aR− 1)

)
and

TP ′2(0) = k1
bR

r2(−1 + aR)
.

Observe that TP ′2(0) is always positive.

5.3 Appendix 3

We consider a metacommunity model of the general form y′ = H1(y, x1, x2, D)
x′1 = H2(y, x1, x2, D)
x′2 = H3(y, x1, x2, D),

(5.16)

such as those considered in Sections 3.1 and 3.2. For instance, in the competitive case,
H1(y, x1, x2, D) = sy

(
1− y

R − bx2

)
H2(y, x1, x2, D) = r1x1

(
1− x1

k1

)
+D(x2 − x1)

H3(y, x1, x2, D) = r2x2

(
1− x2

k2
− ay

)
+D(x1 − x2).

(5.17)

We have written the equation associated with y at the beginning for convenience of the presentation.
After adding a new patch to (5.16), (as system (3.8)), we have a system of the form

y′ = H1(y, x1, x2, D)
x′1 = H2(y, x1, x2, D) +D(x3 − x1)
x′2 = H3(y, x1, x2, D)
x′3 = r3x3

(
1− x3

k3

)
+D(x1 − x3).

(5.18)

Note that if (y∗, x∗1, x
∗
2) is a global attractor of system (5.16) for D = 0, then (y∗, x∗1, x

∗
2, k3) is a

global attractor of system (5.18) for D = 0 as well.
Denote by

P (y, x1, x2, x3, D) = (P1(y, x1, x2, x3, D), P2(y, x1, x2, x3, D), P3(y, x1, x2, x3, D), P4(y, x1, x2, x3, D))

with
P1(y, x1, x2, x3, D) = H1(y, x1, x2, D),

P2(y, x1, x2, x3, D) = H1(y, x1, x2, D) +D(x3 − x1),

P3(y, x1, x2, x3, D) = H3(y, x1, x2, D)

P4(y, x1, x2, x3, D) = r3x3

(
1− x3

k3

)
+D(x1 − x3).
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Note that

B =


∂P1
∂y (y∗, x∗1, x

∗
2, k3, 0) ∂P1

∂x1
(y∗, x∗1, x

∗
2, k3, 0) ∂P1

∂x3
(y∗, x∗1, x

∗
2, k3, 0) ∂P1

∂x3
(y∗, x∗1, x

∗
2, k3, 0)

∂P2
∂y (y∗, x∗1, x

∗
2, k3, 0) ∂P2

∂x1
(y∗, x∗1, x

∗
2, k3, 0) ∂P2

∂x3
(y∗, x∗1, x

∗
2, k3, 0) ∂P2

∂x3
(y∗, x∗1, x

∗
2, k3, 0)

∂P3
∂y (y∗, x∗1, x

∗
2, k3, 0) ∂P3

∂x1
(y∗, x∗1, x

∗
2, k3, 0) ∂P3

∂x3
(y∗, x∗1, x

∗
2, k3, 0) ∂P3

∂x3
(y∗, x∗1, x

∗
2, k3, 0)

0 0 0 −r3

 =

=
(
A 0
0 −r3

)
with

A =


∂H1
∂y (y∗, x∗1, x

∗
2, 0) ∂H1

∂x1
((y∗, x∗1, x

∗
2, 0)) ∂H1

∂x2
(y∗, x∗1, x

∗
2, 0)

∂H2
∂y (y∗, x∗1, x

∗
2, 0) ∂H2

∂x1
((y∗, x∗1, x

∗
2, 0)) ∂H2

∂x2
(y∗, x∗1, x

∗
2, 0)

∂H3
∂y (y∗, x∗1, x

∗
2, 0) ∂H3

∂x1
((y∗, x∗1, x

∗
2, 0)) ∂H3

∂x2
(y∗, x∗1, x

∗
2, 0)

 .

Observe that A is of the form  ∗ 0 ∗
0 −r1 0
∗ 0 ∗

 .

On the other hand,

∂P

∂D
(y∗, x∗1, x

∗
2, k3, 0) = (0,

∂H2

∂D
(y∗, x∗1, x

∗
2, 0) + (k3 − x∗1),

∂H3

∂D
(y∗, x∗1, x

∗
2, 0), x∗1 − k3).

Collecting these computations, we can formulate:

Theorem 5.3. Let (y∗, x∗1, x
∗
2, 0) be a point that satisfies H(y∗, x∗1, x

∗
2, 0) = (0, 0, 0). If det(A) 6= 0

with

A =


∂H1
∂y (y∗, x∗1, x

∗
2, 0) ∂H1

∂x1
(y∗, x∗1, x

∗
2, 0) ∂H1

∂x2
(y∗, x∗1, x

∗
2, 0)

∂H2
∂y (y∗, x∗1, x

∗
2, 0) ∂H2

∂x1
(y∗, x∗1, x

∗
2, 0) ∂H2

∂x2
(y∗, x∗1, x

∗
2, 0)

∂H3
∂y (y∗, x∗1, x

∗
2, 0) ∂H3

∂x1
(y∗, x∗1, x

∗
2, 0) ∂H3

∂x2
(y∗, x∗1, x

∗
2, 0)

 .

then there is a smooth map h(D) = (h1(D), h2(D), h3(D), h4(D)) defined in an interval of the form
(−D̃, D̃) with D̃ > 0 such that

P (h(D), D) = (0, 0, 0, 0)

for all D ∈ (−D̃, D̃) with h(0) = (y∗, x∗1, x
∗
2, k3). Moreover,

(h′1(0), h′2(0), h′3(0), h′4(0))t = −
(
A 0
0 −r3

)−1
∂P

∂D
(y∗, x∗1, x

∗
2, k3, 0)t. (5.19)

According to (5.19),
T̃P
′
1(0) = h′2(0) + h′3(0) + h′4(0) (5.20)

determines if D is beneficial or harmful for the total biomass of species 1. Specifically, if T̃P
′
1(0) > 0

(resp. T̃P
′
1(0) < 0) there is a range of dispersal rates that generates an increase (resp. decrease)

in the total population size of species 1. Note that

T̃P
′
1(0) = TP ′1(0) + (k3 − k1)

(
1
r1
− 1
r3

)
. (5.21)

where TP ′1(0) is defined in Appendix 2.
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