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Abstract. We study a periodically forced system modeling the synchronization
of two optically coupled lasers pumped by an alternating current. A necessary
and sufficient condition for existence of a periodic solution is given, as well as a
sufficient condition for uniqueness and asymptotic stability.
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1 Introduction

In Nonlinear Optics, the synchronization of two optically coupled lasers pumped
by an alternating current is a known fact that has deserved the attention of the
specialists from a theoretical and experimental perspective [10, 5, 6, 7]. In [6],
it is shown that in its simplest formulation, two coupled lasers with periodic
pumping behave like an ‘equivalent’ single laser whose dynamical behavior is
described by the system

τ ġ = g0(t)− g
(
1 + E2

)
,

Ė = 1
2 (g − g̃th)E.

(1)

Here, g is the amplification factor and E is the amplitude of the locked field.
The parameter τ > 0 is the effective relaxation time of the active medium,
g0(t) = A (1 + sin ωt) is the 2π

ω -periodic pumping, and g̃th > 0 is the renor-
malised threshold gain, defined by

g̃th = gth + 2M

(
1−

√
1−

(
∆
M

))
,

where gth > 0 is the original threshold gain, M > 0 is the coupling coefficient
and ∆ > 0 is proportional to the off-tuning of the natural frequencies of the
cavities.
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On the basis of the mentioned references, the theoretical objective is to find
an asymptotically stable periodic solution of system (1). To this purpose, the
very recent paper [7] presents a numerical-analytic scheme of investigation of
periodic solutions of system (1), by means of a technique of construction of
matrix-valued Lyapunov functions [8]. The aim of this paper is to contribute
to the literature from a different point of view, in such a way that we are able
to identify explicit regions of parameters where there exists a unique periodic
solution which is asymptotically stable.

From now on, the minimal period of the periodic pumping is denoted by
T = 2π

ω .Our main results are stated below.

Theorem 1 The condition
g̃th < A (2)

is necessary and sufficient for the existence of a T -periodic solution of system
(1).

Theorem 2 Assume that (2) holds. Let us fix the constants

m1 :=
1
2

ln
(

A

g̃th
− 1

)
−
√

3
2
√

2
AT, m2 :=

1
2

ln
(

A

g̃th
− 1

)
+
√

3
2
√

2
AT.

Then, under the assumptions

(i) τ ≥ T 2

4

(
AT

τ
+ g̃th

)
e2m2 +

T

2
(e2m2 + 1),

(ii) τ g̃the2m1 ≥ 1
4

(
e2m2 + 1

)2
+ ATe2m2 ,

the T -periodic solution given by Theorem 1 is unique and asymptotically stable.

From this latter result, the following consequence is direct.

Corollary 1 There exists an explicitly computable τ0 (depending on the rest of
parameters A,ω, gth,M, ∆) such that for any τ > τ0, system (1) has a unique
T -periodic solution which is asymptotically stable.

The paper is structured as follows: after this introduction, the existence
result is proved in Section 2, by using a transformation to a Liénard equation and
a classical topological degree argument. Section 3 is devoted to the uniqueness
and asymptotic stability. We use a classical stability criterium by Erbe [3].
Finally, in Section 4 some final remarks are given.

2 A priori bounds and existence

The first step is to write system (1) as an equivalent Liénard equation. Since
E is the amplitude of the locked field, it is always positive. By introducing the
change of variable E = ex, the second equation of system (1) is written as

ẋ =
1
2

(g(t)− g̃th) .
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Deriving this equation and substituting into the first equation of system (1),
one gets the Liénard equation

ẍ + f(x)ẋ + h(x) =
1
2τ

g0(t), (3)

where f(x) = 1
τ (1 + e2x), h(x) = 1

2τ g̃th(1 + e2x). As it was indicated in the
Introduction, g0(t) = A (1 + sin ωt). Needless to say, equation (3) is equivalent
to system (1), and from a given solution x of (3) one can recover the original
solution

E = ex, g = 2ẋ + g̃th. (4)

We begin the study of equation (3) with a result on a priori bounds.

Lemma 1 Any eventual T -periodic solution of (3) verifies the bounds

m1 < x(t) < m2 (5)

and
|ẋ(t)| < m3 :=

AT

2τ
(6)

for every t, with m1,m2 as defined in Theorem 2.

Proof. Let us assume that x(t) is a given T -periodic solution. By integrating
the equation over [0, T ] one gets

g̃th

∫ T

0

(1 + e2x(t))dt = AT. (7)

By the integral Mean Value Theorem, there exists t0 ∈]0, T [ such that

x(t0) =
1
2

ln
(

A

g̃th
− 1

)
. (8)

On the other hand, multiplying (3) by ẋ and integrating over a period,

1
τ
‖ẋ‖22 <

1
τ

∫ T

0

(1 + e2x)ẋ2dt =
1
2τ

∫ T

0

g0(t)ẋdt ≤ 1
2τ
‖g0(t)‖2 ‖ẋ‖2 , (9)

after a basic application of Cauchy-Bunyakowskii-Schwarz inequality. Hence,

‖ẋ‖2 <
1
2
‖g0(t)‖2 =

A

2

√
3T

2
. (10)

Now, for every t ∈ [0, T ] we have

|x(t)− x(t0)| =
∣∣∣∣
∫ t

t0

ẋ(s)ds

∣∣∣∣ ≤ ‖ẋ‖1 ≤ ‖ẋ‖2
√

T <

√
3

2
√

2
AT,

as a result of Cauchy-Bunyakowskii-Schwarz inequality and (10). From this
inequality and (8), (5) is easily obtained.
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The next aim is to prove (6). Let us take t∗ ∈ [0, T ] such that x(t∗) =
mint x(t), then for any t ∈]t∗, t∗ + T [ one has

ẋ(t) =
∫ t

t∗
ẍ(s)ds = − ∫ t

t∗
f(x(s))ẋ(s)ds− ∫ t

t∗
h(x(s))ds + 1

2τ

∫ t

t∗
g0(s)ds <

< − ∫ x(t)

x(t∗)
f(s)ds + 1

2τ ‖g0‖1 ≤ 1
2τ ‖g0‖1 = AT

2τ .

(11)
where we have used that f, h are positive functions and g0(t) is non-negative.
In a similar way, let us take t∗ ∈ [0, T ] such that x(t∗) = maxt x(t), then for any
t ∈]t∗, t∗ + T [ one has

ẋ(t) =
∫ t

t∗ ẍ(s)ds = − ∫ t

t∗ f(x(s))ẋ(s)ds− ∫ t

t∗ h(x(s))ds + 1
2τ

∫ t

t∗ g0(s)ds >

>
∫ x(t∗)

x(t)
f(s)ds− ∫ t∗+T

t∗ h(x(s))ds ≥ −AT
2τ ,

(12)
where (7) has been used in the last inequality. From (11) and (12), one gets (6).

Obviously, the previous result gives explicit bounds for the eventual T -
periodic solutions of the original system (1), which are specified in the lemma
below since they may be of independent interest for the physical model.

Lemma 2 Any eventual T -periodic solution (g, E) of system (1) verifies the
bounds (

A
g̃th

− 1
) 1

2
e
−
√

3
2
√

2
AT

< E(t) <
(

A
g̃th

− 1
)

e
√

3
2
√

2
AT

−AT
τ + g̃th < g(t) < AT

τ + g̃th

(13)

for every t.

Proof. Just use (5),(6) into (4).

Proof of Theorem 1. Let us prove that (2) is necessary and sufficient for the
existence of a T -periodic solution of system (1). The necessity comes from an
integration of equation (3) over a whole period, then (7) is obtained, and from
there is it evident that g̃th < A.

The sufficient condition follows from classical results on topological degree
theory. In fact, if g̃th < A holds the equation verifies the well-known Landesman-
Lazer conditions and for instance [9, Theorem 2] can be directly applied. For
completeness, we will give here a sketch of a different proof. Let us consider the
homotopic equation

ẍ + f(x)ẋ + h(x) =
1
2τ

[(1− λ)A + λg0(t)] , (14)

with λ ∈ [0, 1]. For λ = 1, it corresponds to eq. (3). By using the same
arguments as in Lemma 1, one can find uniform bounds (not depending on λ)
on the possible T -periodic solutions of (14) and their derivatives. For λ = 0, we
get the autonomous equation

ẍ + f(x)ẋ + h(x) =
1
2τ

A,
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which is equivalent to the planar vectorial field

F (u, v) = (v,−f(u)v − h(u) +
1
2τ

A).

By [1, Theorem 2], the existence of a T -periodic solution of (3) is proved if
the Brouwer degree of F over a large ball is different from zero. The unique
fixed point of F is (u0, v0) =

(
1
2 ln

(
A

g̃th
− 1

)
, 0

)
, and after some elementary

computations one can see that the jacobian matrix JF (u0, v0) has positive de-
terminant. Then the Brouwer degree of F over a large ball is 1 and therefore
the proof is finished.

3 Uniqueness and asymptotic stability.

In this section, it is assumed that (2) holds. It was proved in the last section that
eq. (3) has at least one T -periodic solution. The objective is to prove that, under
the assumptions of Theorem 2, such a solution is unique and asymptotically
stable. The following stability result of Erbe [3, Section 3] will be useful.

Proposition 1 Let us assume that p, q ∈ C(IR/TZZ) are continuous and T -
periodic functions verifying

(1)
∫ T

0
p(t)dt > 0,

(2)
∫ T

0
q(t)dt + 2 ‖p‖∞ ≤ 4

T ,

(3) 4q(t) ≥ p(t)2 for every t.

Then, the linear differential equation

ẍ + p(t)ẋ + q(t)x = 0 (15)

is asymptotically stable.

For convenience, let us remember that by Lemma 1, any T -periodic solution
of (3) verifies m1 < x(t) < m2, |ẋ(t)| < m3 for every t.

Proof of Theorem 2. As it was noted before, system (1) is equivalent to eq.
(3), hence along this proof we will work directly with this last equation.

Let us first prove the uniqueness. Assume that x1, x2 are two T -periodic
solutions of eq. (3). The objective is to prove that the difference d(t) = x1(t)−
x2(t) is a solution of a second order linear equation (15) in the conditions of
Proposition 1, then the unique periodic solution of (15) would be the trivial one,
so d(t) ≡ 0.

By subtracting the equations

d̈ + f(x1)ẋ1 − f(x2)ẋ2 + h(x1)− h(x2) = 0. (16)
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By using the Mean Value Theorem

f(x1)ẋ1 − f(x2)ẋ2 = [f(x1)− f(x2)] ẋ1 + f(x2) [ẋ1 − ẋ2] =
= ḟ(ξ(t))d(t)ẋ1(t) + f(x2(t))ḋ(t)

with ξ(t) a value between x1(t) and x2(t), hence verifying m1 < ξ(t) < m2 for
all t. Similarly,

h(x1)− h(x2) = ḣ(ν(t))d(t)

with m1 < ν(t) < m2 for all t. Inserting this information into (16), one finds
that d(t) is a solution of a second order linear differential equation like (15) with

p(t) = f(x2(t)) = 1
τ

(
1 + e2x2

)
,

q(t) = ḟ(ξ(t))ẋ1(t) + ḣ(ν(t)) = 2
τ e2ξẋ1 + g̃th

τ e2ν .

Let us prove that such coefficients verify the conditions of Proposition 1. First,
note that condition (1) is trivially satisfied because p(t) is positive. On the other
hand, by using Lemma 1 and the monotonicity of the exponential,

− 1
τ

(−2m3e
2m2 + g̃the2m1

)
< q(t) < 1

τ (2m3 + g̃th) e2m2 ,

p(t) < 1
τ

(
1 + e2m2

)
.

In consequence,
∫ T

0

q(t)dt + 2 ‖p‖∞ <
T

τ
(2m3 + g̃th) e2m2 +

2
τ

(
1 + e2m2

)
.

Therefore, (2) holds if

T

τ
(2m3 + g̃th) e2m2 +

2
τ

(
1 + e2m2

) ≤ 4
T

.

After simple computations, one realizes that this is just condition (i) of Theorem
2. Similarly,

q(t) >
1
τ

(−2m3e
2m2 + g̃the2m1

)
, p(t)2 <

1
τ2

(
1 + e2m2

)2
.

Hence, condition (3) holds if

−8m3e
2m2 + 4g̃the2m1 ≥ 1

τ

(
1 + e2m2

)2
,

and this is equivalent to condition (ii) of Theorem 2. Therefore, the proof of
uniqueness is concluded.

The proof of asymptotic stability is similar. Let x(t) be the unique T -periodic
solution of (3). The linearized equation along x(t) is

ÿ + p(t)ẏ + q(t)y = 0,
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where
p(t) =

1
τ

(
1 + e2x(t)

)
, q(t) =

2
τ

e2x(t)ẋ(t) +
g̃th

τ
e2x(t).

By performing exactly the same bounds as in the proof of uniqueness, p, q are in
the conditions of Proposition 1. In consequence, the linearized equation along
x(t) is asymptotically stable and the proof is finished.

Proof of Corollary 1. It is clear that conditions (i), (ii) are verified for τ
large enough. For convenience, let us write explicitly a concrete value of τ0.
Multiplying (i) by τ , we obtain

τ2 − τ

[
T 2

4
g̃the2m2 +

T

2
(e2m2 + 1)

]
− 1

4
AT 3e2m2 ≥ 0.

The left-hand side of this inequality is a second-order polynomial, so this is
equivalent to assume that τ is above the positive root of such a polynomial,
that is,

τ ≥ R1 :=
T 2

8
g̃the2m2+

T

4
(e2m2+1)+

1
2

([
T 2

4
g̃the2m2 +

T

2
(e2m2 + 1)

]2

+ AT 3e2m2

) 1
2

.

On the other hand, (ii) holds if

τ ≥ R2 :=
e−2m1

g̃th

[
1
4

(
e2m2 + 1

)2
+ ATe2m2

]
.

The proof is finished by taking

τ0 = max {R1, R2} . (17)

4 Concluding remarks.

In this paper, we have proved (Theorem 1) a necessary and sufficient condition
for existence of T -periodic solution of system (1), which model the synchroniza-
tion of two optically coupled lasers pumped by an alternating current. Explicit
bounds for the solution are given (Lemma 1).

Besides, a sufficient condition in terms of the involved parameters is given
in order to get uniqueness and asymptotic stability of such a solution (Theorem
2). In Corollary 1, the stability condition is interpreted in the following way:
the effective relaxation time of the active medium τ should be greater than a
given computable quantity τ0. From the physical point of view, this condition
makes sense because τ is much more higher than the unit time (τ >> 1, see
[6]).

Surely, the sufficient condition for stability is far from being optimal. To
improve it, there are two possibilities: (1) to apply other stability criteria for
the linear second order equation, (2) to improve the bounds obtained in Lemma
1. The first way open as many variants as stability criteria available in the
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literature (see for instance [2, 4, 11] and their references). We have chosen
Erbe’s result for the sake of simplicity.

As for the option of improving the bounds in Lemma 1, one can use a
recursive procedure as follows. Once we know that every solution verifies m1 <
x(t) < m2, (9) can be improved to

1 + e2m1

τ
‖ẋ‖22 <

1
τ

∫ T

0

(1 + e2x)ẋ2dt =
1
2τ

∫ T

0

g0(t)ẋdt ≤ 1
2τ
‖g0(t)‖2 ‖ẋ‖2 .

Hence, (10) is improved to

‖ẋ‖2 <
1

2(1 + e2m1)
‖g0(t)‖2 =

A

2(1 + e2m1)

√
3T

2
,

and repeating the arguments, one gets that m1
1 < x(t) < m1

2, with

m1
1 :=

1
2

ln
(

A

g̃th
− 1

)
−

√
3AT

2
√

2(1 + e2m1)
, m2

2 :=
1
2

ln
(

A

g̃th
− 1

)
+

√
3AT

2
√

2(1 + e2m1)
.

This trick can be repeated recursively giving rise to monotone and convergent
sequences mn

1 , mn
2 such that mn

1 < x(t) < mn
2 for every n ∈ IN .

Finally, we observe that different bounds for x(t) can be derived by applying
(6) and (8) into the expression x(t) = x(t0) +

∫ t

t0
ẋ(s)ds, thus obtaining

1
2

ln
(

A

g̃th
− 1

)
− AT 2

2τ
< x(t) <

1
2

ln
(

A

g̃th
− 1

)
+

AT 2

2τ
.

Such bound are sharper than m1,m2 in the case when τ is a high value.
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