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Abstract

We study the existence and stability of periodic solutions of a canonical
mass-spring model of electrostatically actuated micro-electro-mechanical
system (MEMS) by means of classical topological techniques like a-priori
bounds, Leray-Schauder degree and topological index. A saddle-node bi-
furcation is revealed, in analogy with the autonomous case.

1 Introduction.
The purpose of this paper is to study analytically the existence and stability of
periodic solutions of an idealized mass-spring model of electrostatically actuated
micro-electro-mechanical system (MEMS) which has become canonical in the
related literature. The system is illustrated in Figure 1.1 and consists on two
parallel capacitor plates separated by a distance d, one of them is fixed and the
second one is movable and attached to a linear spring with stiffness coefficient
k > 0. When time-periodic voltage V (t) is applied, the Coulomb force between
the plates makes the system highly nonlinear. Oscillations are ruled by the
second order differential equation

my′′ + cy′ + ky =
ε0A

2
V 2(t)

(d− y)2
, (1.1)
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Figure 1.1: Idealized mass-spring model of electrostatically actuated MEMS.

where y is the vertical displacement of the moving plate (y is always assumed
to be less than d), m is its mass, c is a viscous damping coefficient, ε0 is the
absolute dielectric constant of vacuum and A is the area of the plates.

This model has been studied for more than 40 years after its introduction by
Nathanson et al [15] in 1967. In consequence, a comprehensive bibliography
is beyond the scope of this work. We refer for instance to [1, 2, 3, 8, 14]
and the references therein. In spite of the large number of related papers,
the mathematical understanding of this system is still far from being complete.

An interesting recent work is [1], where the authors analyze in detail the so-
called viscosity dominated regime, that is the case when the damping coefficient
is very high and damping effects dominate over inertial effects. This leads to
a reduced first-order equation, revealing a saddle-node bifurcation. When the
applied voltage is constant (autonomous case), such saddle-node bifurcation is
easily proved by an elementary local stability analysis of equilibria. Calling the
constant voltage V (t) ≡ V0, constant solutions (equilibria) of (1.1) correspond
to the roots of the third-order polynomial y(d− y)2 − h, where for convenience

we have called h =
ε0AV

2
0

2k
> 0. This equation has always a root bigger than

d and hence without physical meaning. A direct analysis provides a threshold
value

d0 =
3
2

(2h)1/3, (1.2)

such that if d < d0 equation (1.1) has no equilibria and if d > d0 a saddle and
a node come into play, see 1.2.

The main purpose of the present paper is to prove the existence of such
saddle-node bifurcation in the full non-autonomous second order model for con-
crete regions of the involved parameters. To this purpose, let us remark that
(1.1) is an example of ODE with singularity at the state variable and periodic
dependence on time. A similar equation was introduced by Lazer and Solimini
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Figure 1.2: Illustration of the saddle-node bifurcation in the case where the
voltage is constant.

in the seminal paper [10]. This work has become a hallmark in the area, and
since its publication a wide variety of topological and variational methods have
been systematically employed in the study of the existence of periodic solutions
for this kind of equations (see for instance the reviews [5, 19] and the references
therein). Concerning the stability of solutions, the number of papers is conside-
rably lower [4, 12, 20, 21, 22]. It is interesting to note that, despite of the large
amount of work devoted to MEMS, up to our knowledge this is the first work
where this connection with a well-developed line of research like equations with
singularities is reported.

The paper is structured into five section. After this Introduction, in Section
2 the main equation is written in an equivalent form by translating the singulari-
ty to the origin and the main results are stated. In Section 3, we present some a
priori bounds for the solutions. Section 4 contains the proofs of the main results
exposed in Section 2. The proof of the multiplicity result is adapted from [9]
and relies on classical arguments from topological degree. The stability infor-
mation is obtained from a well-known connection between stability and index of
a periodic solution, developed by Ortega in [16, 17, 18]. Finally, in Section 5 the
main results are applied to the original MEMS model (1.1) and an illustrative
example is given by using concrete values of the physical constants taken from
the literature. Our result is optimal in the sense that in the autonomous case
we recover the exact bifurcation value given by (1.2).

In the rest of the paper, we consider the Banach space XT = C1(R/TZ)
endowed with the usual C1-norm. V (t) is a positive, continuous and 2π

w -periodic
function. The period is denoted by T = 2π

w . For any positive and continuous
2π
w -periodic function p(t), we denote pM = max

t
p(t), pm = min

t
p(t). If f and g

are real functions defined over [0, T ], we shall write f � g if f(t) ≤ g(t) for
all t ∈ [0, T ] and the strict inequality holds on a subset of positive Lebesgue
measure. We write ‖ · ‖p for the usual norm in Lp(0, T ).
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2 An equivalent singular equation.
First, let us observe that the parameter m can be scaled out just dividing (1.1)
by m and renaming c, k, A. Equivalently, we can consider m = 1 without loss
of generality. With the change of variable u = d− y, (1.1) is rewritten as

u′′ + c u′ + ku+
a2(t)
u2

= s, (2.1)

where k, c, s, are positive constants and a(t) is a positive continuous T -periodic
function. We are interested in the existence and stability of positive T -periodic

solutions of (2.1). Let us fix s∗ := 3
(
k

2
am

)
2/3, s∗ := 3

(
k

2
aM

)
2/3. The first

main result is as follows.

Theorem 1 (Multiplicity). There exists s0 ∈ [s∗, s∗], such that

1. If s < s0 , problem (2.1) has no T -periodic solutions.

2. If s = s0, problem (2.1) has at least one T -periodic solution.

3. If s > s0, problem (2.1) has at least two T -periodic solutions.

In the related mathematical literature, this kind of result is often known
as of Ambrosetti-Prodi type. A similar result is proven in [9] for the regular
equation u′′ + cu′ + g(t, u) = s satisfying the coercive condition

lim
|u|→∞

g(t, u) = +∞, uniformly in t.

The presence of the singularity in (2.1) prevents from a direct application of
this theorem.

The second main result concerns the stability of the solutions provided by
Theorem 1.

Theorem 2 (Stability). Under the conditions of Theorem 1, assume that

k − 2 (am)2
( c

Ts

)3
(
am
aM

)6

<
( π
T

)2

+
c2

4
. (2.2)

Then

1. If s = s0, problem (2.1) has a unique T -periodic solution which is not
asymptotically stable.

2. If s > s0, problem (2.1) has exactly two T -periodic solutions, one uni-
formly asymptotically stable and another unstable.

Both results together depict a canonical saddle-node bifurcation at the thresh-
old valued s0.
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3 A priori bounds.
This section is devoted to obtain explicit bounds on the eventual T -periodic

solutions of (2.1). Fix g(t, u) := ku+
a2(t)
u2

. Let us define the following constants

ε(s) :=
am√
s
, (3.1)

M1(s) := T
s

c

(
aM
am

)2

, (3.2)

M2(s) := Ts

(
aM
am

)2
(

2 +
k

c
+
(
am
aM

)2
)
. (3.3)

Lemma 3. If u is a T -periodic solution of (2.1) then u > ε(s).

Proof. Let t1 ∈]0, T [ be such that u(t1) = min
t∈R

u(t). Then u′′(t1) ≥ 0, u′(t1) = 0

and

u′′(t1) + g(t, u) = s.

Consequently,
(am)2

u2(t1)
< s. Then

u(t1) >
am√
s

= ε(s).

Next result provides an upper bound for eventual T -periodic solutions of
(2.1) in terms of the parameter s.

Lemma 4. If u is a T−periodic solution of (2.1) then u < M1(s).

Proof. Assume that u is a T−periodic solution of (2.1). Multiplying by u′ and
integrating over a period, we see that

c‖u′‖22 = −
ˆ T

0

a2(t)
u2

u′ dt <
√
T

(aM )2

ε(s)2
‖u′‖2.

Thus

‖u′‖2 <
√
T
s

c

(
aM
am

)2

. (3.4)

Then

u(t) ≤ |u(t)| ≤
∣∣∣∣ˆ t

t0

u′(s)ds
∣∣∣∣ ≤ √T‖u′‖2 < T

s

c

(
aM
am

)2

= M1(s).
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Finally, we establish bounds on the derivative of the possible T -periodic
solutions of (2.1).

Lemma 5. If u is a T−periodic solution of (2.1) then ‖u′‖∞ < M2(s).

Proof. First note that a direct integration of (2.1) over a whole period implies
that that if there exists a T−periodic solution, then s > 0. From (2.1) we obtain

|u′′| =
∣∣∣∣−cu′ − a2(s)

u2(s)
− ku+ s

∣∣∣∣
≤ c|u′|+

∣∣∣∣a2(s)
u2(s)

∣∣∣∣+ k|u|+ s.

Integrating over the period and using Lemma 4, Cauchy-Schwarz inequality and
(3.4),

‖u′′‖1 < c
√
T‖u′‖2 + T

(aM )2

ε(s)2
+ kM1(s) + Ts

< Ts

(
aM
am

)2
(

2 +
k

c
+
(
am
aM

)2
)

= M2(s).

Therefore

|u′(t)| ≤
∣∣∣∣ˆ t

t0

u′′(s)ds
∣∣∣∣ ≤ ‖u′′‖1 < M2(s).

4 Proofs of main results.
On the whole section, we denote

gL(u) := ku+
(am)2

u2
, gU (u) := ku+

(aM )2

u2

and

Sj = {s ∈ R : (2.1) has at least j T -periodic solutions}, j ≥ 1.

In the next results, s∗, s∗ were defined on Section 2.

4.1 Multiplicity result.
The proof of Theorem 1 will be divided in a series of lemmas. In this subsection,
the notion of upper and lower solutions will be used [6]. Functions α, β ∈
C2(R/TZ) are called lower and upper solutions respectively for equation u′′ +
cu′ + g(t, u) = s if, for all t ∈ R,

α′′ + c α′ + g(t, α) ≥ s,
β′′ + c β′ + g(t, β) ≤ s.
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A lower (resp. upper) solution is said to be strict if the above inequality is strict
for all t ∈ R.

Lemma 6. If s ∈ S1 then s ≥ s∗.

Proof. If u is a T -periodic solution of (2.1) for s, it follows that

ˆ T

0

g(t, u(t))dt = Ts.

Note that the function gL(u) reaches the global minimum at the point u1 =(
2 (am)2

k

)1/3

and such minimum is just s∗. Hence

s∗ ≤
1
T

ˆ T

0

gL(u(t))dt ≤ 1
T

ˆ T

0

g(t, u(t))dt = s.

Lemma 7. S1 6= ∅.

Proof. We show that equation (2.1) has at least one T -periodic solution for
s > s∗. By a known result (see [6, Theorem I-6.9]), it suffices to get strict lower
and upper solutions α and β such that α(t) < β(t) for any t ∈ R. First, one
sees that for a given s, α0(t) = ε(s) is a (constant) lower solution for (2.1), in
effect,

α′′0 + cα′0 + g(t, α0) ≥ gL(α0) = k
am√
s

+ s > s.

On the other hand, it is easily checked that at the point β0 =

(
2 (aM )2

k

)1/3

=

2
3k
s∗ the function gU (u) reaches its minimum value s∗. Then

β′′0 + cβ′0 + g(t, β0) ≤ gU (β0) = s∗ < s.

and β0 is a (constant) upper solution of (2.1) for s. Note that

α0 < ε(s∗) =
2(s∗)3/2

33/2k

1√
s∗
,

and it is easy to verify that ε(s∗) < β0. Hence, α0 < β0.

Lemma 8. S1 = [s0,+∞) with s0 ≥ s∗.

Proof. By Lemma 7 we have S1 6= ∅. First, we show that if ŝ ∈ S1, then s ∈ S1,
for every s > ŝ. Let uŝ a T -periodic solution of (2.1) for s = ŝ. Hence uŝ is a
upper solution of (2.1) for s > ŝ, since
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u′′ŝ + cu′ŝ + g(t, uŝ) = ŝ < s.

In the other hand, ε(s) (defined in (3.1)) is a lower solution (2.1) for s > ŝ, more-
over by Lemma 3, ε(s) < ε(ŝ) < uŝ, so the couple (ε(s), uŝ) of lower and upper
solutions are well-ordered and hence there is at least one T -periodic solution in
between. Hence s ∈ S1, for s > ŝ.

Taking s0 = inf S1, by Lemma 6 we have s0 ≥ s∗, and we show that s0 ∈ S1.
Take a sequence {sn} in S1 such that sn → s0 as n → +∞. We know already
that equation (2.1) has, for each sn, a solution un. Using Lemmas 3, 4 and 5, it
then follows that the sequence {un} is uniformly bounded and equicontinuous.
By Arzela-Ascoli theorem {un} contains a subsequence uniformly converging
and the limit of that subsequence is a solution of (2.1) for s = s0. Hence the
proof is complete.

Lemma 9. s0 ≤ s∗.

Proof. This follows directly from the argument employed in the proof of Lemma
7. This proof gives that s ∈ S1 for every s > s∗. Since by definition s0 = inf S1,
the conclusion is evident.

At this point it is pertinent to introduce some elementary notions of Leray-
Schauder degree (see [11, 13] for a comprehensive treatment of this topic). The
first step is to write our equations as an abstrat fixed point problem. Given
p(t) ∈ XT , consider the linear problem

u′′ + cu′ − u = p(t) x ∈ XT .

It follows from Fredholm alternative that it has a unique solution x = Lp. The
linear operator L : XT → XT can be explicitly expressed by means of the Green’s
function as an integral operator and it is easy to verify that it is compact with
the usual norm of XT . The periodic problem for (2.1) is equivalent to

u = L(Nsu− u),

where the Nemitskii operator Ns : XT → XT is given by

Ns[u] := s− g(t, u).

By defining Φs := L(Ns − I) , finding T -periodic solutions of equation (2.1) is
equivalent to finding solutions of the abstract equation

u− Φs(u) = 0. (4.1)

Since Φs is a compact operator, the Leray-Schauder degree degLS(I −Φs,Ω) is
well-defined whenever Φs has no fixed points in the boundary of Ω.

Before presenting the next result, define the set

Ωs = {u ∈ XT : ε(s) < u(t) < M1(s), t ∈ R, ‖u′‖∞ < M2(s)},

where s > 0 and ε,M1,M2 are defined in (3.1), (3.2) and (3.3) respectively.

8



Lemma 10. Let s0 < s1 < s2. Then Ωs ⊂ Ωs2 for any s ∈ [s1, s2], and any
possible solution u of (2.1) with s ∈ [s1, s2] belongs to Ωs2 .

Proof. Note that function ε(s) is decreasing, the functions M1(s),M2(s) are
increasing for all s ∈ [s1, s2]. Then Ωs ⊂ Ωs2 for all s ∈ [s1, s2]. By Lemma 3,
4 and 5, any possible solution u of (2.1) with s ∈ [s1, s2] belongs to Ωs2 .

Lemma 11. ]s0,+∞[⊂ S2.

Proof. Fix s1 > s0. The set Ωs1 is open, convex and bounded in XT . By
Lemma 10 any possible solution u of (2.1) with s ∈]s0, s1] belongs to Ωs1 and
by Lemmas 3, 4 and 5 the equation (4.1) has no solutions belonging to the
boundary of Ωs1 . Then degLS(I − Φs,Ωs1) is well defined and independent of
s ∈]s0, s1] by the homotopy property of the degree. On the other hand, the
equation (4.1) has no solution for s < s0 (see Lemma 8), then

degLS [I − Φs,Ωs1 ] = 0. (4.2)

Then the invariance of degree with respect to a homotopy that (4.2) holds for
s ∈]s0, s1].

Given s ∈]s0, s1], let u0 be a T -periodic solution of (2.1) known to exist for
s = s0. Note that ε(s1) < ε(s) < ε(s0) < u0 for all s ∈]s0, s1[. The degree will
now be computed with respect to a different set, namely

Ω := {u ∈ XT : ε(s1) < u < u0, t ∈ R, ‖u′‖∞ < M2(s1)}.

Now, for all s ∈]s0, s1], ε(s1) is a strict lower solution for (2.1),

ε(s1)′′ + cε(s1)′ + g(t, ε(s1)) ≥ gL(ε(s1)) = k
am√
s1

+ s1 > s,

whereas, u0 is a strict upper solution, in effect,

u′′0 + cu′0 + g(t, u0) = s0 < s.

Therefore, by [18, Theorem 5], if follows that for all s ∈]s0, s1]

degLS(I − Φs,Ω) = 1. (4.3)

Using (4.2), it the follows from the additivity property of the degree that, for
s ∈]s0, s1],

degLS(I − Φs,Ωs1 \ Ω) = −1. (4.4)

The relations (4.3), (4.4) imply that equation (2.1) has at least one solution in Ω
and a second one in Ωs1 \Ω. Since s1 is arbitrary in ]s0,∞[ then ]s0,∞[⊂ S2.

Proof of Theorem 1. The conclusion of Theorem 1 follows from Lemmas 8, 9
and 11.
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4.2 Stability result.
Given ζ = (ζ1, ζ2) ∈ R+×R, let u(t; ζ) be the unique solution of (2.1) satisfying
the initial conditions

u(0) = ζ1, u′(0) = ζ2.

The Poincaré map is defined as the mapping

PT : DT ⊂ R2 → R2 PT (ζ) = (u(T ; ζ), u′(T ; ζ)),

where DT = {ζ ∈ R+ × R : u(t, ζ) is defined in [0, T ]}. Let u be a T -periodic
solution of (2.1) and ζ0 = (u(0), u′(0)). The solution u is said to be isolated
(period T ) if ζ0 is an isolated fixed point of PT . In such case the topological
index of u is defined in terms of the following formula

γT (u) := deg(I − PT , B),

where deg is the Brouwer degree and B is a small ball centered at ζ0 that does
not contain others fixed points of PT . Alternatively, the topological index of u
can be written in terms of the Leray-Schauder degree as follows

γT (u) = −degLS(I − Φs, B),

where B is a small ball centered at u. A basic property is that |γT (u)| ≤ 1. See
[18, 16, 17] for this and other properties.

The following definition will be needed.

Definition 1. A T -periodic solution u0 of (2.1) is called nondegenerate if the
linearized equation

y′′ + cy′ + α(t)y = 0,

with α(t) =
∂g

∂u
(t, u0(t)) does not have non-trivial T -periodic solutions. On the

contrary, it is called degenerate.

An isolated T -periodic solution is nondegenerate if and only if its topological
index is not zero (see again [18]).

The aim of this subsection is to characterize the stability of a T -periodic
solution u to (2.1). The main tool is the following result.

Theorem 12. [16, Theorem 1.1]Assume that u is an isolated T -periodic solu-
tion of (2.1) such that the condition

∂g

∂u
(t, u(t)) ≤ π2

T 2
+
c2

4
,

holds for all t ∈ R. Then u is asymptotically stable (resp. unstable) if and only
if γT (u) = 1(resp. γT (u) = −1).

The next comparison lemma will be useful as well.
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Lemma 13. [13, Lemma 7.2] Consider the differential operator Lα by

Lα[u] := u′′ + cu′ + α(·)u,

acting on T -periodic functions, where α ∈ L1(R�T Z) satisfies condition

α� π2

T 2
+
c2

4
. (4.5)

Then the following conclusions are true.

1. For each real number µ, any possible T -periodic solution u of the equation
Lα[u] = µ is either trivial or different from zero for every t ∈]0, T [.

2. Let α1 and α2 be functions in L1(R�TZ) satisfying (4.5) and such that
α1 � α2. Then the equations

Lαi [u] = 0, i = 1, 2,

cannot admit nontrivial T−periodic solutions simultaneously.

We also need the following preliminary result about the order of T -periodic
solutions of (2.1).

Lemma 14. Assume that the inequality (2.2) is satisfied and u1, u2 are T -
periodic solutions of (2.1) for s = s1, s = s2 respectively with u1(t) 6= u2(t) for
some t. Then either u1 > u2 or u2 < u1 on [0, T ].

Proof. Let s = max{s1, s2}. Note that g is strictly convex in [ε(s),M1(s)] and

s holds (2.2). As a consequence, it is easy to verify that
∂g

∂x
(t, x) � π2

T 2
+
c2

4
for all x ∈ [ε(s),M1(s)]. The difference v = u1 − u2 satisfies an equation of the
form

Lα[v] = s1 − s2,

where α = g(t,u1(t))−g(t,u2(t))
u1(t)−u2(t)

is a T -periodic function such that α(t) ≤ ∂g

∂x
(t,M1(s)).

The conclusion follows from the first part of Lemma 13.

Proof of Theorem 2 . First, let us show that (2.1) has exactly two periodic so-
lution for s > s0. By Theorem 1, if s > s0 then problem (2.1) has most two
T -periodic solutions. Let u1, u2, u3 be solutions of (2.1) for s = s1 > s0. Then
by Lemma 14, they can be ordered, say u1 < u2 < u3. Setting v1 = u2 − u1,
v2 = u3 − u2, we see that vi satisfies the equation Lαi

[vi] = 0 with αi =
g(t, ui+1)− g(t, ui)

vi
, i = 1, 2. The strict convexity of g implies that α1 < α2

on [0, T ]. Using the second part of Lemma 13, we obtain that either v1 or v2
must be zero. In conclusion, (2.1) has exactly two T -periodic solutions for any
s > s0.

11



Let u0 be a T -periodic solution of (2.1) for s = s0 We are going to prove
that it is unique. It follows from the continuity of the index that γT (u0) = 0,
because, on the contrary, equation (2.1) would have a T -periodic solution for
all s ∈]s − ε, s0[ for some ε > 0. Therefore u0 is degenerate. Note now that if
u1 is another T -periodic solution of (2.1) for some s1 ≥ s0, then, by Lemma 14,
either

u1 < u0 and hence
∂g

∂u
(t, u1) <

∂g

∂u
(t, u0) on [0, T ],

or

u1 > u0 and hence
∂g

∂u
(t, u1) >

∂g

∂u
(t, u0) on [0, T ].

By the second part of Lemma 13, we conclude that u1 is nondegenerate, and
hence s1 > s0. So we have proved that, for s = s0 equation (2.1) has a unique
T -periodic solution u0 which satisfies γT (u0) = 0, and hence it can not be
asymptotically stable by Theorem 12.
A consequence of the above reasoning and Lemma 11 is the existence, for s1 >
s0, of exactly two nondegenerate T -periodic solutions u1 < u∗1 of (2.1). From
Lemma 11,

degLS [I − Φs1 ,Ωs1 ] = degLS [I − Φs0 ,Ωs1 ] = −γT (u0) = 0,

so that necessarily
γT (u∗1) = −γT (u1) = 1.

The conclusion follows from a direct application of Theorem 12.

5 Application to the original MEMS model.
The initial motivation for our study has been the analysis of the mass-spring
model of electrostatically actuated MEMS presented in the Introduction. In this
section the main results are applied to this model. As we noted before, the mass
parameter m can be scaled out just dividing (1.1) by m and renaming c, k, A.
V (t) is a continuous, positive, T -periodic function. We will write T = 2π

w , where
w is the frequency.

Theorem 15 (Multiplicity). There exists d0 > 0 such that

1. If d < d0 , (1.1) has no T -periodic solutions.

2. If d = d0, (1.1) has at least one T -periodic solution.

3. If d > d0, (1.1) has at least two T -periodic solutions.

Besides, d0 admits the following quantitative estimate

3
2

(
ε0AV

2
m

k

)1/3

≤ d0 ≤
3
2

(
ε0AV

2
M

k

)1/3

. (5.1)
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Theorem 16 (Stability). On the conditions of Theorem 15, assume that

4k <
ε0AV

2
m

2

(
wcV 2

m

πkdV 2
M

)3

+ w2 +
c2

m
. (5.2)

Then,

1. if d = d0, (1.1) has a unique T -periodic solution which is not asymptoti-
cally stable,

2. if d > d0, (1.1) has exactly two T -periodic solution, one uniformly asymp-
totically stable and another unstable.

Remark 1. As we remarked in the Introduction, the inequality (5.1) is opti-
mal because of V (t) is chosen constant (autonomous case), then the inequalities
are infact equalities and d0 is exactly the value d0 = 3

2 (2h)1/3 obtained in the
Introduction.

Remark 2. It is worth to analyze in detail the physical meaning of condition

(5.2). Note that if 4k ≤ c2

m
then (5.2) holds for any frequency w. This case

can be related with the “viscosity dominated regime” studied in [1]. On the other

hand, if 4k >
c2

m
, elementary calculations provide a minimum frequency w0

such that (5.2) holds for every w > w0. w0 is the unique positive root of the
cubic equation. Another possibility is just to take w2 > 4k. This resembles the
paradigmatic phenomenon of “stabilization by high frequencies”, which appear
in a wide number of physical systems like the inverted pendulum with vibrating
support (see for instance [7]).

Example. For illustrative purposes, we have taken from [14] the following va-
lues of the physical parameters: m = 3.5 × 10−11 Kg, k = 0.17 N/m, c =
1.78 × 10−6 Kg/s, A = 1.6 × 10−9 m2, ε0 = 8.85 × 10−12 F/m. If V (t) =
10 + 2 cos(wt) V, then using Theorem 15 the bifurcation value is bounded by
2.62033µm < d0 < 3.4336µm. By Theorem 16, if d > d0 and w ≥ 0.76772 then
there are exactly two periodic solutions of (1.1), one asymptotically stable and
the other unstable.
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