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1 Introduction

The study of forced oscillations emanating from a limit cycle is a classical problem in the theory of

bifurcation. Around 1950 the basic method to deal with this problem was developed by Malkin in [11]

and this study was continued by Loud in [10]. The state of the art before the contributions of Malkin

and Loud can be found in the book by Lefschetz [9]. To describe the general framework we start with an

autonomous system

ẋ = f(x)

having a closed orbit Γ associated to a periodic solution x0(t) with period T > 0. Notice that T is not

necessarily the minimal period. The perturbation considered is

ẋ = f(x) + εg(t, x; ε)

where g is periodic in t and its period is precisely T . The beginning of Malkin’s method is the construction

of a T -periodic function M = M(θ) depending upon x0(t) and g(·, ·; 0). The zeros of M are intimately

linked to the possible bifurcations to T -periodic solutions for ε > 0. Assuming some non-degeneracy

conditions on x0(t) one can prove that if θ∗ is a non-degenerate zero of M (M(θ∗) = 0, M ′(θ∗) 6= 0) then
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the perturbed system has a family of T -periodic solutions satisfying

xε(t) = x0(t+ θ∗) +O(ε), as ε ↓ 0.

It is also possible to analyze the case of a zero of higher multiplicity (M(θ∗) = 0, M ′(θ∗) =

0, · · · ,M (k−1)(θ∗) = 0, M (k)(θ∗) 6= 0) but this requires long computations, see e.g. [10] and [6]. More

recently a topological approach has been taken in [4]. A bifurcation exists as soon as θ∗ is a zero where

M changes sign. The next step after the existence of bifurcating branches is the study of the stability

properties. This was already considered in [11], [10] and [6]. Assuming that Γ is an exponential attractor

it can be proved that the bifurcating periodic solution is asymptotically stable when M ′(θ∗) > 0 and

unstable when M ′(θ∗) < 0. If θ∗ is a zero of a higher multiplicity, then the implicit function approach

taken in [10] and [6] does not allow to detect bifurcation of stable periodic solution on the basis of the

sign of M (k)(θ∗) and some further computations have to be done. See in particular equations (3.5) in [6]

and (4.23) in [10]. The purpose of our paper is to obtain a topological version of this stability result for

increasing or decreasing zeros when the derivative of M at θ∗ can vanish. In particular, we are interested

in an unified answer which does not depend on the multiplicity of θ∗. We will get a positive answer in the

case of analytic systems. For this class of systems we will use a variant of Lyapunov-Schmidt reduction

that will allow us to prove that if M is not identically zero then the number of T -periodic solutions is

finite. This is inspired by the results of Nakajima and Seifert in [12] and R.A. Smith in [15]. Once we

know that T -periodic solutions are isolated we can talk about their topological index. This is just a

localized version of the topological degree and the connections of this index with the stability properties

of the corresponding solutions have been discussed in [7, 8, 5, 13]. The computation of the index is then

obtained via a result in the line of those in [4].

The rest of the paper is organized in three sections. In Section 2 we present some preliminary results

on the autonomous system. The main Theorem as well as an example illustrating its applicability can be

found in Section 3. This section also shows how to prove the main result via topological degree. Finally

Section 4 is devoted to the proofs of three Lemmas previously employed.

2 The autonomous system

In this section we present some elementary facts about the non-perturbed system. They will be needed

later in order to state our main Theorem. Let us start with the autonomous system

ẋ = f(x) (1)

defined on an open subset Ω of Rn. The vector field f : Ω → Rn is real analytic.

Assume that x0(t) is a non-constant periodic solution of (1) with period T > 0. The associated

variational equation is

ẏ = f ′(x0(t))y. (2)
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This is a T -periodic equation having the solution ẋ0(t). The Floquet multipliers are labelled as µ1, ..., µn

and counted according to their multiplicity. It will be assumed that they satisfy

µ1 = 1, |µ2| < 1, ..., |µn| < 1. (3)

This condition implies that the closed orbit Γ = {x0(t), t ∈ [0, T ]} is an attractor (see [1]). The region

of attraction is an open neighborhood of Γ which will be denoted by A ⊂ Ω.

In view of the condition on the Floquet multipliers we know that the space of T -periodic solutions of

(2) has dimension one. The same property must hold for the adjoint system

ż = −f ′(x0(t))∗z. (4)

The next result will provide an orientation in the space of T -periodic solutions of (4).

Lemma 1 There exists an unique T -periodic solution z0(t) of (4) satisfying

〈ẋ0(t), z0(t)〉 = 1, for any t ∈ R.

Proof. It is based on Perron’s lemma [14] (see also [2], Sec. III, §12). This result says that if y(t) and

z(t) are arbitrary solutions of (2) and (4) then

〈y(t), z(t)〉 ≡ constant.

We will prove that if z1(t) is a non-trivial T -periodic solution of (4) then

〈ẋ(0), z1(0)〉 6= 0. (5)

Since the space of T -periodic solutions has dimension one this will complete the proof.

To prove (5) we find a n× n matrix S such that

S−1Y (T )S =


1 0 . . . 0

0
... A

0

 ,

where Y (t) is the matrix solution of (2) with Y (0) = IN and det(A − I) 6= 0. From the definition of S

we have that its first column S1 is an eigenvector of Y (T ) corresponding to the eigenvalue µ1 = 1. In

particular S1 is parallel to ẋ(0). Consider the matrix Σ = (S2|..|Sn) composed by the remaining columns

of S. From the definition of S and A,

Y (T )Σ = ΣA.

Next we apply Perron’s Lemma to the solutions Y (t)Si and z1(t),

〈z1(0), Si〉 = 〈z1(0), Y (T )Si〉 , i = 2, .., n.

This implies

z1(0)∗Σ = z1(0)∗Y (T )Σ = z1(0)∗ΣA.
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Hence z1(0)∗Σ(I − A) = 0 and so z∗1(0)Σ = 0. Now we can conclude that (5) holds, for otherwise we

should have z∗1(0)S = 0 which is impossible if z1(t) is non-trivial.

�

As a simple example we consider the planar system

ẋ =
(
1− |x|2

)
x+ i|x|2x, x = x1 + ix2 ∈ C.

It has the periodic solution x0(t) = eit whose orbit Γ = S1 attracts A = C−{0}. The period is T = 2Nπ,

where N ≥ 1 is an integer arbitrarily chosen. The variational equation along x0(t) is

ẏ = (−1 + 2i)y + (−1 + i)e2ity

and has the Floquet solutions

y1(t) = ẋ0(t) = ieit, y2(t) = e(−2+i)t(−1 + i).

In consequence µ1 = 1 and µ2 = e−2T . The computation of z0(t) follows from the proof of Lemma 1. We

know that

〈y1(t), z0(t)〉 = 1, 〈y2(t), z0(t)〉 = constant = 0.

The periodicity of e2ty2(t) and z0(t) implies that this last constant must vanish. From these equations

one obtains that

z0(t) = (1 + i)eit.

3 Main result and an example

Let us consider the perturbed system

ẋ = f(x) + εg(t, x, ε), (6)

where g : R × Ω × [0, ε∗] 7→ Rn is continuous and T -periodic in t. We also assume that for each t ∈ R

the function g(t, ·, ·) has partial derivatives up to the second order with respect to (x, ε) and these

derivatives are continuous as functions of the three variables (t, x, ε). The most important assumption

on the regularity of g will be the analyticity with respect to x. This means that for each x∗ ∈ Ω there

exists r > 0 such that if ‖x− x∗‖ < r then for j = 1, ..., n

gj(t, x, ε) =
∑

α∈Nn

gα,j(t, ε)(x− x∗)α, t ∈ R, ε ∈ [0, ε∗].

Here α = (α1, ..., αn) is a multi-index and we employ the notation for powers xα = xα1
1 · ... · xαn

n . The

coefficients gα,j are continuous and T -periodic in t and the convergence in the above series is uniform in

t and ε. As in the previous Section the vector field f is real analytic on Ω and this is enough to guarantee

that the solutions of (6) depend analytically upon initial conditions once ε and t have been fixed (see [9]).

Again x0(t) is a non-constant T -periodic solution of (1) satisfying (3). We consider the function

M(θ) =
∫ T

0

〈g(t, x0(t+ θ), 0), z0(t+ θ)〉 dt,
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where z0 is given by Lemma 1. This function is T -periodic and real analytic and so it will have a finite

number of zeros in [0, T [ unless it is identically zero.

Given θ∗ ∈ [0, T [ a zero of M, M(θ∗) = 0, we say that index(M, θ∗) = 1 if M(θ) · (θ − θ∗) > 0 when

θ 6= θ∗ is close to θ∗. When the inequality is reversed we say that index(M, θ∗) = −1. In any other case

we say that index(M, θ∗) = 0. We shall say that a solution x(t) passes through a set S ⊂ R2 if x(t) ∈ S

for some real t.

Theorem 1 In the previous setting assume that M is not identically zero and let U be a bounded and

open set satisfying

Γ ⊂ U ⊂ U ⊂ A

(Recall that Γ is the closed orbit associated to x0(t) and A is its region of attraction). Then there exists

ε0 > 0 such that if 0 < ε ≤ ε0 the system (6) has a finite number of T -periodic solutions passing through

U. Moreover, if θ∗ is a zero of M with index(M, θ∗) 6= 0 then there exists a T -periodic solution xε(t) of

(6) with

xε(t)− x0(t+ θ∗) → 0 as ε ↓ 0,

uniformly in t ∈ R. This solution is asymptotically stable if index(M, θ∗) = 1 and unstable if

index(M, θ∗) = −1.

To illustrate the result we consider the planar system

ẋ = (1− |x|2)x+ i|x|2x+ ε(a(t) + b(t)x+ c(t)x), (7)

where x ∈ C and a, b, c : R → C are continuous and 2π-periodic. The autonomous system (ε = 0)

was already analyzed in the previous section and we can now construct the function M for x0(t) = eit,

z0(t) = (1 + i)eit and T = 2π. A direct computation leads to the formula

M(θ) = Re[
∫ 2π

0

(a(t)+b(t)ei(t+θ)+c(t)e−i(t+θ))(1−i)e−i(t+θ)dt] = 2πRe
[(
â1e−iθ + b̂0 + ĉ2e−2iθ

)
(1− i)

]
,

where âm, b̂m and ĉm refer to the Fourier coefficients of a, b and c, namely

f̂m =
1
2π

∫ 2π

0

f(t)e−imtdt.

In principle Theorem 1 would provide information on a bounded region U whose closure is contained in

C − {0}. However the specific properties of (7) will allow us to deduce global results. To illustrate this

we first claim that for 0 ≤ ε < 1 any 2π-periodic solution x(t) will satisfy

max
t∈R

||x(t)|| ≤ ρ+ := [1 + ||a||∞ + ||b||∞ + ||c||∞]1/2.

Indeed if t∗ is an instant when m := max ||x(t)|| = ||x(t∗)|| then the derivative d
dt ||x(t)||

2 = 2 〈x(t), ẋ(t)〉

must vanish at t∗. From the equation (7) we deduce that

||x(t∗)||4 = ||x(t∗)||2 + ε
〈
a(t∗) + b(t∗)x(t∗) + c(t∗)x(t∗), x(t∗)

〉
.
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It is not restrictive to assume that m > 1 and and by dividing the latter equality by m2 the claimed

estimate follows. Next we observe that x ≡ 0 is a 2π-periodic solution for ε = 0. The variational

equation is ẏ = y with Floquet multipliers µ1 = µ2 = e2π. A standard perturbation result guarantees the

existence of some ρ− ∈ (0, 1) such that, for small ε, there is a unique 2π-periodic solution zε(t) satisfying

max ||zε(t)|| ≤ ρ−. Moreover this solution is unstable since all Floquet multipliers are greater than one.

Now we apply Theorem 1 in the region

U = {x ∈ C : ρ− < ||x|| < ρ+}.

The function M can be expressed as a trigonometric polynomial of the type

M(θ) = β + α cos(θ + φ) + γ cos 2(θ + ϕ),

with β = 2πRe[̂b0(1 − i)], 2πâ1(1 − i) = αe−iφ, 2πĉ2(1 − i) = γe−2iϕ. Now it is clear that M is not

identically zero if and only if

|â1|+ |Re[̂b0(1− i)]|+ |ĉ2| > 0.

In such a case (7) has a finite number of 2π-periodic solutions passing through U , say N . From the

above discussions we conclude that also the number of 2π-periodic solutions on the whole plane is finite,

namely N + 1. When the function M does not vanish we obtain a uniqueness result: zε is the unique

2π-periodic solution. When M changes sign we obtain at least two additional 2π-periodic solutions, one

asymptotically stable and one unstable. Summing up, we observe that in this example the function M

gives conditions for the existence and stability that are rather sharp. Notice also that the function M can

have zeros of the type M(θ0) = M ′(θ0) = M ′′(θ0) = 0, M ′′′(θ0) 6= 0 and they lead to an asymptotically

stable solution.

Before the proof of the Theorem we will state three lemmas that will be proved in the next section.

Our first preliminary result goes back to [11, page 387] and [10]. It shows that the zeros of the function

M are relevant for the location of T -periodic solutions.

Lemma 2 Assume that εk ↓ 0 is a given sequence and let xk(t) be a T -periodic solution of (6) with ε = εk

and passing through U. Then it is possible to extract a subsequence {xk(t)} and a number θ∗ ∈ [0, T [ such

that M(θ∗) = 0 and

xk(t)− x0(t+ θ∗) → 0 as k →∞

uniformly in t ∈ R.

For the next statements it will be convenient to employ the Poincaré map Pε associated to (6). Denoting

by x(t; ζ, ε) the solution of (6) satisfying x(0) = ζ, we notice that for small ε and ζ ∈ U this solution is

well defined in [0, T ]. This is a consequence of the theorem on continuous dependence since U is compact

and for ε = 0 the solutions starting at U ⊂ A are globally defined in the future. This observation allows

us to define

Pε : U → Rn, ζ 7→ x(T ; ζ, ε).
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This map is analytic and its fixed points are in a one-to-one correspondence with the T -periodic solutions

starting at U .

Lemma 3 Assume that θ0 ∈ R is an isolated zero of M , then there exist ε0 > 0 and R > 0 such that for

any ε ∈ (0, ε0) the Poincaré map Pε of (6) has at most a finite number of fixed points in BR(x0(θ0)).

The third preliminary result will establish a link between the index of the zeros of M and the fixed point

index of the Poincaré map. Results of this type were already obtained in [4] but we will present later an

independent proof. The Brouwer degree of a map f on a domain Ω will be denoted by deg(f,Ω). It is

assumed that Ω is open and bounded and f does not vanish on its boundary.

Lemma 4 Assume that θ0 is an isolated zero of M and V is an open neighborhood of x0(θ0). Then there

exist a number ε? > 0 and a family of open sets Vε ⊂ Rn, ε ∈ (0, ε?), satisfying

x0(θ0) ∈ Vε, Vε ⊂ V

and such that

deg(id− Pε, Vε) = −index(θ0,M), whenever ε ∈ (0, ε?).

We are now in the position to prove Theorem 1.

Proof of Theorem 1. If the function M does not vanish then (6) has no T -periodic solutions passing

through U when ε > 0 is small enough. This is a consequence of Lemma 2. From now on we assume

that M vanishes somewhere. Let T ∗ > 0 be the minimal period of x0(t), so that T = kT ∗ for some

k = 1, 2, . . . The function M has period T ∗ and the sequence of zeros of M on [0, T ∗[ is denoted by

0 ≤ θ1 < θ2 < ... < θm < T ∗.

Another consequence of Lemma 2 is that for small ε any T -periodic solution of (6) passing through U

must remain close to the orbit Γ for all time. In particular we can assume that all T -periodic solutions

passing though U have an initial condition corresponding to a fixed point of Pε.

Step 1. There exists ε1 > 0 such that if ε ∈ (0, ε1) then Pε has a finite number of fixed points.

Once again we apply Lemma 2 and restrict ε so that all the fixed points are contained in some of the

balls BR(x0(θi)), i = 1, ...,m, where R is given by Lemma 3. The union of these balls contains all the

fixed points of Pε and we know by Lemma 3 that they contain a finite number of fixed points.

We can also assume that R has been chosen so that these balls are pairwise disjoint. This will be

employed later and it is possible since T ∗ is the minimal period and so the points x0(θi) and x0(θj) are

different whenever i 6= j.

After this step we can define the index of a T -periodic solution passing through U. Assume that x(t)

is such a solution for some ε ∈ (0, ε1). We can find an open set W ⊂ U such that x(0) ∈ W is the only

fixed point of Pε lying on W. The index of x(t) is defined as

γT (x) = deg(id− Pε,W).
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In principle this index could take any integer value but the condition (3) implies that

γT (x) ∈ {−1, 0, 1}. (8)

This fact was already noticed by Krasnoselskii in [7]. We refer to [7] or [13] for the proof.

Step 2. If x(t) is a T -periodic solution of (6) passing through U, then x(t) is asymptotically stable if

γT (x) = 1 and unstable if γT (x) 6= 1.

The condition (3) and the continuity of the Floquet multipliers with respect to parameters imply

the existence of a positive number σ > 0 such that if B(t) is a T -periodic and continuous matrix with

||B(t)|| ≤ σ for all t then the system

ẏ = (f ′(x0(t)) +B(t))y

has Floquet multipliers µ∗1, · · · , µ∗n with µ∗1 positive and dominant and |µ∗i | < 1 for i = 2, · · · , n. After a

time translation we conclude that the same property holds for the more general class of systems

ẏ = (f ′(x0(t+ θ)) +B(t))y, max ||B(t)|| < σ, B(t+ T ) = B(t).

For small ε any T -periodic solution passing through U has a variational equation in this class and so the

Floquet multipliers have the structure described above. The conclusion of Step 2 is a consequence of [5]

and [13].

Step 3. Assume that index(M, θi) 6= 0. Then for any ε ∈ (0, ε2] the equation (6) has a T -periodic solution

x with

x(0) ∈ BR(x0(θi)) and γT (x) = −index(M, θi).

This is a consequence of Lemma 4. Indeed we can find an open set Vε ⊂ BR(x0(θi)) with

deg(id− Pε, Vε) = −index(M, θi)

and the additivity of the degree implies that

deg(id− Pε, Vε) =
m∑

j=1

γT (xj),

where x1, ..., xm are the T -periodic solutions of (6) with xj(0) ∈ Vε. The conclusion follows from (8).

Notice that the convergence of this periodic solution to x0(t+ θi) as ε→ 0 is a consequence of Lemma 2

since the balls BR(x0(θi)) are pairwise disjoint. This completes the proof of the Theorem.

4 Proofs of the Lemmas

Proof of Lemma 2. We present a proof for completeness. Since xk passes through U one can find

τk ∈ [0, T ] such that xk(τk) ∈ U. After extracting subsequences we can assume that

τk → τ and xk(τk) → ζ.
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Let x̂(t) denotes the solution of (1) with initial condition x̂(τ) = ζ. Since ζ is a point in the region of

attraction A we know that x̂(t) is well defined in [τ,∞[. By continuous dependence we know that xk(t)

converges to x̂(t) and the convergence is uniform on every compact interval where x̂(t) is well defined.

In particular this applies to [τ, τ + T ] and so x̂(τ) = limxk(τ) = limxk(τ + T ) = x̂(τ + T ). This implies

that x̂(t) is a periodic solution of (1). Since A is invariant for (1) and x̂(τ) ∈ A we deduce that the

closed orbit associated to x̂ must be contained in A. This implies that this orbit is precisely Γ and so

there exists θ∗ ∈ [0, T [ such that x̂(t) = x0(t+ θ∗). In particular xk(0) → x0(θ∗). It remains to prove that

M(θ∗) = 0. To this end we consider the map

Φ(ζ, ε) = Pε(ζ)− ζ, ζ ∈ U, ε ∈ [0, ε0].

This is a C1 map and the derivative DΦ(ζ, ε) is an n × (n + 1) matrix. We claim that the rank of

DΦ(x0(θ∗), 0) is strictly less then n. Otherwise the equation Φ(ζ, ε) = 0 should describe a curve in a

small neighborhood of (x0(θ∗), 0). However the set Φ = 0 contains the curve (x0(θ), 0) and also the set

of points (xk(0), εk) accumulating on (x0(θ∗), 0). Once we know that rankDΦ(x0(θ∗), 0) < n, it remains

to prove that

rankDΦ(x0(θ), 0) = n if M(θ) 6= 0.

The partial derivative with respect to ξ is the n× n matrix

∂ζΦ(x0(θ), 0) = Y (T + θ)Y (θ)−1 − In,

where Y (t) is the matrix solution of (2) with Y (0) = In. The Fredholm alternative for linear endomor-

phisms is applied to deduce that

Im∂ζΦ(x0(θ), 0) =
[
Ker

(
[Y (θ)∗]−1

Y (θ + T )∗ − In

)]⊥
.

The kernel in the above formula corresponds to the initial conditions at time t = θ of the T -periodic

solutions of (4). Hence it is spanned by z0(θ) and so

Im∂ζΦ(x0(θ), 0) = {η ∈ Rn : η⊥z0(θ)} .

By differentiability with respect to parameters, the function y(t) = ∂εx(t, ζ, ε) with ζ = x0(θ), ε = 0

solves

ẏ = f ′(x0(t+ θ))y + g(t, x0(t+ θ), 0), y(0) = 0.

A direct computation shows that

d

dt
〈y(t), z0(t+ θ)〉 = 〈g(t, x0(t+ θ), 0), z0(t+ θ)〉

and, integrating over the period,

〈y(T ), z0(θ)〉 = M(θ).

When M(θ) 6= 0 the vector y(T ) is not in the range of ∂ζΦ(x0(θ), 0) and so

rank (∂ζΦ(x0(θ), 0) |∂εΦ(x0(θ), 0)) = (n− 1) + 1 = n.
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Proof of Lemma 3. It is based on a variant of the Lyapunov-Schmidt reduction. We divide it in four

steps.

1. The change of variables. The dominant eigenvalue of L = (P0)′(x0(θ0)) is µ1 = 1 with eigenvector

ẋ0(θ0). This eigenvalue is simple and so we can find a linear projection π in Rn satisfying

π2 = π, πL = Lπ, Ker π = {λẋ(θ0); λ ∈ R}.

This is so-called spectral projection and the hyperplane Y = Im(id− L) = Im π is invariant under L.

Moreover,

σ(LY ) = {µ2, .., µn}, (9)

where LY : Y → Y is the restriction of L to Y . In the rest of the proof v denotes a generic vector lying

in Y .

Consider the map

Φ : (θ, v) ∈ R× Y 7→ x0(θ) + v ∈ Rn.

This is an analytic function with partial derivatives at (θ0, 0),

∂θΦ(θ0, 0) = ẋ0(θ0), ∂Y Φ(θ0, v) = idY .

The Inverse Function Theorem implies that Φ is a local diffeomorphism mapping (θ0, 0) onto x0(θ0). In

a neighborhood of this point we reduce the search of fixed points of Pε to the equation Pε ◦Φ = Φ. More

precisely we consider the equation

Pε(x0(θ) + v) = x0(θ) + v, |θ − θ0| < ∆, ‖v‖ < ∆, (10)

for some small ∆ > 0. Notice that Φ is independent of ε and so ∆ is uniform in ε > 0.

2. The auxiliary equation. The equation (10) can be interpreted as a system in the unknowns θ and v.

As usual we apply π and solve in v. This means that we look at the implicit function problem

F (θ, v;ε) := πPε(x0(θ) + v)− πx0(θ)− v = 0.

This function maps |θ − θ0| < ∆, ‖v‖ < ∆, ε ∈ [0, ε∗] into Y and satisfies

∂vF (θ0, 0;0) = LY − idY .

From the condition (9) we deduce that the implicit Function Theorem is applicable and so we find r > 0

and α : [θ0 − r, θ0 + r]× [0, r] → Y such that

πPε(x0(θ) + α(θ, ε)) = πx0(θ) + α(θ, ε).

Moreover this is the only solution of F (θ, v; ε) = 0 in some ball ‖v‖ < R. The function α is of class C1

and analytic with respect to θ. Due to the uniqueness of α we have α(θ, 0) = 0 for any θ ∈ [θ0− r, θ0 + r],

which can be combined with the smoothness of α to find a number µ > 0 such that

‖α(θ, ε)‖ 6 εµ for any θ ∈ [θ0 − r, θ0 + r], ε ∈ [0, r]. (11)
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In this process it can be necessary to reduce the size of r.

3. The bifurcation equation. Assume that x(t;Ξ, ε) is a T -periodic solution of (6) with Ξ close to x0(θ0)

and ε small and positive. We know from the previous steps that the initial condition can be expressed as

Ξ = x0(Θ) + α(Θ, ε)

for some Θ ∈ [θ0 − r, θ0 + r]. Our next task is to show that Θ must be a zero of the function

Mε(θ) :=
∫ T

0

〈bε(t, θ), z0(t+ θ)〉 dt

with

bε(t, θ) := g(t, x(t, ξ, ε), ε)− 1
ε
[f(x(t, ξ, ε))− f(x0(t+ θ))− f ′(x0(t+ θ)) · (x(t, ξ, ε)− x0(t+ θ))]

and

ξ = x0(θ) + α(θ, ε).

By construction y(t) = x(t,Ξ, ε)− x0(t+ Θ) has to be a T -periodic solution of the linear equation

ẏ = f ′(x0(t+ Θ))y + εbε(t,Θ).

The Fredholm alternative implies that Θ is a zero of Mε.

4. Conclusion: the role of analyticity. In view of the previous steps it is enough to show that the function

Mε has a finite number of zeros in [θ0 − r, θ0 + r] for small ε.

Since α(θ, 0) = 0 we obtain by continuous dependence that

bε(t, θ) → g(t, x0(t+ θ), 0) as ε→ 0

uniformly in t ∈ [0, T ] and θ ∈ [θ0 − r, θ0 + r]. Indeed we also need to use that f is smooth and the

estimate (11). This is required to prove that the term related to f goes to zero. Also the differentiability

with respect to initial conditions and parameters plays a role here.

The function Mε converges to M as ε→ 0 uniformly in θ ∈ [θ0 − r, θ0 + r]. We are assuming that M

is not identically zero and so the same must happen to Mε for small ε. Since Mε is analytic we conclude

that it has a finite numbers of zeros in [θ0 − r, θ0 + r]. This is valid for ε ∈]0, ε0[ with ε0 > 0 sufficiently

small.

�

Remark The standard Lyapunov-Schmidt reduction for the equation Pε(ξ) = ξ would start with the

splitting

ξ = ηẋ0(θ0) + v, η ∈ R, v ∈ Y,

and considering the system  πPε(ηẋ0(θ0) + v) = v

(id− π)Pε(ηẋ0(θ0) + v) = ηẋ0(θ0).

Instead of this we are considering a sort of nonlinear splitting induced by the change of variables of

Step 1. The advantage is that our bifurcation equation leads directly to M(θ) = 0 as ε ↓ 0. The same

11



approach is taken by Hale and Taboas in [3], but they prefer to work in an infinite dimensional framework.

Proof of Lemma 4. First we pick up any n − 1 linearly independent solutions y1, ..., yn−1 of (2)

whose initial conditions at θ0 satisfy 〈yi(θ0), z0(θ0)〉 = 0. Next we consider the n × (n − 1) matrix

Y1(θ) = (y1(θ)| . . . |yn−1(θ)) and notice that

Y1(θ + T ) = Y1(θ)Aθ (12)

where Aθ is a (n − 1) × (n − 1) matrix with eigenvalues µ2, . . . , µn. To verify this it is enough to

observe that the hyperplane Vθ spanned by y1(θ), . . . , yn−1(θ) is invariant under the monodromy operator

Mθ : y(θ) 7→ y(θ + T ). This is a consequence of Perron’s Lemma. The eigenvector of Mθ associated to

µ1 = 1 is ẋ0(θ) and does not belong to Vθ. In consequence the restriction of Mθ to Vθ has eigenvalues

µ2, . . . , µn. The matrix Aθ is precisely the representation of this restriction with respect to the basis

y1(θ), . . . , yn−1(θ). This property of the matrix Y1(θ) will be employed several times. First we will

employ it to evaluate the topological degree of the auxiliary map

Φε(θ, ζ) = −εM(θ)ẋ0(θ) + (Y1(θ)− Y1(θ + T ))ζ

with respect to Ωδ := (θ0 − δ, θ0 + δ) × Bδ(0), where δ > 0 is a small number and Bδ(0) is an open

ball in Rn−1. We will impose several restrictions on the size of δ, the first being that M has no zeros on

[θ0 − δ, θ0 + δ] other than θ0. Notice that by linear independence the equation Φε(θ, ζ) = 0 in Ωδ splits

as M(θ) = 0 and (Y1(θ) − Y1(θ + T ))ζ = 0. Then θ = θ0 and from the identity (12) we deduce that

ζ = 0. Thus the degree we want to compute is well defined and does not change if we replace Ωδ by any

sub-domain containing (θ0, 0). For the effective computation we diminish δ > 0 in such a way that Φε is

linearly homotopic to the vector field

Φ̂(θ, ζ) = −M(θ)ẋ0(θ0) + (Y1(θ0)− Y1(θ0 + T ))ζ

for ε > 0 sufficiently small so that deg(Φε,Ωδ) = deg(Φ̂,Ωδ). The matrix S = (ẋ0(θ0)|Y1(θ0)−Y1(θ0 +T ))

is non-singular and the map Φ̂ can be expressed as S ◦ [(−M)× id]. By the theorems on the evaluation of

the topological index of a composition of vector fields (see e.g. [8], Theorem 7.1), of a product of vector

fields (see e.g. [8], Theorem 7.4) and of a linear vector field (see [8], Theorem 6.1) we have that

deg(Φ̂,Ωδ) = index((θ0, 0), Φ̂) = index(0, S) · index((θ0, 0), (−M)× id) = −sign detS · index(θ0,M). (13)

Another restriction on δ that will be useful later is related to the map ψ(θ, ζ) = x0(θ) + Y1(θ)ζ. This

map must be a diffeomorphism from Ωδ onto its image and ψ(Ωδ) ⊂ V. Notice that this is possible since

detψ′(θ0, 0) = det(ẋ0(θ0)|Y1(θ0)) 6= 0.

Our next step is to show that the vector fields

Fε(θ, ζ) = (id− Pε)(x0(θ) + Y1(θ)ζ)

and Φε are homotopic on a sub-domain of Ωδ for ε > 0 sufficiently small. Let x(t; θ, ζ, ε) be the solution

of (6) satisfying x(0) = x0(θ) + Y1(θ)ζ. The Taylor expansion leads to

x(t, θ, ζ, ε) = x0(t+ θ) + Y1(t+ θ)ζ + ε

∫ t

0

Y (t+ θ)Y (s+ θ)−1g(s, x0(s+ θ), 0)ds+O(ε2 + ‖ζ‖2),
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where we recall that the matrix Y (t) was defined in Section 2. This expansion is obtained by computing

the derivatives with respect to ζ and ε and applying the formula of variation of constants. The matrix

Y ∗(t+ θ)−1Y ∗(θ) is fundamental at t = θ for the adjoint system and so

z0(t+ θ) = Y ∗(t+ θ)−1Y ∗(θ)z0(θ).

From the periodicity of z0 we deduce that

Y ∗(T + θ)z0(θ) = Y ∗(θ)z0(θ).

Thus, 〈∫ T

0

Y (T + θ)Y −1(s+ θ)g(s, x0(s+ θ), 0)ds, z0(θ)

〉
=

=
∫ T

0

〈g(s, x0(s+ θ), 0), z0(s+ θ)〉 ds = M(θ).

In consequence,

〈Fε(θ, ζ), z0(θ)〉 = −εM(θ) +O(ε2 + ‖ζ‖2), Fε(θ, ζ) = (Y1(θ)− Y1(θ + T ))ζ + εγ(θ) +O(ε2 + ‖ζ‖2),

where γ is defined by an integral. Perhaps after a new reduction of the size of δ we can find a positive

constant Λ such that

max
k=1,...,n−1

| 〈(Y1(θ)− Y1(θ + T ))ζ, yk(θ)〉 | ≥ Λ||ζ||, for every ζ ∈ Rn−1 and |θ − θ0| ≤ δ.

To justify this assertion we notice that, by continuity, it is enough to check it for θ = θ0 and in this

case it follows from (12) since (Y1(θ0) − Y1(θ0 + T )) = Y1(θ0)(I − Aθ0) and (I − Aθ0) is non-singular.

From now on the number δ will be kept fixed. We are going to compute the degree of Fε on the set

Wε = {(θ, ζ) : |θ− θ0| < δ, ||ζ|| < ε2/3}. The boundary of Wε is composed by ∆1 : θ = θ0± δ, ||ζ|| ≤ ε2/3

and ∆2 : |θ − θ0| ≤ δ, ||ζ|| = ε2/3. On ∆1 we observe that for ε small enough

sign 〈Fε(θ, ζ), z0(θ)〉 = −signM(θ), with θ = θ0 ± δ.

On ∆2 we claim that for some k = 1, . . . , n− 1 (depending on ζ),

sign 〈Fε(θ, ζ), yk(θ)〉 = sign 〈(Y1(θ)− Y1(θ + T ))ζ, yk(θ)〉 .

Indeed, from the expansion of Fε we find that for each k

〈Fε(θ, ζ), yk(θ)〉 = 〈(Y1(θ)− Y1(θ + T ))ζ, yk(θ)〉+O(ε).

For some k, | 〈(Y1(θ)− Y1(θ + T ))ζ, yk(θ)〉 | ≥ Λε2/3 and this term is dominant, leading to the coincidence

of the signs. Summarizing, for (θ, ζ) ∈ ∂Wε the vectors Φε(θ, ζ) and Fε(θ, ζ) do not point in opposite

directions and, therefore, the vector fields Φε and Fε are linearly homotopic on Wε (see [8, theorem 2.1]).

By excision,

deg(Fε,Wε) = deg(Φ̂,Ωδ) = −sign detS · ind(θ0,M). (14)
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To finish the proof we define Vε = ψ(Wε) and observe that (id − Pε) ◦ ψ = Fε on Wε. The theorem on

the degree of the composition implies that

deg(id− Pε, Vε) · deg(ψ − x0(θ0),Wε) = deg(Fε,Wε).

For instance, Theorem 7.2, Formula 7.6 in [8] is applicable since ∂Vε = ψ(∂Wε), Vε is connected and

x0(θ0) ∈ Vε. By the linearization theorem for topological degree (see e.g. [8], Theorem 6.3) we have that

deg(ψ − x0(θ0),Wε) = sign detψ′(θ0, 0) = sign det(ẋ0(θ0)|Y1(θ0)). (15)

The conclusion of the Lemma follows from these last identities and (14) because

sign det(ẋ0(θ0)|Y1(θ0)) = sign detS. (16)

To prove this claim we consider the family of matrices

Y1(θ0)− λY1(θ0 + T ) = Y1(θ0)(I − λAθ0), λ ∈ [0, 1],

where once again we have used (12). For λ = 0 and λ = 1 we obtain the second blocks of the matrices

appearing in the identity (16). The eigenvalues of Aθ0 are µ2, . . . , µn, all of them with modulus less than

one. Hence

det(ẋ0(θ0)|Y1(θ0)− λY1(θ0 + T )) 6= 0

for all λ ∈ [0, 1] and so the sign of this determinant is independent of λ. The identity (16) expresses this

fact for the extreme values of λ. �
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