
Location of Fixed Points in the Presence of Two

Cycles

Alfonso Ruiz-Herrera∗

Departamento de Matemática Aplicada,
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Abstract

Any orientation-preserving homeomorphism of the plane having a two cycle has

also a fixed point. This well known result does not provide any hint on how to

locate the fixed point, in principle it can be anywhere. Campos and Ortega in

Location of fixed points and periodic solutions in the plane consider the class of

Lipschitz-continuous maps and locate a fixed point in the region determined by

the ellipse with foci at the two cycle and eccentricity the inverse of the Lipschitz

constant. It will be shown that this region is not optimal and a sub-domain can

be removed from the interior. A curious fact is that the ellipse mentioned above

is relevant for the optimal location of fixed point in a neighborhood of the minor

axis but it is of no relevance around the major axis.

Key words and phrases: Ellipse, Lipschitz-continuous homeomorphism, Two
cycle, Fixed Point.

1 Introduction

Given a continuous map of the real line h : R −→ R and a two cycle Q 6= P
with h(P ) = Q,h(Q) = P , there exists a fixed point lying between P and Q.
This inequality is linked to the last inequality 2 ¤ 1 in the Sharkovsky ordering.
Brouwer’s theory of planar maps leads to a partial extension of this result to two
dimensions. If we now assume that f : R2 −→ R2 is an orientation preserving
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homeomorphism having two cycles, then a fixed point always exists. However no
information on the location of this point can be provided, it can be anywhere in the
plane. In [4], Campos and Ortega obtained a result on the location of a fixed point
for Lipschitz-continuous maps.

Theorem 1.1 ([4]) Assume that f : R2 −→ R2 is an orientation preserving home-
omorphism having a two cycle P 6= Q. In addition assume that f is Lipschitz-
continuous. Then f has a fixed point x satisfying

‖x− P‖+ ‖x−Q‖ ≤ L‖P −Q‖, (1.1)

with ‖ · ‖ the euclidean norm and [f ]Lip ≤ L where [f ]Lip denotes the best Lipschitz
constant of f .

The inequality (1.1) describes the domain determined by the ellipse with foci at P
and Q and eccentricity 1

L .
In this paper we are going to study the optimality of the previous domain in the
theorem 1.1. We will see that the previous theorem can be refined and the fixed
point can be found in a subregion of the interior of the ellipse having several holes
around the major axis. Also we will prove that close to the ellipse, the major axis
is irrelevant for the location and the minor axis is optimum. The proofs of our
results combine elementary geometric constructions and subtler topological facts.
The ideas of M. Brown in [3] on planar maps with a two cycles are crucial. Mainly
we will use the following result.

Theorem 1.2 Suppose that h is an orientation preserving homeomorphism of the
plane with a two cycle at {P, Q}. If A is an arc from P to Q then h has a fixed
point either in A or in some bounded connected component of R2\(h(A) ∪A).

For a partial extension of this result to n-cycles see [2]. For other interesting results
of location of a fixed point for maps of the type Identity + contraction, see [5], [1].

2 A refinement of the Ellipse Theorem

Firstly, we are going to fix the notation of the ellipse elements. Consider P 6= Q
two points and L > 1. The ellipse with foci at P and Q and eccentricity 1

L will be
denoted by E . The bounded component of R2\E will be E. The intersection of this
ellipse with the minor and major axes is composed by four points: A−, A+, B−, B+.

Definition 2.1 A map f = f(x) is in the class FL if it satisfies:

• f is an orientation-preserving homeomorphism from R2 onto R2,

• [f ]Lip ≤ L,

• f(P ) = Q, f(Q) = P .
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We know from the above mentioned theorem that every map in FL has a fixed
points lying in E ∩E. In this section we will show that this set can be reduced with
respect to the location of fixed points. To this end we consider the open discs D−

and D+ given by the equations

‖Q− x‖ > L‖P − x‖ (1.2)

‖P − x‖ > L‖Q− x‖ (1.3)

respectively. A straightforward computation shows that these discs shrink to P and
Q when L goes to infinity and becomes very large for L decreasing to 1.

Theorem 2.1 For each L > 1 there exist neighborhoods V + and V − of B+ and
B− such that every map in FL has a fixed point lying in E\(V + ∪V − ∪D+ ∪D−).

The next figure illustrates the region where the fixed point is found for L = 2.7,
P = (−1, 0) and Q = (1, 0). Notice that the ellipse and the discs have been exactly
computed but the neighborhoods V + and V − are just hypothetical.

A+

A−

B+B− Q

D+

P

D−

Proof. Take f ∈ FL. We know in advance that there is a fixed point in E ∪ E and
so we must exclude the sets E , D+ ∪D− and V + ∪ V −. We proceed by steps.
Step 1: A metric obstruction.

Fix(f) ∩ (D+ ∪D−) = ∅.
Assume that x is a fixed point of f . Then

‖Q− x‖ = ‖f(P )− x‖ ≤ L‖P − x‖
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and (1.2) does not hold. In consequence x is not in the disc D+. The argument for
D− is analogous.
Step 2: Exclusion of E.

Fix(f) ∩ E 6= ∅.
Before proving this claim we recall two basic geometrical facts:

• Assume that γ = f([A, B]) is the image of the segment joining two points
A 6= B. Then γ is rectifiable and its length satisfies

l(γ) ≤ L‖A−B‖.

• Assume that γ is a rectifiable arc with end points at the foci P and Q. In
addition assume that γ ∩ E 6= ∅. Then

l(γ) ≥ L‖P −Q‖
and the inequality is strict excepting for the piecewise linear arcs of the type
γ = [P, R] ∗ [R,Q] with R ∈ E .
The notation ∗ is employed for the juxtaposition of arcs. Namely, given arcs
α, β : [0, 1] −→ R2 with α(1) = β(0), α ∗ β(t) = α(2t) if t ∈ [0, 1

2 ] and
α ∗ β(t) = β(2t− 1) if t ∈ [ 12 , 1].

We are now ready to prove the assertion of Step 2. It is not restrictive to assume
that f has no fixed points on the segment [P, Q], for otherwise the result is already
proved. From the previous comments, it is clear that the loop Γ = [P, Q] ∗ f([P, Q])
remains inside E or touches E in at the most one point. In any case all the bounded
connected components of R2\Γ are included in E. Hence the result follows from
theorem 1.2
Step 3: Exclusion of V + and V − .
Firstly we are going to construct V +, V −.
We fix a positive number ε ≤ ‖P−Q‖

2L and consider the strip around the major axis

Σ = {x ∈ E : dist(x, [B+, B−]) ≤ ε}.
Next we find connected neighbourhoods V + and V − of B+ and B− respectively
with the following property: any rectifiable arc γ joining P and Q and satisfying

γ ∩ (V + ∪ V −) 6= ∅, l(γ) ≤ L‖P −Q‖
must be contained in Σ. Notice that such neighbourhoods exist because the length
of the part [P, B+] ∗ [B+, Q] is precisely L‖P − Q‖. Moreover, it satisfies that if
γ ∩ V + 6= ∅ then γ ∩ V − = ∅ or if γ ∩ V − 6= ∅ then γ ∩ V + = ∅. Next we are going
to prove an implication that will complete the proof. Namely,

Fix(f) ∩ (V + ∪ V −) 6= ∅ =⇒ Fix(f) ∩ [E\(V − ∪ V +)] 6= ∅.
We can assume that f does not have a fixed point in [P,Q]. After that, we can
distinguish two cases:
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• f([P, Q]) ∩ (V − ∪ V +) = ∅.
In this case, it is clear that the bounded connected components of R2\([P,Q]∗
f([P, Q])) are contained in E\(V + ∪ V −) and the proof follows from theorem
1.2.

• f([P, Q]) ∩ (V − ∪ V +) 6= ∅.
From the previous observation, we deduce that either f([P, Q])∩ V + 6= ∅ and
f([P, Q]) ∩ V − = ∅ or f([P, Q]) ∩ V + = ∅ and f([P,Q]) ∩ V − 6= ∅. We are
going to concentrate on the first case. We can assume that there exists a fixed
point R of f that belongs to V + and a bounded connected components of
R2\[P, Q] ∗ f([P, Q]) for otherwise the searched conclusion already holds.
Denote by r the line perpendicular to [P, Q] passing through Q. This line splits
the plane in two half-planes, one of them contains R, B+ and will be denoted
H1 and the other half plane is denoted by H2. Next, define C = D1 ∩ H1,
K = D2 where D1 is the open disc with center at Q and radius ‖P−Q‖

L and D2

is another open disc with center at P and radius ‖P − Q‖. Since f(P ) = Q,
f(Q) = P and f has Lipschitz-constant not greater than L, it follows that
K ∩ C = ∅ and f(C) ⊂ K. Since the loop [P, Q] ∗ f([P,Q]) is contained in
Σ, we can take p : R2 −→ R2 a contraction toward r along the orthogonal
direction so that p(R) and p(B+) belong to C and thus p(f([P, Q])∩H1) ⊂ C.
For instance, if r is the y axis, then p(x1, x2) = (δx1, x2) with δ > 0 small
enough. Next, we define the orientation preserving homeomorphism:

h(x) =

{
p(x) if x ∈ H1

x if x ∈ H2

. (1.4)

Finally it is clear that f̂ = f ◦ h is an orientation preserving homeomorphism
with a two cycle in {P, Q}. Then the Brown’s results is applicable and f̂ must
have a fixed point lying on D, where D is the union of the bounded components
of the complement of the loop [P,Q] ∗ f̂([P, Q]) = [P,Q] ∗ f([P, Q]).
We can deduce that f̂ has not a fixed point in D ∩H1 since h(D ∩H1) ⊂ C

and f(C) ⊂ K. Therefore f̂ has a fixed point in H2∩D but in this case f̂ = f
and so the conclusion is reached.

3 Non-removable points

The elements introduced in the previous section clearly depend on L. In this section,
we will make this dependence explicit. For example, EL is the ellipse with foci at
P, Q and eccentricity 1

L .
We say that a point x ∈ R2\{P,Q} is non-removable if there exists h ∈ FL such
that x is the unique fixed point of h. Notice that the number L plays an important
role in the above definition. The results in the previous section imply that x must
belong to EL\{D+

L ∪D−
L ∪ V +

L ∪ V −
L }.

For all L > 1, the simplest non-removable point is the midpoint between P, Q. After
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a simple change of variables we can assume that P = −Q. Then the map h = −id
belongs to FL and the only fixed point is the origin. The rest of the paper will be
devoted to find other non-removable points.

3.1 The amenable set

In this section we will realize the importance of the ellipse in the location since the
non-removable points ”touch” to the ellipse in a neighbourhood of A+

L and A−L .

Proposition 3.1 Consider P 6= Q two points of R2. Then, given R ∈ R2\{P, Q}
there exists an unique point R∗ in the segment ]P,Q[ such that

‖P −R∗‖
‖Q−R‖ =

‖Q−R∗‖
‖P −R‖ . (1.5)

Moreover, the map
R2\{P, Q} −→ [P,Q]

R 7→ R∗

is Lipschitz-continuous. Notice that the number ε = ‖P−R∗‖
‖Q−R‖ is precisely the eccen-

tricity of the ellipse passing through R and having P and Q as foci.

Proof. It is clear that R belongs to the ellipse with eccentricity

ε =
‖P −Q‖

‖P −R‖+ ‖Q−R‖ .

Firstly, we are going to concentrate on proving ε = ‖P−R∗‖
‖Q−R‖ . We look for a point

R∗ = tQ + (1− t)P with t ∈]0, 1[ such that the previous identity holds. A straight-
forward computation shows that R∗ is unique and t(R) = ‖Q−R‖

‖Q−R‖+‖P−R‖ . Again a
direct computation shows that the identity in (1.5) holds. Here we are using the
equation of the ellipse. Therefore R∗ is the searched point. The function t = t(R)
is Lipschitz-continuous and the same property holds for the map R 7→ R∗.

It will be useful to get some geometric insights on this map. If we consider an
arc of the ellipse going from B−

L to B+
L then the image through the map R 7→ R∗

is the segment going from (B−
L )∗ to (B+

L )∗. Notice also that (B−
L )∗ is closer to B+

L

than (B+
L )∗. Moreover (A±L )∗ = P+Q

2 holds.
This map is helpful for the following geometric construction. Given a point R ∈
R2\[P, Q] we draw the line r passing through R∗ and perpendicular to the segment
[P, Q]. We say that R is a right point (resp. left point) if the line r intersects ]P, R]
(resp. ]Q, R]). Notice that the points of the mediatrix of P and Q are simultane-
ously left and right points. For R a right (resp. left) point, we denote by S the
point of intersection between r and ]P,R] (resp. ]Q,R]). Finally we consider the
line s passing through S and perpendicular to [P, R] (resp. [Q,R]).
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Definition 3.1 A right point R in R2\[P, Q] will be amenable if the line s cuts the
segment ]Q,R].

We can define analogously amenable point for left point. We illustrate this definition
with two figures, in the second case R is amenable but not in the first one.

2

P

R∗

Q

Rr

s

P

R∗

Q

Rr

s

The set of amenable points will be denoted by A(P, Q). The next aim is to study
this set.

Proposition 3.2 Given P 6= Q, let C denote the midpoint. Then the set A(P,Q)
is not empty and there exists ρ > 0 such that A(P,Q) ∩ {‖x− C‖ > ρ} is an open
subset of R2.

Proof. Firstly, the amenable set is not empty since it always contains the mediatrix
of the segment [P, Q], excepting the midpoint. It is clear that there are no amenable
points on the line passing through P and Q. The points in the segment [P, Q] are
excluded by definition. For the remaining points R on the line, we observe that the
line s is perpendicular to [P, Q] and passes through R∗. Thus s cannot intersect the
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segment [Q,R].
Let H+ denote the open half-plane above the line passing through P and Q. By
symmetry it is enough to prove that A(P,Q)∩H+ ∩ {‖x−C‖ > ρ} is open. First,
we pick ρ > 0 large enough so that the angle determined by the vectors

−→
RP and−−→

RQ is small whenever R is outside the disc of center C and radius ρ. To be precise,

^(
−→
RP,

−−→
RQ) ≤ π

4
if ‖R− C‖ > ρ. (1.6)

Consider now the map

Ψ : H+ ∩ {‖x− C‖ > ρ} −→ R2

R 7→ Ψ(R)

where Ψ(R), for a right point, is the intersection point between s and the line
passing through R and Q. For left points the definition of Ψ(R) is analogous.
Notice that the condition (1.6) says that these two lines are far from being parallel
and so they intersect at an unique Ψ(R). Notice also that Ψ(R) = R on the mediatrix
and therefore it is easy to check that Ψ is well defined and continuous.
From the definition of amenable point,

A(P, Q) ∩H+ ∩ {‖x− C‖ > ρ} = Ψ−1(H+)

and so we conclude that it is an open set.

Theorem 3.1 Let S be the open strip between P and Q determined by the lines
perpendicular to the segment [P,Q] passing through P and Q. Then every point in
EL ∩ A(P, Q) ∩ S is non-removable.

We are going to need the following definition and results.

Definition 3.2 Given points z1, z2, z3, ..., zn in the unit circle S1, we say that they
are cyclically ordered if they can be represented as zj = eiθj with θ1 < θ2 < ... <
θ1 + 2π. We employ the notation

z1 ≺ z2 ≺ ... ≺ zn.

The set of rays emanating from a point R on the plane are in an one-to-one corre-
spondence with S1 and we will employ the cyclic ordering on this set of rays. Notice
that we are ordering the rays in the counter-clockwise sense.

Remark 3.1 Let r1 ≺ r2 ≺ r3... ≺ rn be rays emanating from a point R and
consider the closed sectors A1, A2, ..., An which are determined by r1, ..., rn. Assume
that fi : Ai −→ R2 is a Lipschitz-continuous with [fi]Lip ≤ Li. Moreover f1 = fn

on r1 and fi = fi+1 on ri+1, 1 ≤ i ≤ n− 1. Then the map f : R2 −→ R2 defined as
f(x) = fi(x), when x belongs to Ai, is well defined and Lipschitz-continuous with
[f ]Lip ≤ max{Li : i = 1, 2, ..., n}.
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Lemma 3.1 Let A be a linear map of R2 satisfying A(v1) = w1, A(v2) = 0 where
v1, v2 are two linearly independent vectors. Then

‖A‖ =
‖w1‖

‖v1‖| sin α|
where α is the angle between v1 and v2 and ‖A‖ refers to the matrix norm associated
to the euclidean norm in the plane.

Proof. Given a rotation R, it is clear that ‖A ◦ R‖ = ‖R ◦ A‖ = ‖A‖ and so,
after a rescaling, it is not restrictive to assume that v1 = (1, 0) and w1 = λv1 with
λ > 0. Thus v2 = ‖v2‖(cosα, sin α). Now, we have just to compute the norm of the
following matrix

A = λ

(
1 − cos α

sin α
0 0

)
.

Proof of the theorem 3.1. We are going to prove that given L > 1 and R ∈
EL∩A(P,Q)∩S then for all L∗ > L there exists F ∈ FL∗ such that Fix(F ) = {R}.
The previous claim proves the theorem since EL =

⋂
1≤L<L EL.

In the rest of the construction we will assume that R is an amenable right point.
The homeomorphism, which we are going to construct, is the composition of two
homeomorphism:
Construction of the first homeomorphism.
The line s splits the plane into two half-planes, one of them contains the point R
and will be denoted by H1 and the other contains the segment [P, Q] and we will be
denoted by H2. To fix the notation we assume that they are closed so that H1∩H2

is the line s. We choose an orthonormal basis {v, w} of R2, such that w is in the
direction of s and and v enters into H1.

P R∗ Q

R

v

w
H1

H2
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Next we consider a contraction on H1 parallel to v. To be more precise take δ ∈]0, 1]
and define (for simplicity assume that S = 0)

hδ(x) =

{
δ < x, v > v+ < x, w > w if x ∈ H1

x if x ∈ H2.

This map has the following properties:

• hδ is a Lipschitz-continuous homeomorphism with [hδ]Lip = 1,

• [P, Q] ⊂ Fix(hδ),

• hδ(R) −→ S as δ ↘ 0.

Before the construction of the second map, we need some preliminaries. For a
fixed δ in ]0, 1] we employ the notation Rδ = hδ(R). Denote by t1 and t3 the rays
emanating from Rδ and passing through P, Q respectively. The sets aδ = h−1(t1)
and bδ = h−1

δ (t3) will play a role in what follows. Notice that aδ is just the ray
emanating from R and passing through P while bδ ia a piecewise linear set.
Finally we select an arbitrary ray j2 emanating from R and lying in the sector
determined by the rays passing through P, Q. This ray is chosen so that it does not
intersect aδ and bδ.
Construction of the second homeomorphism.
Consider an ordered sequence of rays

t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5

emanating from Rδ and having the following properties: t1, t2, t3 pass through
P,R∗, Q respectively, t4 and t5 are perpendicular to t3 and t1 respectively. No-
tice that this construction is possible because the angle determined by the rays
t1 and t3 is less than π. Consider A1, A2, A3, A4, A5 the sectors determined by the
previous rays so that the boundaries of A1 and A5 are t1∪t2 and t5∪t1 respectively.
Now, we consider other configuration j1 ≺ j2 ≺ j3 ≺ j4 ≺ j5. These rays emanate
from R and have following properties: j1, j4 pass through P,Q respectively, j2 is
defined previously, j3 is an arbitrary ray between j2 and j4, and finally j5 is the ray
bisecting the exterior of P̂RQ.
We distinguish between points P, Q, R, Rδ... lying in the affine space and vectors −→v
in the underlying vector space. Let −→vti and −→vji be the vectors in the direction of the
rays ti, ji having norm 1.
Fix ε > 0, we are going to define a continuous map fε which is affine on each sector
A1, A2, ..., A5. In A1, fε is the unique affine map such that Rδ 7→ R, P 7→ Q,−→vt2 7→ ε−→vj5 . In A2 it is sufficient to define fε on t3, namely Q 7→ P . Analogously in
A3, −→vt4 7→ ε−→vj2 . In A4, −→vt5 7→ ε−→vj3 . In A5, it is defined by continuity. The figure 1
describes the behaviour of the map.
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Rδ

t4

R∗

t2t1

t5

Q

t3

P

R

j5

j1

Q

j2 j3 j4

P

Figure 1: Behaviour of fε

For ε > 0, fε is an orientation preserving homeomorphism such that fε(P ) = Q,
fε(Q) = P , fε(Rδ) = R.
In each sector Ai we employ the notation

fε(x) = Mε,ix + bi i = 1, 2, ...5.

As ε ↘ 0 we notice that Mε,1 converges to linear map of the type given by the
lemma 3.1 with −→v1 = P −Rδ, −→w1 = Q−R, −→v2 = R∗−Rδ. The same happens in the
sectors A2, A3 and A5 with −→v1 = Q−Rδ, −→w1 = P −R, −→v2 = R∗ −Rδ;−→v1 = Q−Rδ,−→w1 = P − R, −→v2 = −→vt4 ;

−→v1 = P − Rδ, −→w1 = Q − R, −→v2 = −→vt5 respectively. Finally
we observe that Mε,4 converges to the matrix 0. The continuity of the norm, the
lemma 3.1 and the remark 3.1 imply that

lim
ε↘0

[fε]Lip = max{ ‖R−Q‖
‖Rδ − P‖ sin β

,
‖R− P‖

‖Rδ −Q‖ sin γ} = L̃

where β is the angle between t1, t2 and γ is the angle between t2 and t3. When Rδ

is S, L̃ = L because
‖P − S‖ sin β = ‖P −R∗‖,
‖Q− S‖ sin γ = ‖Q−R∗‖

and using the proposition 1.5, we know that

L =
‖R−Q‖
‖P −R∗‖ =

‖R− P‖
‖Q−R∗‖ .

Therefore, we can achieve ε0 > 0 and δ0 > 0 such that [fε0 ]Lip ≤ L∗.
Finally, consider F = fε0 ◦hδ0 . It is clear that F is an orientation-preserving home-
omorphism and verifies

F (P ) = fε(hδ(P )) = fε(P ) = Q,
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F (Q) = fε(hδ(Q)) = fε(Q) = P,

F (R) = fε(hδ(R)) = fε(R) = R.

Since [hδ]Lip = 1, it is clear that [F ]Lip ≤ L∗.
Now, we have just to prove that the uniqueness of fixed point. We denote by W the
closed region limited by aδ and bδ which does not contain the segment [P, Q]. We
recall that aδ is the ray emanating from R passing through P and bδ is a piecewise
linear set. By construction, we know that that F (aδ) is the ray j4 where j4 is the
ray emanating from R and passing through Q and F (bδ) is the ray j1 where j1 is the
ray emanating from R and passing through P . As aδ ∩ j4 = {R} and bδ ∩ j1 = {R},
we deduce that {R} is the unique fixed point for F in the boundary of W . In
addition, we know that F (W ) is the closure of the sector P̂RQ.

From the previous comments, we deduce easily that {R} is the unique fixed
point for F in the following regions:

• Region 1: R1 is the closed region determined by the intersection between the
sector P̂RQ and the complement of W.

• Region 2: R2 is the closed region determined by the complement of the sector
P̂RQ and W .

To conclude the uniqueness of fixed point for F we need to study the following
regions:

• Region 3: R3 is the closed region determined by the intersection between the
sector P̂RQ and W . By construction, we deduce that hδ(R3) is contained in
the sector determined by j1 and j2. From the definition j2, we deduce that
F (R3) ∩R3 = {R}.

• Region 4: R4 is the closed region determined by the complement of P̂RQ and
the complement of W . From the definition of R4 we deduce that hδ(R4) =
R4. Hence F (R4) = fε(R4). We are going to show that R4 ⊂ A2 and so

12



F (R4) ∩ R4 ⊂ fε(A2) ∩ A2 = {R}. To verify that R4 is contained in A2 it is
sufficient to check that the ray t2 and j4do not intersect. This holds because
R is an amenable right point lying in the strip S.

3.2 Non-removable points in the minor axis

In this subsection we prove that , for large values of L, the ellipse EL is optimal in
the small neighborhood of the minor axis.

Theorem 3.2 There exists L∗ such that for L > L∗ there exists an open set UL

such that
[A−L , A+

L ] ⊂ UL

and every point in UL ∩ EL is non-removable.

This result is obtained as a direct consequence of Proposition 3.2 and Theorem 3.1
and the result stated below. From the proofs it is possible to obtain a more or less
explicit description of UL.

Proposition 3.3 For each L > 1 there exists an open set VL ⊂ EL such that
]A−L , A+

L [⊂ VL and every point of VL is non-removable.

Proof. For simplicity, suppose that Q = (1, 0) and P = (−1, 0). Also we fix a point
(x0, y0) with 0 ≤ x0 < 1, 0 < y0. We are going to construct a family of maps {Fλ}
having a two cycle in {P,Q} and an unique fixed point in (x0, y0). Given λ > 0, we
define

Fλ(x, y) = (ϕ(x), ψ(x) + τ(y))

where ϕ,ψ, τ : R −→ R are the simplest piecewise linear functions that can be
constructed in the following way. First, we fix µ > y0 close enough to y0 so that the
line joining (0, µ) and (y0, y0) has slope dominated by λ. In other words, µ−y0

y0
< λ

and so µ tends to y0 if λ tends to 0. Then we impose the conditions:

• φ(−1) = 1, φ(x0) = x0, φ(1) = −1, φ has a corner point at (x0, x0).

• τ(0) = µ, τ(y0) = y0 and τ ′(y0) = −λ, τ has a corner point at (y0, y0).

• ψ(−1) = −µ, ψ(x0) = 0, ψ(1) = −µ, ψ has a corner point at x0.

It is easy to prove that Fλ is an orientation-preserving homeomorphism with Fλ(P ) =
Q, Fλ(Q) = P , Fix(Fλ) = {(x0, y0)}. Moreover Fλ is Lipschitz-continuous and it is
possible to compute its Lipschitz-constant via the Jacobian matrix, defined almost
every (x, y) and using the following observation of the norm of a triangular matrix.

Given a matrix A =
(

a 0
b c

)
the norm is given by

‖A‖ =

√
a2 + b2 + c2 + |a2 + b2 − c2|

2
.
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Letting λ to tend to 0 we notice that:

lim
λ↘0

[Fλ]Lip =
√

(
1 + x0

1− x0
)2 + (

y0

1− x0
)2

since the possible values of c are 0 < µ−y0
y0

< λ. From this construction we conclude
that the points (x0, y0) satisfying

(
1 + x0

1− x0
)2 + (

y0

1− x0
)2 < L2, 0 ≤ x0 < 1, y0 > 0

are non-removable.
Also the points (x0, 0) with ( 1+x0

1−x0
)2 < L2 are non-removable. This is easily achieved

with a map of the type Fλ(x, y) = (φ(x), τ(y)). Repeating the previous argument
on the other quadrants one concludes the proof.

The search of non-removable points is not finished. For instance, using a similar
homeomorphism to the second homeomorphism in the Theorem 3.1, it is possible
to construct, apart from D+ and D−, a strip of the major axis between P, Q of
non-removable points.
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