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Abstract. We prove analytically the existence of chaotic dynamics in some classical
discrete-time age-structured population models. Our approach allows us to estimate the sen-
sitive dependence on the initial conditions, regions of initial data with chaotic behavior, and
explicit ranges of parameters for which the considered models display chaos. These properties
have important implications to evaluate the influence of a chaotic regime in the predictions
based on mathematical models. We illustrate through particular examples how to apply our
results.
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1 Introduction

Understanding chaos is an important aim in many disciplines. May [24, 25] has already
pointed out the possibility of simple deterministic models to display complex behavior,
and the importance of chaos in ecology. The main implication of erratic fluctuations
typical of a chaotic system is that long-time predictions are not possible; as emphasized
by Hastings et al. [15], the characteristic of chaos that better represents this difficulty
is a sensitive dependence on initial conditions. Besides this property, there are other
important features in a chaotic system. Intuitively, and according to Smale’s expository
article [28], a chaotic phenomenon occurs if it is possible to reproduce, within the
system and varying the initial conditions, all the possible outcomes of a coin-flipping
experiment (see Definition 3.1). This notion has strong implications such as sensitive
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dependence on the initial conditions, and the existence of aperiodic orbits and infinitely
many periodic points.

Although analytic proofs of chaos are now available for some one-dimensional maps
usually employed in population dynamics (see, e.g, Thunberg’s survey [30], and refer-
ences therein), it is hard to find evidence of chaos in ecology. The main reason is the
difficulty in manipulating and experimenting with ecological systems. A remarkable
exception is the work made by Cushing et al. [7, 8, 10, 11]. They derived a structured
population model, known as LPA, to study the growth of laboratory populations of
flour beetles of the genus Tribolium, and their experiments confirmed chaotic behavior
predicted by the model. Other age-structured population models in which chaos has
been recently explored are Clark’s equation [3, 16], and a class of density-dependent
Leslie models [14, 19, 32, 33, 35].

The aim of this paper is twofold. On the one hand, we provide analytic proofs of
existence of chaotic dynamics in some systems of difference equations, and we apply our
results to the aforementioned structured population models. From a biological point
of view, our strategy consists of introducing chaos in a specific age group, and then
studying its influence in the full system; under a mathematical perspective, we derive
criteria of chaotic dynamics in higher-dimensional systems using a generalization of
some elementary notions of chaos in one dimension. On the other hand, an important
purpose of this work is to interpret some natural properties of complex dynamics in
ecological models. Specifically, we stress in the estimation of sensitive dependence on
the initial conditions and in the location of regions of both the phase space and the set
of parameters where the system displays chaos. These two properties have important
practical implications to evaluate the influence of a chaotic regime in predictions based
on mathematical models.

The organization of the paper is as follows. In Section 2, we review the specific
population models in which we focus our study; in Section 3 we introduce the notion
of chaotic dynamics that we use, and derive some results about chaos for continuous
higher-dimensional maps. Sections 4 and 5 contain our main applications to prove chaos
in the structured models introduced in Section 2; some computations are included in
two appendices. Finally, in Section 6 we discuss the main conclusions of this paper.

2 Structured population models

Mathematical formulation of discrete models leads to consider difference equations or
matrix models, which are nonlinear if changes in response to population density are
taken into account. We focus our study on discrete-time age-structured models for a
single population, that is to say, the model describes the distribution of individuals
among the possible categories of important age differences. The monographs [4, 9, 31]
are good sources both for theory and applications of structured population models.

Perhaps the simplest formulation that combines age structure and density-dependent
recruitment has the form

xn = αxn−1 + (1− α)f(xn−k), (2.1)
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which is commonly known as the Clark model [3, 5], and has been employed in fishery
models (see [26] and its references). For k = 1, (2.1) is a first-order difference equation
that provides a simple way to allow for certain survivorship of adults from one repro-
duction period to the next. This one-dimensional model was formulated by Clark [6];
see also [29, Section 9.2]. For recent work involving this equation, including chaotic
dynamics, we refer the reader to [21, 23, 36].

For k ≥ 2, we do not know any analytic proof of chaos in (2.1). Botsford [3] has
already reported some numerical results suggesting chaotic behavior in (2.1) with the
Ricker map f(x) = xer(1−x), r > 0. For a more detailed study, including numerical
computations of Lyapunov exponents for k = 3, we refer to [16].

Another simple structured model for which existence of chaos has been explored is
a density-dependent Leslie population model with two age classes{

xn+1 = (a1xn + a2yn) exp(−λ1xn − λ2yn)

yn+1 = bxn
(2.2)

where a1, a2, λ1, λ2 are positive parameters, and b ∈]0, 1].
Guckenheimer et al. [14] considered the case a1 = a2 = a, λ1 = λ2 = 0.1, b = 1

to show numerically a route to chaos as a is increased. See also [32, 35] for a detailed
study of stability and bifurcations. Recently, Ugarcovici and Weiss [33] proved the
existence of a set of parameters for which system (2.2) admits a chaotic attractor.

As mentioned before, a study to predict the population dynamics of the flour beetle
Tribolium published by Cushing et al. in a series of papers (see [11] and references
therein) provides a structured population model that became a paradigm for chaos in
ecology. The model distinguishes three stages (larvae, pupae and adults), and it is
referred to as the LPA model:

Ln+1 = bAn exp(−celLn − ceaAn)

Pn+1 = (1− µl)Ln
An+1 = Pn exp(−cpaAn) + (1− µa)An

(2.3)

All coefficients are nonnegative, and µl < 1, µa ≤ 1. See, e.g., [12] for a biological in-
terpretation of the involved parameters and many properties of this system. A route to
chaos numerically predicted by the LPA model (2.3) was confirmed by some laboratory
experiments. However, as stated in [11], no proof of chaotic dynamics is available.

3 Background on chaotic dynamics

In this section we give the main tools and definitions that we use in this paper. We
understand chaos in the sense of the following definition.

Definition 3.1. Consider (X, d) a metric space. We say that a continuous map ψ :
X → X induces chaotic dynamics on two symbols if there exist two disjoint
compact sets K0,K1 ⊂ X such that, for each two-sided sequence (si)i∈Z ∈ {0, 1}Z,
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there exists a corresponding sequence (ωi)i∈Z ∈ (K0 ∪ K1)Z such that

ωi ∈ Ksi and ωi+1 = ψ(ωi) for all i ∈ Z, (3.1)

and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si, ∀ i ∈ Z) for some
k ≥ 1, there exists a k-periodic sequence (ωi)i∈Z ∈ (K0 ∪ K1)Z satisfying (3.1).

Definition 3.1 guarantees natural properties of complex dynamics such as sensitive
dependence on the initial conditions or the presence of an invariant set Λ being tran-
sitive and semi conjugate with the Bernoulli shift. See Theorem 2.2 in [27] for a list of
properties of the map ψ that hold if the conditions of Definition 3.1 are satisfied. We
note that a map that is chaotic according to Definition 3.1 is also chaotic in the sense
of Block and Coppel and in the sense of coin-tossing; we refer the reader to [18] and
[1, Remarks 3.2] for precise definitions and further comments. Moreover, our definition
of chaos ensures the existence of periodic points of any period n ∈ N, in contrast with
other definitions (see, e.g., [1, 2, 18]).

Our primary purpose is to obtain some criteria to detect chaos analytically. To
this end, we use the method developed by Zgliczyński and Gidea in [37] (see also [38]).
Definitions 3.2 and 3.3 below correspond to Definitions 2 and 3 in [37]. We employ the
usual maximum norm in Rn,

‖(x1, x2, . . . , xn)‖ = max{|xi| : i = 1, 2, . . . , n},

and use the notation Jn = [−1, 1]n for the closed ball of radius 1 centered at 0 ∈ Rn.

Definition 3.2. An h-set is a quadruple consisting of

• a compact subset N of Rn,

• a pair of numbers u = u(N), s = s(N) ∈ {0, 1, 2, . . . }, with u+ s = n,

• a homeomorphism cN : Rn −→ Rn, such that cN (N) = Jn.

In this setting, we employ the notation

N−c = ∂Ju × Js,

N+
c = Ju × ∂Js.

As mentioned in [37], the numbers u(N) and s(N) stand for the dimensions of
nominally unstable and stable directions, respectively. Notice that if u(N) = 0 then
N−c = ∅, and if s(N) = 0 then N+

c = ∅.

Definition 3.3. Assume that N,M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f : N −→ Rn be a continuous map, and define fc = cM ◦f ◦c−1N :
Jn −→ Rn. We say that N f -covers M , and write it as

N
f

=⇒M,

if the following conditions are satisfied:
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1 There exists a continuous homotopy H : [0, 1] × Jn −→ Rn, such that the following
conditions hold true:

H0 = fc,

H([0, 1], N−c ) ∩ Jn = ∅,

H([0, 1], Jn) ∩M+
c = ∅.

2 There exits a linear map A : Ru −→ Ru, such that H1(p, q) = (Ap, 0) for p ∈ Ju and
q ∈ Js, and A(∂Ju) ⊂ Ru\Ju.

Next we link these concepts with existence of chaotic dynamics.

Theorem 3.1. Let F : D ⊂ Rn −→ Rn be a continuous map and assume that there
exist two disjoint h-sets N0 and N1 such that

Ni
F

=⇒ Nj

for all i, j = 0, 1. Then F induces chaotic dynamics on two symbols (with compact sets
K0 = N0 and K1 = N1).

Proof. Let us first take a sequence s = (si) ∈ {0, 1}Z so that si+k = si for all
i ∈ Z. In this case, it follows from Theorem 4 in [37] that there exists x ∈ N0 ∪N1 so
that

F k(x) = x, and F i(x) ∈ Nsi , for all i ∈ Z.

Now we prove the assertion of the theorem. Fix an arbitrary sequence s = (sj)j∈Z,
and, for each i ∈ N, define the compact set

Γi = {ω ∈ Ns0 : F j(ω) ∈ Nsj for all 1 ≤ j ≤ i}.

Clearly Γi+1 ⊂ Γi and, by the previous step, Γi 6= ∅, for all i ∈ N. Indeed, it is sufficient
to consider the (i+ 1)-periodic sequence that matches s for j = 0, 1, . . . , i. Hence,

∞⋂
i=1

Γi 6= ∅.

To conclude the proof of the theorem, we notice that a standard diagonal argument
enables us to extend the result to bi-infinite sequences; see [17, Theorem 2.2]. ut

The following result provides us with an elementary and effective method to esti-
mate the sensitive dependence in a chaotic regime when the conditions of Theorem 3.1
hold.

Proposition 3.1. Take N0, N1, and F : D ⊂ Rn −→ Rn as in the statement of
Theorem 3.1, and denote d = dist(N0, N1) > 0. For ε > 0, we define

Sε = max{n ∈ N : N0 contains n disjoint balls of diameter ε},
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and

N∗ = 1 +

⌈
lnSε
ln 2

⌉
,

where, for x ∈ R, dxe denotes the ceiling of x, that is, the smallest integer not less than
x.

Then, there are two points x0, y0 satisfying that

• x0, y0 ∈ N0,

• ‖x0 − y0‖ < ε,

• max
0≤j≤N∗

{
‖F j(x0)− F j(y0)‖

}
> d.

Proof. Fix ε > 0. Given τ = (τ1, . . . , τN∗) with τi ∈ {0, 1} we define

Γτ =
{
x ∈ N0 : F j(x) ∈ Nτj for all 1 ≤ j ≤ N∗

}
.

In this way, we can construct 2N
∗

disjoint nonempty compact sets contained in N0.
Since, by definition, Sε < 2N

∗
, there are two different N∗-tuples, τ ′, τ ′′ so that

dist(Γτ ′ ,Γτ ′′) < ε.

Hence, we can choose two points x0 ∈ Γτ ′ and y0 ∈ Γτ ′′ so that ‖x0 − y0‖ < ε.

Since τ ′ 6= τ ′′, there exists at least one index j0 ≤ N∗ such that τ ′j0 6= τ ′′j0 . By the
definition of Γτ ′ and Γτ ′′ , it follows that

F j0(x0) ∈ Nτ ′j0 , F
j0(y0) ∈ Nτ ′′j0 ,

and therefore ‖F j0(x0)− F j0(y0)‖ ≥ dist(N0, N1) = d, as we wanted to prove. ut

4 Chaotic dynamics in models (2.1) and (2.3)

In this section we illustrate how to apply the previous results to systems (2.1) and
(2.3). For these models, we obtain analytically chaotic regimes where the map of the
system only has unstable directions in the sense of Definition 3.2. To this aim, we
need to introduce the following notion of turbulence, which is more restrictive than the
usual one [2, Chapter II].

Definition 4.1. Let I be a real interval, and g : I −→ I a continuous map. We say
that g is δ-strictly turbulent if there exist four constants β0 < β1 < γ0 < γ1, and δ > 0
so that

g(β0) < β0 − δ < γ1 + δ < g(β1),

g(γ1) < β0 − δ < γ1 + δ < g(γ0).
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We first consider the Clark model (2.1). There is a one-to-one correspondence
between the solutions of equation (2.1) and the orbits of the map Fα : Rk → Rk
defined by

Fα(x1, . . . , xk) = (x2, . . . , xk, αxk + (1− α)f(x1)).

For this map we get the following result.

Theorem 4.1. Assume that f is δ-strictly turbulent with parameters β0 < β1 < γ0 <
γ1. Then there exists α0 > 0 so that for all 0 ≤ α ≤ α0, F kα induces chaotic dynamics
on two symbols relative to N0 = [β0, β1]k and N1 = [γ0, γ1]k.

Proof. It follows from the expression of Fα that, for α = 0,

F k0 (x1, . . . , xk) = (f(x1), . . . , f(xk)).

Using the continuity of Fα with respect to α, we obtain that there is a constant α0 > 0
so that for all i = 1, . . . , k, (x1, . . . , xi−1, xi+1, . . . , xk) ∈ [β0, β1]k−1, and α ≤ α0,∣∣(F kα)i(x1, . . . , xi−1, β0, x1+i, . . . , xk)− f(β0)

∣∣ < δ, (4.1)∣∣(F kα)i(x1, . . . , xi−1, β1, x1+i, . . . , xk)− f(β1)
∣∣ < δ. (4.2)

Analogously, for all i = 1, . . . , k and (x1, . . . , xi−1, xi+1, . . . , xk) ∈ [γ0, γ1]k−1,∣∣(F kα)i(x1, . . . , xi−1, γ0, x1+i, . . . , xk)− f(γ0)
∣∣ < δ, (4.3)∣∣(F kα)i(x1, . . . , xi−1, γ1, x1+i, . . . , xk)− f(γ1)
∣∣ < δ. (4.4)

Next, let us consider the translations tv, tw according to the vectors v, w given by

v =

(
−β0 + β1

2
, · · · ,−β0 + β1

2

)
, w =

(
−γ0 + γ1

2
, · · · ,−γ0 + γ1

2

)
,

respectively, and the maps h0, h1 defined by

h0(x1, . . . , xk) =
2

β1 − β0
(x1, . . . , xk) , h1(x1, . . . , xk) =

2

γ1 − γ0
(x1, . . . , xk).

We claim that the h-cubes N0, N1 with

• u(N0) = u(N1) = k and s(N0) = s(N1) = 0,

• cN0
= h0 ◦ tv, cN1

= h1 ◦ tw,

satisfy the covering relations

Ni
Fkα
=⇒ Nj ,

for all i, j = 0, 1. Note that N+
c = ∅ and N−c = ∂Jk, for N = Ni, i = 0, 1.

We first prove the relation

N0

Fkα
=⇒ N0. (4.5)



8 E. Liz and A. Ruiz-Herrera

To this end, we take the linear map A(x) = 2x, and define the homotopy H : [0, 1] ×
Jk −→ Rk by

H(t, x) = tA(x) + (1− t)
(
cN0
◦ F kα ◦ c−1N0

)
(x).

Clearly, H(0, ·) = cN0
◦ F kα ◦ c−1N0

and H(1, ·) = A. Next we prove that

H(t, ∂Jk) ∩ Jk = ∅.

Indeed, take a point x ∈ ∂Jk. For this point, we can ensure that there is an index
i ∈ {1, . . . , k} so that xi is either equal to −1 or to 1. Assume that we are in the first
case (the proof in the other case is completely analogous). By the definition of cN0 , we
deduce that

c−1N0
(x) = (y1, . . . , yi−1, β0, yi+1, . . . , yk),

with (y1, . . . , yi−1, yi+1, . . . , yk) ∈ [β0, β1]k−1. Now, using condition (4.1), it follows that∣∣(F kα)i(y1, . . . , yi−1, β0, yi+1, . . . , yk)− f(β0)
∣∣ < δ.

Therefore, as f is δ-strictly turbulent, we obtain that

(F kα)i(y1, . . . , yi−1, β0, yi+1, . . . , yk) < β0.

Finally, by the definition of cN0 we arrive at(
cN0 ◦ F kα

)
i
(y1, . . . , yi−1, β0, yi+1, . . . , yk) < −1.

Bringing all the information together, and using that (Ax)i = 2xi = −2, it is clear that

t(Ax)i + (1− t)
(
cN0
◦ F kα ◦ c−1N0

(x)
)
i
< −1,

for all t ∈ [0, 1], and therefore H(t, x) 6∈ Jk. The proof of (4.5) is now complete. The
same reasoning applies to check the reminder covering relations. We just note that for
the relations

N1

Fkα
=⇒ Ni

with i = 0, 1, the choice for the linear map is A(x) = −2x. ut

Remark 4.1. If some iteration fm is δ-strictly turbulent, then the conclusion of The-
orem 4.1 holds replacing F kα by F kmα .

Remark 4.2. The requirement of an upper bound in the range of α imposed in Theorem
4.1 is necessary. For values of α close to 1, equation (2.1) has a globally stable positive
equilibrium (see [13, 20] and their references). Actually, for k = 1, α is sometimes
used as a control parameter so that increasing its value becomes an effective tool for
chaos control [22].

To ensure the existence of chaotic dynamics in (2.1) for a particular choice of α
when f is δ-strictly turbulent, we have to verify conditions (4.1)-(4.4). We illustrate
this fact with an example.
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Example 4.1. Consider the system

xn = αxn−1 + (1− α)f(xn−2), (4.6)

where f(x) = x exp(4 − x). A direct computation allows us to check that f2 is 2.4-
strictly turbulent with parameters 3 < 5.75 < 6.25 < 11. In Appendix 1, we show that
conditions (4.1)-(4.4) hold for f2 with α0 = 0.001.

It is worth pointing out some biological implications of our results for equation
(4.6). Specifically, there are two disjoint regions, namely

N0 = [3, 5.75]2, N1 = [6.25, 11]2,

with the “coin-tossing” property for F 4
α. For instance, if we take the bi-infinite sequence

(. . . , 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . . )

(assume that the first 1 corresponds to the index 0 in the sequence), we can choose a
point x so that

x ∈ N1, F
4
α(x) ∈ N0, F

8
α(x) ∈ N1, F

12
α (x) ∈ N0, F

16
α (x) ∈ N0, F

20
α (x) ∈ N1, . . .

Moreover, if the sequence is periodic, we can take a periodic point following the
“itinerary” of the sequence. As a direct consequence of Proposition 3.1, we can also
estimate the sensitive dependence. Indeed, for ε > 0, clearly

Sε ≤
⌈

(5.75− 3)2

ε2

⌉
:= B

Hence, there are two points x0, y0 ∈ [3, 5.75]2 such that ‖x0 − y0‖ < ε and, for some
number j ∈ {1, . . . , N∗}, we have that F 4j(x0) ∈ [3, 5.75]2 and F 4j(y0) ∈ [6.25, 11]2.
Therefore,

‖F 4j(x0)− F 4j(y0)‖ ≥ 0.5.

We emphasize that, for any given value of ε > 0, we can compute an explicit bound
d lnBln 2 e+ 1 for N∗.

Next we study the LPA model (2.3), whose solutions are the orbits of the map
G : R3 → R3 defined by

G(L,P,A) = (bA exp(−celL− ceaA), (1− µl)L,P exp(−cpaA) + (1− µa)A) . (4.7)

Clearly, for cel = µl = cpa = 0 and µa = 1, system (2.3) becomes Clark’s model with
α = 0, k = 3 and f(x) = bxe−ceax. Thus, the proof of Theorem 4.1 can be easily
adapted to deal with (2.3). Since there are values of b and cea so that f2 is δ-strictly
turbulent, the following result establishes chaos for the LPA model.

Theorem 4.2. Assume that f2 is δ-strictly turbulent with parameters β0 < β1 < γ0 <
γ1, and δ > 0. There exists σ > 0 so that if 0 ≤ cel, µl, cpa ≤ σ and 1 − σ ≤ µa ≤ 1,
then G6 induces chaotic dynamics on two symbols relative to N0 = [β0, β1]3 and N1 =
[γ0, γ1]3, where G is the map defined in (4.7).
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We observe that, reasoning in a similar way as in the previous example, it is possible
to estimate properties of sensitive dependence on the initial conditions for particular
cases of system (2.3).

To the best of the authors’ knowledge, Theorem 4.2 is the first analytic result of
chaotic dynamics for the LPA model in the interior of the nonnegative cone R3

+. It is
worth mentioning that in [10, Theorem 2], Cushing proves analytically the existence
of fully synchronous orbits with chaotic behavior when µa = 1.

5 Chaotic dynamics in system (2.2)

In this section we apply the results of Section 3 to the nonlinear Leslie population
model (2.2). In contrast to the previous section, in this case we find a chaotic regime
where the map of the system has one stable direction and other one unstable (in the
sense of Definition 3.2). Associated to (2.2), we define the map in R2

F (x, y) = ((a1x+ a2y) exp(−λ1x− λ2y), bx) ,

where all the parameters are strictly positive, and b ∈]0, 1]. Our main result in this
section is the following.

Theorem 5.1. Assume that f(x) = a1x exp(−λ1x) satisfies that f2 is δ-strictly tur-
bulent with parameters α0 < α1 < β0 < β1 and δ > 0. Suppose that there is r > 0 so
that the following inequalities are fulfilled:

b

e

(
a1
λ1

+
a2
λ2

)
< r (5.1)

−a1
e

(
e−λ2r − 1

)
< ln

(
α0 − a1a2r − a2bβ1

α0 − δ

)
(5.2)

λ2r + λ2bβ1 + λ1a2r < ln

(
β1 + δ

β1

)
. (5.3)

Then F 2 induces chaotic dynamics on two symbols relative to N0 = [α0, α1]× [0, r] and
N1 = [β0, β1]× [0, r].

Proof. It is easy to check that N0 and N1 are h-sets, with

• u(N0) = u(N1) = 1 (x-direction) and s(N0) = s(N1) = 1 (y-direction),

• cN0 = h0 ◦ tv and cN1 = h1 ◦ tw,

where tv and tw are the translations according to the vectors

v =

(
−(α0 + α1)

2
,
−r
2

)
, w =

(
−(β0 + β1)

2
,
−r
2

)
,
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respectively, and

h0(x, y) =

(
2x

α1 − α0
,

2y

r

)
, h1(x, y) =

(
2x

β1 − β0
,

2y

r

)
.

We have to demonstrate that

Ni
F 2

=⇒ Nj ,

for i, j = 0, 1. We give the proof only for the case i = j = 0. Indeed, consider the
homotopy

H(t, (x, y)) = t
(
cN0
◦ F 2 ◦ c−1N0

)
(x, y) + (1− t)A(x, y),

where A(x, y) = (2x, 0).
Define f(x) = a1xe

−λ1x. After some elementary computations (see Appendix 2),
we arrive at the inequalities

F 2
1 (x, y) ≤ f2(x)(exp(−a1/e))exp(−λ2y)−1 + a1a2y + a2bx

F 2
1 (x, y) ≥ f2(x) exp(−λ2bx) exp(−λ1a2y) exp(−λ2y)

F 2
2 (x, y) ≤ b

(
a1
λ1e

+
a2
λ2e

)
.

Now, since b > 0, we deduce from (5.1) that, for all (x, y) ∈ N0,

0 < F 2
2 (x, y) < r. (5.4)

Analogously, as f2(α0) < α0 − δ, we obtain that

F 2
1 (α0, y) ≤ (α0 − δ)(exp(−a1/e))exp(−λ2r)−1 + a1a2r + a2bα0, (5.5)

for all y ∈ [0, r]. By using (5.2) together with the inequality α0 < β1, we get from
expression (5.5) that, for all y ∈ [0, r],

F 2
1 (α0, y) < α0. (5.6)

Reasoning in the same way with condition (5.3), it may be concluded that

F 2
1 (α1, y) > α1, (5.7)

for all y ∈ [0, r].
From inequalities (5.4), (5.6), and (5.7), it follows that

cN0
◦ F 2 ◦ c−1N0

({−1} × [−1, 1]) ⊂ {(x, y) : x < −1}

cN0
◦ F 2 ◦ c−1N0

({1} × [−1, 1]) ⊂ {(x, y) : x > 1}

cN0
◦ F 2 ◦ c−1N0

([−1, 1]2) ⊂ {(x, y) : −1 < y < 1}.
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These properties, together with the expression of A, lead to the desired conclusion

H([0, 1], {−1, 1} × [−1, 1]) ∩ [−1, 1]2 = ∅,

H([0, 1], [−1, 1]2) ∩ ([−1, 1]× {−1, 1}) = ∅.

The same steps lead to the covering relation

N0
F 2

=⇒ N1.

For the relations

N1
F 2

=⇒ Ni,

with i = 0, 1, the most significant change consists of taking the linear map A(x, y) =
(−2x, 0). ut

Now we apply Theorem 5.1 in a particular example. Take f(x) = xe4−x (a1 = e4,
λ1 = 1). As claimed in Section 4, f2 is 2.4-strictly turbulent with parameters 3 <
5.75 < 6.25 < 11. Straightforward computations show that conditions (5.1)-(5.3) hold
for r = 0.065, b = 0.003, a2 = 0.1, and λ2 = 1.

In general, to use Theorem 5.1, the parameters b and r must be close to zero. Nev-
ertheless, for values of b near 1, system (2.2) also displays chaotic dynamics; indeed,
for a1 = λ1 = 0 and b = 1, we recover again Clark’s model (2.1) with α = 0. Conse-
quently, arguing as in the proof of Theorem 4.1, we are able to guarantee the existence
of chaos for (2.2) when (a1, λ1, b) belongs to a neighborhood of (0, 0, 1). It is important
to observe that, from a mathematical point of view, the chaotic regimes are different
because in Theorem 5.1 we have one stable direction and one unstable direction, while
in Theorem 4.1 the two directions are unstable.

6 Discussion

We have proved analytic criteria of chaotic dynamics for some well-known structured
population models, and we have given further insight in such relevant features of chaos
as the sensitive dependence on initial conditions. We list the main advantages of our
results:

• Explicit ranges of parameters where models (2.1), (2.2), and (2.3) ex-
hibit chaotic behavior: A key property from a biological point of view is the
robustness of our results under small continuous perturbations. This aspect is
especially important in modeling, because the involved coefficients are usually
approximations derived from experimental data, so small errors should be taken
into account.

• Regions of initial data with chaotic behavior: We find out explicit regions of
the phase space, namely N0 and N1, where chaotic behavior occurs. Determining
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these regions is useful to analyze the influence of the chaotic regime on the system
since, in some situations, a chaotic attractor may coexist with other dynamics,
such as a locally stable periodic point.

• Estimates of the sensitive dependence: The strategy followed in our proofs
allows us to get quantitative results about sensitive dependence on initial condi-
tions in an easy way; see Proposition 3.1 and Example 4.1.

In the literature there are several papers dealing with the existence of chaotic dy-
namics for structured population models. However, most of them generally rely on
numerical evidences obtained from computer simulations, in particular, on the compu-
tation of the dominant Lyapunov exponent (see, for instance, [16] for Clark’s equation,
and [11] for the LPA model).

For the nonlinear Leslie model (2.2), our results complement Theorem 1.2 in [33],
which, based on the results of [34], ensures the existence of a chaotic attractor for a set
of parameters with positive Lebesgue measure; however, compared with our approach,
determining such a set can be much more involved. We note that our results only
provide criteria for the existence of invariant sets with chaotic dynamics, not attractors.
In particular, this complex behavior might not be observed in numerical simulations of
the models. We point out that Theorem 1.2 in [33] establishes stronger attraction and
stochastic properties.

Appendix 1

This appendix contains some computations for Example 4.1.

For Fα(x1, x2) = (x2, αx2 + (1− α)f(x1)), the expression of F 4
α = ((F 4

α)1, (F
4
α)2) is

given by

(F 4
α)1(x1, x2) =α3x2 + α2(1− α)f(x1) + α(1− α)f(x2)

+ (1− α)f(αx2 + (1− α)f(x1))

(F 4
α)2(x1, x2) =α4x2 + α3(1− α)f(x1) + α2(1− α)f(x2)

+ α(1− α)f(αx2 + (1− α)f(x1))

+ (1− α)f(α2x2 + α(1− α)f(x1) + (1− α)f(x2)).

Next we notice that, in [0,+∞[, function f(x) = x exp(4−x) is bounded by exp(3)
and it is Lipschitz-continuous with Lipschitz-constant exp(4). Using these properties
in a direct way, we obtain that, for all x2 ∈ [3, 5.75] ∪ [6.25, 11],∣∣(F 4

α)(x1, x2))1 − f2(x1)
∣∣ ≤11α3 + exp(3)α2(1− α) + exp(3)α(1− α)

+ exp(4)(11α+ exp(3)α) + α exp(3) := ϕ(α),
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and, for all x1 ∈ [3, 5.75] ∪ [6.25, 11],∣∣(F 4
α)(x1, x2))2 − f2(x2)

∣∣ ≤11α4 + α3(1− α) exp(3) + α2(1− α) exp(3)) + α(1− α) exp(3)

+ 11 exp(4)α2 + exp(7)α(1− α) + exp(7)α+ exp(3)α := ψ(α).

Now, since ϕ and ψ are polynomials, it is elementary to check that ϕ(α) < 2.4 and
ψ(α) < 2.4 for all α < α0 = 0.001 (see Figure 1).

0 0.001 0.002
0

1

2

3

4

α

ψ
ϕ

2.4

Figure 1: Representation of functions ϕ(α) and ψ(α) for 0 ≤ α ≤ 0.002.

Appendix 2

In this appendix, we provide some expressions and preliminary calculations for the
proof of Theorem 5.1.

Consider the map

F (x, y) = ((a1x+ a2y) exp(−λ1x− λ2y), bx).

The first component of F 2 has the following expression:

F 2
1 (x, y) =e−λ1a1x exp(−λ1x−λ2y)e−λ2bxe−λ1a2y exp(−λ1x−λ2y)

[
a21xe

−λ1x−λ2y

+ a1a2ye
−λ1x−λ2y + a2bx

]
.

We easily deduce that, for x ≥ 0 and y ≥ 0,

F 2
1 (x, y) ≤ a21xe−λ1xe−λ1a1x exp(−λ1x)(e−λ1a1x exp(−λ1x))e

−λ2y−1 + a1a2y + a2bx.
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Now, using that f(x) = a1xe
−λ1x ≤ a1

λ1e
, we arrive at

F 2
1 (x, y) ≤ a21xe−λ1xe−λ1a1x exp(−λ1x)(e

−a1
e )e

−λ2y−1 + a1a2y + a2bx

= f2(x)(e
−a1
e )e

−λ2y−1 + a1a2y + a2bx.

On the other hand,

F 2
1 (x, y) ≥ e−λ1a1x exp(−λ1x−λ2y)e−λ2bxe−λ1a2y exp(−λ1x−λ2y)a21xe

−λ1x−λ2y

≥ a21xe−λ1xe−λ1a1x exp(−λ1x)e−λ2bxe−λ1a2ye−λ2y

= f2(x)e−λ2bxe−λ1a2ye−λ2y.

For the second component, using that f(x) = a1xe
−λ1x ≤ a1

λ1e
, we get

F 2
2 (x, y) = b(a1x+ a2y)e−λ1x−λ2y ≤ b

(
a1
λ1e

+
a2
λ2e

)
.
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