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Abstract. We consider the scalar differential equation u̇ = f(u) + c h(t)
where f(u) is a jumping nonlinearity and h(t) is an almost periodic function,
while c is a real parameter deciding the size of the forcing term. The main
result is that, if h(t) does not vanish too much in some suitable sense, then
the equation admits a (unique) almost periodic solution for large values of the
parameter c. The class of the h(t)’s to which the result applies is studied in
detail: it includes all the nontrivial trigonometric polynomials and is generic
in the Baire sense.

1. The problem

This paper is concerned with the nonlinear scalar differential equation:

(1.1) u̇ = f(u) + h(t)

where the forcing term h(t) is almost periodic and the nonlinearity is a Lipschitz
function which satisfies:

(1.2) f(±∞) = ±∞
Indeed, stronger growth assumptions on the nonlinearity will be really needed, these
will be discussed later on. On the contrary, the choice of the growth direction is
purely conventional: it will be clear that nothing changes, when (1.2) is replaced
by f(±∞) = ∓∞.
The problem investigated is the existence of almost periodic solutions to the equa-
tion (1.1). Though explicit counter–examples are not available in the literature,
the problem is not expected to be solvable for every almost periodic h(t): many
negative results are indeed known for similar problems, like for instance in [17],
[8], [11] and [19]. This fact is in sharp contrast with the periodic and the bounded
analogues, though the almost periodicity is in some sense intermediate between
them: it is not difficult to check that bounded solutions always exist when h(t) is
bounded (see also Section 3) and it is well known that this implies the solvability
in the periodic framework, when h(t) is periodic too (see [14]).
The most classical existence result in the almost periodic framework concerns the
case of nonlinearities which are monotone: see for instance Chapter 12 of Fink’s
book [7] or the more recent and more general paper by Bostan [4], where the full
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history of the problem is also presented. These results allow weak types of mono-
tonicity, whose role in the proof is a bit cumbersome to describe. On the contrary,
the consequences of a strong monotonicity assumption like:

(1.3)
f(u2)− f(u1)

u2 − u1
≥ α > 0 ∀u2 6= u1

are very easily explained. In this case indeed, the bounded solution to (1.1) is unique
and Favard’s theory applies to show that it is also almost periodic. The original
paper [6] by Favard only deals with linear equations, but the method extends to
the nonlinear context: see Fink’s book and also the final part of Section 5. Finally,
it is worth noticing that at least another kind of monotonicity has been considered
in the literature, which however does not fit into condition (1.2). Precisely, the case
of a convex nonlinearity was traited in [1], proving that almost periodic solutions
do exist as soon as the mean value of the forcing term:

h̄ = lim
T→+∞

1
T

∫ T

0

h(t) dt

is large enough, when compared with h(t)− h̄.
When the nonlinearity is nonmonotone it is still possible to obtain some existence
result, but the price to pay is to restrict the class of forcing terms. As far as we
know, the common root of all the known results is the use of perturbative arguments.
This is for instance true for the classical K.A.M. theory, where the problem is the
persistence of invariant tori in a perturbed dynamical system. In this case, the
forcing term is not simply almost periodic, but instead quasi periodic, namely it
writes as:

h(t) = H(νt)

where H is a continuous map on the torus TN . Here ν = (ν1, . . . , νN ) ∈ RN is called
the frequency vector and is assumed to be nonresonant: namely, its component are
linearly independent over the rationals. With a little abuse of notations, the vector
νt also stays for its equivalence class in the quotient space TN : when t varies, this
vector winds around the torus on a dense orbit, due to the nonresonance condition.
The existence of a quasi-periodic solution to (1.1) is granted by K.A.M. theory,
under some restrictions on the frequencies and on the regularity and the size of H:
see for instance [15].
A completely different use of perturbative arguments appears in [2], in order to
obtain a generic type result. The forcing terms are now limit periodic: namely,
h(t) is obtained as the uniform limit, over the real line, of a sequence of purely
periodic functions, typically with diverging minimal periods. Limit periodic orbits
are rather important in the theory of dynamical systems: in [13] it is proved that
they exist for the generic autonomous Hamiltonian system. In [2] the authors
prove a similar result for the nonautonomous equation (1.1), obtaining a generic
existence result for a special class of limit periodic h(t)’s. Roughly speaking, these
limit periodic solutions originate around periodic solutions to (1.1), corresponding
to periodic forcing terms: here is where the perturbative nature of the result comes
into play.
The scope of the present paper is also within nonmonotone nonlinearities, with the
aim of producing a new type of perturbative result: in some sense, perturbations
from infinity will be considered and an existence theorem will be proved for a quite
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large class of almost periodic forcing terms. To introduce it, let us refer to the
example:

(1.4) f(ξ) =





ξ + 2 if ξ ≤ −1
−ξ if −1 ≤ ξ ≤ 1
ξ − 2 if ξ ≥ 1

The constants functions u = −2, 0, +2 are stationary solutions of the unforced
equation u̇ = f(u). They are nondegenerate, in the sense that the correspond-
ing linearized equations have an exponential dichotomy. Thus, given an arbitrary
almost periodic h(t), classical roughness arguments apply to show that each sta-
tionary solution can be continued to an almost periodic solution to:

(1.5) u̇ = f(u) + c h(t)

for sufficiently small values of the parameter c. The natural question is whether or
not these solutions may be continued in the large. As we already said, in general
the answer is expected to be negative. The same conclusion is also suggested by
the lack of a degree theory in the almost periodic framework: see [18]. Roughly
speaking, the main result of the present paper is that, in spite of the previous
considerations, almost periodic solutions to (1.5) still exist for sufficiently large
values of the parameter c, as soon as the forcing term h(t) does not vanish too
much.
In order to give a precise statement, we need to introduce a couple of ingredients.
The first one is a description of the general case of almost periodicity, which is
similar to quasi periodicity. It consists in thinking of the almost periodic forcing
term h(t) as to:

h(t) = H(Ψ(t))

where H is a continuous function on some suitable metric, compact, connected and
abelian topological group Ω, and Ψ : R → Ω is a continuous homomorphism with
dense image. In this case, h(t) is said to be representable over (Ω, Ψ). The quasi
periodic case corresponds to Ω = TN with Ψ(t) = νt. It is a standard fact that the
representation is always possible, with Ω the so–called hull of h(t). This is recalled
in Section 5, based on some background material on topological groups, which is
presented in Sections 4.
The other ingredient we need is the Haar measure λ on Ω. This is classical tool in
the literature and has a very simple expression in TN , where it coincides with the
standard Lebesgue measure. A short introduction to the Haar measure is provided
in Section 6 together with some nonstandard material, like a kind of Fubini–type
decomposition along the minimal flow:

(1.6) ω · t = ω + Ψ(t)

generated on Ω by the homomorphism Ψ . This decomposition is used in the proof
of the main theorem and in other parts of the paper. With these ingredients, and
restricting to the toy nonlinearity above, our main results states as follows.

Theorem 1.1. Let the nonlinearity f be defined by (1.4). Under the assumption:

(1.7) λ
(
H−1(0)

)
< 1/2

the equation (1.5) admits, for c large enough, a unique almost periodic solution.
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This solution is representable over (Ω, Ψ) and is indeed the unique bounded solution.
The result is proved in Section 8, for a general class of nonlinearities which satisfy:

(1.8) lim
ξ→±∞

f ′(ξ) = α± > 0 .

There, the threshold value for the Haar measure of H−1(0) is also tuned on the
specific nonlinearity, while the special case of (1.4) is fully treated in the Appendix.
Notice that jumping nonlinearities are allowed by (1.8), overcoming the asymptoti-
cally linear character of (1.4) and then better exploiting the scalar character of the
equation.
Moreover, and much more important, notice that (1.8) allows any kind of behav-
ior in bounded regions: denoted indeed by α the smallest value between α− and
α+, the strong monotonicity condition (1.3) anyway survives, but only for ξ large
enough. This is a much stronger assumption than (1.2) and, as we will see, finally
allows standard roughness methods for exponential dichotomies to apply in a rather
nonstandard way. Very roughly speaking the idea is that, the larger is c and shorter
is the time that the bounded solutions to (1.5) spend where f(ξ) is nonmonotone:
a careful implementation of this idea leads to show that all of them eventually
collapse into a unique bounded solution, as in the monotone case. Of course, to
trigger the device one needs a good control on the bounded solutions to (1.5): this
is provided in Sections 2 and 3. The price to pay for that control is clearly stated
in Theorem 3.6, but its ergodic nature becomes clear only when we interpret it in
the light of flow (1.6). This happens in Section 7 and the final result is Proposition
7.4, which gives the basis to understand where condition (1.7) comes from.
Let us finally turn the attention to the main assumption (1.7). This is certainly
verified when H−1(0) = ∅ which however corresponds to a rather trivial case: see
Remark 3.3 and Section 9. The most interesting case is when H change sign, like
for instance when it is nontrivial and satisfies:∫

Ω

H dλ = 0 .

Even with this restriction on, Theorem (1.1) has a rather wide range of application.
For instance, in Section 9 we will prove that an assumption stronger than (1.7),
namely:

(1.9) λ
(
H−1(0)

)
= 0

is satisfied for a generic forcing term H. In some sense, this assumption makes the
existence result suitable for every admissible nonlinearity, without bothering about
analytical details.
It has to be stressed, however, that Theorem (1.1) is more than a generic–type
existence result. Conditions (1.7) and (1.9) are indeed very explicit: given a con-
crete H, it is always possible to decide wether they are satisfied or not. The test
becomes particularly simple in the quasi periodic case, even when one starts from
the knowledge of h instead of H. Just to make a concrete example, consider the
most classical among quasi periodic functions, namely:

h(t) = sin(t) + sin(
√

2t)

which is representable on T2 by the continuous function:

H(θ1, θ2) = sin(2πθ1) + sin(2πθ2) .
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The zero set of H is then the union of the two lines described in T2 by the equations:

θ2 = −θ1 θ2 = θ1 +
1
2

which is easily seen to satisfy condition (1.9). The same quasi periodic forcing term
will be also considered in the Appendix, to show how to compute the threshold value
for the parameter c in the case of the nonlinearity (1.4). In Section 9, moreover,
it is shown that condition (1.9) is satisfied by some large classes of almost periodic
forcing terms, including all the trigonometric polynomials and some specific limit
periodic function.
Before concluding, we would like to thank R. Ortega for pointing out to us the
paper [12] by G. Katriel. There the author considers the damped second order
differential equation:

ü + a u̇ + f(u) = c h(t)

where the nonlinearity is asymptotically linear in a weaker sense than (1.8), but
the forcing term h(t) is now purely periodic. The question is not the existence of
a periodic solution, which is obvious, but instead its uniqueness for large values of
the parameter c: in that, it seems very related to the present paper. The pertur-
bative strategy is indeed exactly the same and also the assumptions on the forcing
term h(t) are clearly related to ours, when restricted to the periodic case. However,
the proofs are quite different, inasmuch they are based on Riemann–Lebesgue type
asymptotic results.

Notations. Given an additive topological group X and a function u on it, we
set uω(θ) = u(θ + ω). The symbols C(X) and B(X) stand for the classes of the
continuous and the bounded functions on X, respectively, and we set moreover
BC(X) = C(X)∩B(X). The space B(X) is endowed with the standard sup norm,
namely ‖u‖∞ = supx∈X |u(x)|. The same norm is used on the closed subspace
BC(X) and, when X is compact, also on C(X).
Finally, AP (R) stands for the class of the Bohr almost periodic functions, which is
a closed subspace of BC(R). When u ∈ AP (R), its mean value is denoted by ū:
the condition ū = 0 defines the closed subspace AP0(R).

2. An equation with a linear jumping

In this section we will study the equation:

(2.1) ẏ = j(y) + h(t)

under the assumption that h(t) is bounded and continuous and j(ξ) is a jumping
linearity, in the sense that:

j(ξ) =
{

α− ξ if ξ ≤ 0
α+ ξ if ξ ≥ 0

The reason will be clear in the next section, where this equation will appear as the
limit equation of (1.5), when the parameter c goes to infinity. We will assume that
j(ξ) is strictly increasing, namely that:

(2.2) α = min{α−, α+} > 0 .
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so that the estimate:

(2.3)
j(ξ2)− j(ξ1)

ξ2 − ξ1
≥ α

holds for every ξ2 6= ξ1.
Under these assumptions, the equation (2.1) becomes a kind of a modified version
of the linear equation:

ẏ = αy + h(t)

whose homogeneous part exhibits an exponential dichotomy. For this equation,
existence and uniqueness of the bounded solution are standard facts: this solution
may be explicitly computed, and a priori estimates are easily obtained in terms
of ‖h‖∞. All that extends to the equation (2.1), by replacing explicit formulas
with some suitable differential inequalities. The proofs are very standard, and are
sketched hereafter just for the sake of completeness.

Lemma 2.1. For every h ∈ BC(R) the equation (2.1) admits bounded solutions
and all of them satisfy:

‖y‖∞ ≤ 1
α
‖h‖∞ .

Proof. All the solutions to (2.1) are globally defined. Take any constant c >
‖h‖∞/α and set δ = αc − ‖h‖∞. Let now z(t) be any solution to (2.1) and as-
sume that, for some value of τ , we know that z(τ) = c: from the equation we
deduce that ż(τ) ≥ δ. Similarly, ż(τ) ≤ −δ as soon as z(τ) = −c.
In particular [−c, c] is negatively invariant, and this yields the existence of a bounded
solution satisfying ‖y‖∞ ≤ c. Star indeed from a sequence of solutions with initial
data zn(τn) = 0, where τn → +∞. These solutions satisfy the a priori bound
|zn(t)| ≤ c for every t ≤ τn. Their derivative is also uniformly bounded, from the
equation. Given any compact set K ⊂ R, the Ascoli–Arzelà theorem then guaran-
tees that a subsequence is uniformly convergent on K. Repeat the same argument
on a increasing sequence of compact sets, which exhausts all of R, and use a diag-
onal argument to extract a subsequence of (zn)n∈N which converges uniformly on
every compact subset of R. Denote by y(t) the limit: it is a solution, and the a
priori bound |y(t)| ≤ c is true for all t ∈ R.
In a similar way, the set (−c, c)C is positively invariant: if a solution satisfies
|z(τ)| ≥ c for some τ , then |z(t)| ≥ c for all t ≥ τ . Since |j(z(t))| ≥ αc we have
|ż(t)| ≥ δ for the same t’s, which prevents z(t) to be bounded. In other words,
every bounded solution to (2.1) must satisfy:

|y(t)| < c ∀t ∈ R .

The estimate in the statement follows by taking c → ‖h‖∞/α. ¤

Imagine now that the forcing term is varying, in the equation (2.1): next lemma
estimates the maximal variation of the corresponding bounded solutions.

Lemma 2.2. Let y1(t) and y2(t) any two bounded solutions to (2.1), which corre-
sponds to the forcing terms h1(t) and h2(t) respectively. Then

(2.4) ‖y1 − y2‖∞ ≤ 1
α
‖h1 − h2‖∞ .
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Proof. Set z = y1− y2 and k = h1−h2, consider any constant c > ‖k‖∞/α and set
δ = αc− ‖k‖∞. It results:

ż = j(y1)− j(y2) + k(t)

and, arguing as in the proof of the previous lemma on the basis of (2.3), one deduces
that |ż(t)| ≥ δ for every t ≥ τ , as soon as |z(τ)| ≥ c. Since z(t) is bounded by
construction, the estimate |z(t)| < c follows for every t. ¤

The lemma has two consequences. The first one follows by taking h1 = h2 = h,
since one obtains that:

for every bounded and continuous h(t), the equation (2.1) admits
exactly one bounded solution yh(t).

The function yh(t) plays a preeminent role in this paper, and some effort is devoted
to investigate its zeroes and how they depend on the forcing term h(t). The second
consequence concerns the regularity of yh(t) as a function of h(t): the estimates
(2.4) guarantees the Lipschitz continuity of the functional h 7→ yh.

Remark 2.3. The solution yh is also monotonically decreasing in h. Precisely, if for
some ρ ≥ 0

h2(t) ≥ h1(t) + ρ ∀t ∈ R
then it results:

yh2(t) ≤ yh1(t)−
ρ

max{α+, α−} ∀t ∈ R .

In particular, if h(t) has a sign, either in the weak or in the strong sense, then the
same happens to yh(t). The proof follows by arguments which are similar to those
already used for Lemma 2.1 and Lemma 2.2: we omit it, since we will use this result
just for comparative reasons.

We end the section by highlighting a trivial perturbation argument, which however
will be crucial for the result. Consider the differential inequality:

(2.5) ẇ ≥ {
α− ϕ(t)

}
w

where ϕ ∈ L∞(R). It has no positive solutions when ϕ = 0: next lemma show that
this is again true, when ϕ is small in a suitable sense.

Lemma 2.4. Assume that:

(2.6) lim inf
T→+∞

1
T

∫ T

0

|ϕ(t)| dt < α .

If u(t) is a bounded solution to (2.5) then u(t) ≤ 0 for every t ∈ R.

Since the coefficients of (2.5) are not continuous, it is probably worth spending
some words about the notion of solution. In the application of the lemma, we only
need to work with w(t) which are of class C1. However, the proof below works for
w(t) which are absolutely continuous, in which case the inequality (2.5) is intended
to be satisfied for almost every t.

Proof. Since A(t) =
∫ t

0
{α − ϕ(s)} ds is a Lispchitz function, standard integration

arguments apply to show that:

u(t) ≥ u(τ)eA(t)−A(τ)
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for every t ≥ τ . But:

A(t) = t

{
α− 1

t

∫ t

0

ϕ(s) ds

}
≥ t

{
α− 1

t

∫ t

0

|ϕ(s)| ds

}

which is unbounded as t → +∞. If u(τ) > 0 for some τ , then u(t) must be
unbounded too as t → +∞. ¤

Some remarks are worth about condition (2.6). This is clearly satisfied when
‖ϕ‖∞ < α, which however is a quite uninteresting case: see Remark 3.4. The
point of (2.6) is that it does not yield any restriction on ‖ϕ‖∞, not even when ϕ
exhibits some recurrence properties (which is the true case if interest): indeed, the
condition is consistent with large values of ϕ(t) on evenly spaced sets of t’s of small
measure.
The second remark is that condition (2.6) disregards the negative values of t. Of
course, this is not really the truth when ϕ(t) has a recurrent character. In the
general case, this fact originates from the choice α > 0: when the jumping linearity
is decreasing, the negative values of t come into play.
Finally, in the next section we will construct the concrete perturbation term ϕ(t)
we are interested in. In particular, we will see that the estimate of |ϕ(t)| heavily
depends on the zeroes of the function yh(t), which in turn depends on the forcing
term h(t) under consideration: a considerable amount of efforts will be paid to
deduce condition (2.6) directly from the knowledge of h(t).

3. The uniqueness problem for the nonlinear equation

Consider the equation:

(3.1) u̇ = j(u) + g(u) + ch(t)

where h(t) is again bounded and continuous and j(ξ) is the jumping linearity in-
troduced in the previous section. Concerning the nonlinearity, it is assumed that
g(ξ) is bounded, globally Lipschitz continuous function which satisfies:

(3.2) lim
|ξ|→+∞

g′(ξ) = 0 .

The limit has to be intended in the set of ξ for which g′(ξ) does exist: due to the
Lipschitz condition, this set has full Lebesgue measure in R. For the concrete appli-
cation, we need to reformulate the vanishing of the derivative in a more convenient
way, which involves the function:

(3.3) K(r) = sup
{ |g(ξ1)− g(ξ2)|

|ξ1 − ξ2| : ξ1 6= ξ2, |ξ1| ≥ r, |ξ2| ≥ r

}

Notice that this function is nonincreasing with r and that:

K(0) = ‖g′‖∞
is finite, since g(ξ) is globally Lipschitz. Next lemma says what happens for large
values of r.

Lemma 3.1. Condition (3.2) is satisfied if and only if:

(3.4) lim
r→+∞

K(r) = 0 .
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For future reference, given an arbitrary ε > 0, we denote by rε any threshold such
that:

(3.5) r ≥ rε implies K(r) ≤ ε .

Proof. Condition (3.4) clearly implies (3.2) where the derivative exists. The inverse
implication will be proved by contradiction. Assume that (3.2) holds and that we
can find two sequences ξ1n 6= ξ2n with |ξ1n|, |ξ2n| → +∞ and ε0 > 0 such that:

|g(ξ1n)− g(ξ2n)| ≥ ε0|ξ1n − ξ2n|
for every n. Since g(ξ) is bounded, we know that:

|ξ1n − ξ2n| ≤ 2‖g‖∞
ε0

is bounded too. Thus the interval:

In = {sξ1n + (1− s)ξ2n : 0 ≤ s ≤ 1}
goes uniformly at infinity as n → +∞. Given an arbitrary ε > 0, we can now use
(3.2) to show that:

|g′(ξ)| < ε

must eventually hold for almost all ξ ∈ In. Hence:

|g(ξ1n)− g(ξ2n)| =
∣∣∣∣∣
∫ ξ2n

ξ1n

g′(ξ) dξ

∣∣∣∣∣ ≤ ε|ξ1n − ξ2n|

is also eventually true, contradicting the assumption when ε < ε0. ¤

Coming back to the equation (3.1), notice that all the solutions are globally defined.
We are mainly interested in its bounded solutions for large values of c. We study
them under the additional assumption that:

(3.6) c > 0 .

The technical reason is to exploit the positive homogeneity of j(ξ). Nevertheless,
results for negative values of c may be recovered replacing h(t) with −h(t): as it
can be easily checked along the paper, the methods are not affected by the change
of sign in the forcing term.
It is not difficult to see that bounded solutions to (3.1) do exist for every value of
c and satisfy the a priori bound:

‖u‖∞ ≤ ‖g‖∞ + c‖h‖∞ .

This may be proved as in the first part of the proof of Lemma 2.1. We need to
investigate how these bounded solutions behave for large values of c. To this aim,
it is convenient to make the change of variable:

u = cx

This change does not affect boundedness and transforms the equation (3.1) into
the new equation:

(3.7) ẋ = j(x) +
1
c

g(cx) + h(t)

This is indeed the equation we will consider from now on, and all the results will
refer to it. However, it will be clear how to translate them into results for the
original equation (3.1).
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Due to the boundedness of g(ξ), the related term in (3.7) disappears when c → +∞:
this way one obtains (but for the name of the variable) the limit equation (2.1). This
equation has been already studied in the previous section and the same notations
will be used also here. In particular, the function yh(t) will denote the only bounded
solution to (2.1): next lemma says that the bounded solutions to (3.7) approach it
when c becomes large.

Lemma 3.2. If x(t) is a bounded solution to (3.7) then:

‖x− yh‖∞ ≤ 1
c
‖g‖∞.

Proof. Use Lemma 2.2 with h1(t) = c−1g(cx(t)) + h(t) and h2(t) = h(t). ¤

Remark 3.3. Imagine that the forcing term has a sign, in the sense that:

inf
t

h(t) ≥ ρ > 0 .

Then Lemma 2.3 yields:

sup
t

yh(t) ≤ −ρ/ max{α+, α−}

and hence Lemma 3.2 implies that, for c sufficiently large:

sup
t

x(t) ≤ −ρ/ max{α+, α−}+ ‖g‖∞/c < 0

holds for every bounded solution x(t) to the differential equation (3.7). Possibly by
taking a larger c, we may then assume that c x(t) always lies in a region where the
spatial term in the equation:

fc(ξ) = j(ξ) +
1
c

g(cξ)

is strictly monotone. In particular, the bounded solution is unique. Moreover, and
more important, if h(t) is known to be almost periodic, then standard arguments
(see for instance [4]) apply to show that the same happens to the unique bounded
solution of (3.7). In other words, the true target of the present paper are the forcing
terms which change sign.

The main topic of this section is the question of the uniqueness of the bounded
solution to (3.7), at least for large values of the parameter c: next we will show
how to obtain it, under some suitable additional condition.
Start by assuming that x1(t) and x2(t) are both bounded solutions to the equation
(3.7), corresponding to the same forcing term h(t) and the same value of c. They
are ordered, so that we may assume that:

(3.8) w(t) = x1(t)− x2(t) ≥ 0

for every t ∈ R. Such w(t) is a bounded function of class C1 by construction and
straightforward computations show that it satisfy the differential inequality:

(3.9) ẇ ≥ αw + Pc(t)

where we settled:

(3.10) Pc(t) =
1
c

{
g(cx1(t))− g(cx2(t))

}
.
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We made explicit the dependence on c, because we need soon to move it. The
goal is to show that w(t) is identically zero, and the way is to get some convenient
Lipschitz–type estimates for Pc(t). The simplest of these estimates is of course:

(3.11) |Pc(t)| ≤ ‖g′‖∞ |w(t)|
for every c and every t. Next remark explains why this is quite useless.

Remark 3.4. Inserting (3.11) into (3.9) yields the differential inequality:

ẇ ≥ (α− ‖g′‖∞)w .

The only way to obtain that w(t) ≤ 0 for every t, and hence that is identically
zero due to (3.8), is to require that ‖g′‖∞ < α. However, this restriction makes
things quite trivial: indeed, the nonlinearity j(ξ) + g(ξ) is strictly increasing, in
which case the expected existence result is well known to be true. Our assumptions
require g′(ξ) to be small only for large values of ξ, while it can be very large in
finite regions.

A more convenient Lipschitz estimate of Pc(t) follows from Lemma 3.2. Consider
indeed the function:

(3.12) ϕεδ(t) =

{ ‖g′‖∞ if |yh(t)| ≤ δ

ε if |yh(t)| > δ

where ε ≥ 0 and δ ≥ 0 are arbitrary parameters. Next lemma shows that it provides
the desired estimate, for large values of the parameter c.

Lemma 3.5. For every δ > 0 and ε > 0, it results:

(3.13) |Pc(t)| ≤ ϕεδ(t) w(t)

for every t ∈ R, as soon as:

(3.14) c ≥ ‖g‖∞ + rε

δ
.

Here the quantity rε is that defined by (3.5).

Proof. For the t’s such that |yh(t)| ≤ δ there’s nothing to prove. Consider now any
t for which |yh(t)| > δ. Because of Lemma 3.2 we know that:

|cx(t)| ≥ c|yh(t)| − ‖g‖∞ > cδ − ‖g‖∞
where x(t) is any bounded solution to (3.7), like for instance the x1(t) and x2(t)
used to define Pc(t). It is then sufficient to choose c according to (3.14) in order to
be granted that |cx(t)| ≥ rε and hence:

|Pc(t)| = 1
c
|g(cx1(t))− g(cx2(t))| ≤ ε|x1(t)− x2(t)| = εw(t) .

¤

With the above estimate, we enter finally into the orbit of Lemma 2.4. This lemma
is the perturbative core of the next uniqueness result, which is the main result of
the present section.
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Theorem 3.6. Assume that, for some δ > 0 and ε > 0, we have:

(3.15) ε + ‖g′‖∞ lim inf
T→+∞

(
1
T

m
{
t ∈ [0, T ] : |yh(t)| ≤ δ

})
< α .

If the parameter c is chosen according to (3.14), then the equation (3.7) admits a
unique bounded solution.

The same conclusion clearly holds for the original equation (3.1).

Proof. It can be easily checked that:

ϕεδ(t) ≤ ϕ0δ(t) + ε

and ∫ T

0

ϕ0δ(t) dt = ‖g′‖∞ m
{
t ∈ [0, T ] : |yh(t)| ≤ δ

}
.

Then assumption (3.15) implies:

(3.16) lim inf
T→+∞

1
T

∫ T

0

ϕεδ(t) dt < α .

Come now back to (3.8), defining the ordered difference w ≥ 0 between any two
bounded solutions to the equation (3.7). According to (3.9) and to Lemma 3.5, this
difference satisfies the differential inequality:

ẇ ≥ {
α− ϕεδ(t)

}
w .

The estimate (3.16) and Lemma 2.4 then allow to conclude that w ≤ 0. Hence one
gets w = 0, proving that the two involved bounded solutions to (3.7) must indeed
coincide. ¤

Condition (3.15) can be satisfied for some ε > 0 if and only if:

(3.17) ‖g′‖∞ lim inf
T→+∞

(
1
T

m
{
t ∈ [0, T ] : |yh(t)| ≤ δ

})
< α .

To estimate the left hand side is a main goal of the present paper, especially when
the forcing term h(t) is almost periodic: this is done in Section 7, on the basis
of the arguments introduced in Sections 4, 5 and 6. We conclude this section by
discussing how to verify (3.17) in a special bounded case, that is when the forcing
term h(t) has a limit at infinity.

Example 3.7. Assume that h(t) is bounded and continuous and that moreover the
limit h(+∞) exists. Then it is not difficult to check that also the limit yh(+∞)
does exist and satisfies:

j
(
yh(+∞)

)
+ h(+∞) = 0 .

Since the jumping linearity j only vanishes at zero, it is clear that h(+∞) 6= 0 if
and only if yh(+∞) 6= 0. In this case one gets:

lim
T→+∞

(
1
T

m
{
t ∈ [0, T ] : |yh(t)| ≤ δ

})
= 0

as soon as one takes δ < |yh(+∞)|. Hence condition (3.17) is satisfied for the same
value of δ.
On the contrary, when h(+∞) = 0 the above limit is 1 for every δ > 0. This fact
provided a clear obstruction to the application of Theorem 3.6. Indeed condition
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(3.15) does no longer depend on δ and is satisfied if and only if ‖g′‖∞ < α: we
already explained in Remark 3.4 why this is an uninteresting case.

4. Topological groups and minimal flows

Almost periodic functions are well known to be tightly related to compact topo-
logical groups: in this section we will summarize some basic facts about the latter,
which may be unfamiliar to people dealing with differential equations. The proofs
of these facts may be found in classical textbooks like [20] and in the paper [19].
Let G denote a commutative topological group, which is metrizable and compact.
The notations will be additive, namely the operation in G will be + and the neutral
element 0. The category of these groups will be denoted by G, its morphisms being
the continuous homomorphisms of groups. Besides the trivial group 0, the simplest
element of G is the unit circle:

S1 = {z ∈ C : |z| = 1}
though notations here are multiplicative. This is a connected and then perfect
group, while the n–roots of unit provide an example of a discrete element of G. In
fact, it is well known that each element of G is either discrete or perfect.
A character is a morphism G → S1. The set of all characters of G is itself a group,
with respect to the pointwise product: it is called the dual group of G and usually
denoted by G∗. The unit of G∗ is the trivial character, which assigns the value 1 to
every elements of G. Non trivial elements do exist when G is a nontrivial compact
group : see [20] p. 241. For instance, it is well known that:

(
S1

)∗
= {z 7→ zn : n ∈ Z}

and from there also the characters of the N–torus TN may be easily obtained, where
T = R/Z is the additive group isomorphic to S1.
Characters give a way to construct new elements of G from a given one: if G ∈ G
and ϕ ∈ G∗ then kerϕ = ϕ−1(0) it is closed subgroup of G and then also an element
of G. Next result has been proved in [19].

Proposition 4.1. Let G ∈ G and assume that ϕ ∈ G∗ is nontrivial. If G 6∼= S1

then kerϕ is perfect.

In this paper we are mainly interested in elements of G that admits a one–parameter
dense subgroup. More precisely, we shall consider pairs (Ω, Ψ) where Ω ∈ G and
Ψ : R→ Ω is a continuous homomorphism whose image is dense in Ω: they are the
objects of a new category which we denote by P. Contrarily to the elements of G, it
is easily seen that those of P are connected sets. A morphism (Ω1, Ψ1) → (Ω2, Ψ2)
between two elements of P is nothing else than a morphism χ : Ω1 → Ω2 in the
category G, which preserves the dense subgroups, namely such that:

(4.1) χ ◦ Ψ1 = Ψ2 .

Since χ(Ω1) must be closed:

(4.2) χ(Ω1) = χ(Ω1) ⊃ χ (Ψ1(R)) = Ψ1(R) = Ω2

and hence the morphisms of P are in fact epimorphisms.
The trivial group belongs to P by taking as Ψ the trivial homomorphism. Also S1
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is an element of P is S1 together with the homomorphism:

Ψ(t) = eiαt

where α 6= 0 is any real number. Such Ψ is a nontrivial periodic map: in [19] it is
proved that this happens if and only if Ω ∼= S1.
Another important element of P is the torus TN together with an homomorphisms
of the type:

(4.3) Ψ(t) = (ν1t, . . . , νN t) .

Here the frequency vector ν = (ν1, . . . , νN ) is a vector of RN and, with a standard
abuse of notation, we identify each real number νjt with its equivalence classes in
T. The classical Kronecker’s theorem for diophantine approximations says that the
density assumption is satisfied when ν is nonresonant, namely when the components
of ν are independent over the Z.
Coming back again to the general pair (Ω, Ψ), notice the homomorphism Ψ induces
a canonical flow on Ω, by means of:

ω · t = ω + Ψ(t) .

Since Ψ has dense image:

ω · R = ω + Ψ(R) = ω + Ψ(R) = Ω

for every ω ∈ Ω. Namely, the flow is minimal. Equilibria or periodic orbits cannot
exist unless Ω = 0 or Ω ∼= S1, respectively.
Next we consider the problem of constructing global sections for this flow. Following
[19], assume that ϕ ∈ Ω∗ is nontrivial and define:

Σ = {ω ∈ Ω : ϕ(ω) = 1} .

Notice that ϕ ◦ Ψ is also a nontrivial character of the additive group R, endowed
with the usual topology. Thus there exists a unique real number α 6= 0 such that:

ϕ(Ψ(t)) = eiαt ∀t .

In [19] it is proved that the minimal period of such function, namely:

(4.4) S =
2π

|α|
acts as a returning time on Σ. Precisely, if we define τ(ω) by means of:

0 ≤ τ(ω) < S ϕ(ω) = eiατ(ω)

then we have:
ω · t ∈ Σ ⇐⇒ t ∈ −τ(ω) + SZ .

As a consequence, the restricted flow:

(4.5) Φ : Σ× [0, S) → Ω Φ(σ, t) = σ · t .

is a continuous bijection, with inverse:

Φ−1(ω) =
(
ω · (−τ(ω)) , τ(ω)

)
.

It is easily checked that this inverse fails to be continuous exactly at the ω’s satis-
fying τ(ω) = 0. Thus Φ defines an homeomorphism Σ× (0, S) ∼= Ω \ Σ .
We conclude the present section with a comment about Σ. In general, it is an
element of G but not of P, at least due to connectedness problems. However, it
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always belongs to a discrete version of the category P, obtained by replacing R
with Z in the homomorphism part. Define indeed ψ : Z→ Σ by means of:

(4.6) ψ(n) = Ψ(nS) .

Since Φ is an homomorphism, the same is true also for ψ. The point is that the
image on ψ is dense in Σ: the proof is left to the reader, since we don’t use this
property (at least directly).

5. Almost periodic functions and Favard theory

Consider the general (Ω, Ψ) ∈ P and a function U ∈ C(Ω). Using the compactness
of Ω, it is not difficult to see that the function:

(5.1) u(t) = U(Ψ(t))

is almost periodic in the sense of Bohr. This u is said to be representable over
(Ω, Ψ): by density arguments, it is clear that the representing function U is unique.
It is manifest that the trivial group Ω = 0 can only be used to represent constant
functions. Another example is given Ω ∼= S1. Denoted by T > 0 the minimal period
of the map Ψ , the formula (5.1) gives rise to a periodic function, with the same
period of Ψ . It is not difficult to check that they are indeed the only functions
which are representable over this pair. The case Ω = TN with Ψ defined as in (4.3)
is much more interesting: in general, the composition rule (5.1) produces aperiodic
functions, which are called quasi periodic.
An important and well known point is, that any given almost periodic function u
may be obtained as in (5.1) via the notion of hull. The hull Hu of the function u
is defined by:

Hu = cls
{
uτ : τ ∈ R}

where uτ (t) = u(t + τ) and the closure is taken the topology of the uniform con-
vergence over all the real line. This is indeed a metric topology which gives Hu the
structure of a compact connected space. It becomes a topological group with the
operation obtained as the extension by continuity of the rule uτ + us = uτ+s (see
the book [16] for a proof). The neutral element of Hu is u itself. If we define:

Ψu(τ) = uτ

then the pair (Hu, Ψu) fits perfectly our framework, and then belongs to P. The
representation formula (5.1) holds with the function U ∈ C(Hu) defined by:

U(u∗) = u∗(0) ∀u∗ ∈ Hu

which is sometimes called the ‘extension by continuity’ of the almost periodic func-
tion u(t) to its hull Hu. In [19] it is proved that this representation of u is minimal,
in the sense given by the following lemma.

Lemma 5.1. The almost periodic function u(t) is representable over (Ω, Ψ) ∈ P if
and only if the exist a morphism (Ω, Ψ) → (Hu, Ψu) in the category P.

Assume now that U ∈ C(Ω) is given. The flow allows to define other almost periodic
functions than (5.1), by means of:

(5.2) uω(t) = U(ω · t) = U(ω + Ψ(t))
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where ω ∈ Ω. All these functions are representable over (Ω, Ψ) and then almost
periodic. Moreover, it is not difficult to check that all of them have the same mean
value, namely:

(5.3) uω = lim
T→+∞

1
T

∫ T

0

U(Ψ(t)) dt

for every ω ∈ Ω. Notice finally that, as a whole, the functions (5.2) enjoy the
invariance property:

(5.4) uω·τ (t) = uω(t + τ) ∀ω ∈ Ω ∀t, τ ∈ R
and inherit from U the continuity property:

(5.5) the map ω ∈ Ω 7→ uω(0) ∈ R is continuous .

It is a classical and important fact that the above procedure may be reversed.
Assume indeed that a family a functions:

(5.6) uω : R→ R ω ∈ Ω

is given in such a way that the two conditions (5.4) and (5.5) are satisfied, and
define:

U(ω) = uω(0) .

Then U ∈ C(Ω) due to (5.5), while (5.4) implies:

uω(t) = uω·t(0) = U(ω · t) .

Summing up, all the uω’s are almost periodic and representable over (Ω, Ψ). This
simple fact is at the core of Favard theory, which is among the few general de-
vices allowing to construct almost periodic solutions to almost periodic differential
equations: for an introduction to the subject, see the original paper [6] or the more
modern approach given in Fink’s book [7]. The starting point is to consider, instead
of a single equation, a family of them:

(5.7) u̇ = F (ω · t, u)

where ω ∈ Ω. In order to guarantee global existence and uniqueness of the initial
values problems, the function F : Ω × R → R is assumed to be continuous and
globally Lipschitz in the second variable, uniformly with respect to the first one.
The idea is to construct a representable almost periodic solution to (5.7) by using
bounded solutions. Next result is a special (but relevant) case of Favard theory.

Theorem 5.2 (Favard). Assume that, for each ω ∈ Ω, the equation (5.7) admits
a unique bounded solution uω. Then there exists U ∈ C(Ω) such that:

uω(t) = U(ω · t)
for every ω ∈ Ω and t ∈ R.

The proof is classical and consists in showing that the family {uω}ω∈Ω satisfies (5.4)
and (5.5): the former property is quite obvious, while the second is more delicate
but anyway follows from standard compactness arguments. Notice moreover that,
due to the scalar character of the equation (5.7), there are no other almost periodic
solutions than the representable ones: the proof may be found in Chapter 12 of [7],
under the name of module containment property (see for instance [19] to understand
why this property is equivalent to the representability problem).
We end the section spending some words about the almost periodic sequences. They
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are less known than the corresponding functions, but share with them all the most
relevant properties: the classical book [5] of Corduneanu is a good reference on the
subject, see section 1.6. The almost periodic sequences come naturally into play,
when we consider a nontrivial character ϕ ∈ Ω∗ and its kernel Σ, as we did in the
final part of Section 4 and to which we refer for the terminology. Precisely, it is not
difficult to check that:

vn = V (ψ(n))

is an almost periodic sequence as soon as V ∈ C(Σ). Moreover, the limit:

v̄ = lim
n→+∞

vk + vk+1 + · · ·+ vk+n−1

n

exists uniformly on k ∈ Z and is independent on k, so defining a good notion of
mean value. This fact will be used in the next section.

6. Haar measure and Fubini–type decomposition along the flow

Each G ∈ G, the category of compact commutative topological groups introduced
in Section 4, has a unique invariant integral, usually called the Haar integral of G.
That is, a normalized nonnegative linear functional IG : C(G) → R which moreover
is invariant with respect to the addition on the group G, in the sense that:

(6.1) IG(Fw) = IG(F )

for every F ∈ C(G) and every w ∈ G. Here Fw(z) = F (z + w) for every w, z ∈ G.
This classical result is proved, for instance, in Section 29 of [20].
In turn, every invariant integral becomes from an invariant measure. More precisely,
the Riesz representation theorem guarantees that there exists a unique regular Borel
probability measure mG such that:

IG(F ) =
∫

G

F dmG

for every F ∈ C(G). Notice that, since G is metric compact, each open sets is σ–
compact: thus every Borel probability measure is automatically regular. The proof
of this fact and the explicit construction of the Riesz measure may be found in many
textbooks, like for instance [10]. Looking at this construction, one immediately sees
that the Riesz measure inherits the invariance property of the integral IG, namely
that:

mG(B + w) = mG(B)

for every Borel set B and every w ∈ G. The invariant measure mG is called the
Haar measure of G and, as the integral, is unique. For instance, it can be easily
seen that, when G = S1:

mG(B) =
1
2π

m
{
t ∈ [0, 2π) : eit ∈ B

}

does perfectly the job, and then is the Haar measure on S1. Here, and in all the
paper, the symbol m will stand for the Lebesgue measure on R. The Haar measure
on T and TN may be easily deduced from that of S1.
Borel sets of Haar measure zero play a relevant role in the proof of our main result
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and they will be carefully investigated in Section 9. Next lemma says that detect-
ing them is always a local problem: the proof follows from the classical Lindelöff
theorem in topology.

Lemma 6.1. Let B a Borel set in G ∈ G. Then mG(B) = 0 if and only if, for
every w ∈ B, there is an open Uw ⊂ G such that mG(B ∩ Uw) = 0.

Next we specialize to the situation we are more interested in, restring our attention
from the category G to the category P, also defined in Section 4. This passage
does not affect the Haar measure of the involved groups, but the presence of a one
dimensional dense subgroup allows to better describe the measure itself. Let us
start by comparing the Haar measures corresponding to different elements of P,
when there is a morphism:

(6.2) (Ω1, Ψ1) → (Ω2, Ψ2) .

Lemma 6.2. Let χ : Ω1 → Ω2 be the morphism of G underlying the P morphism
(6.2). Then:

mΩ2(B) = mΩ1

(
χ−1(B)

)

for every Borel set B in Ω2.

The conclusion is manifestly false for morphisms in the category G, as one may see
by taking the trivial morphism.

Proof. The rule:
m2(B) = mΩ1

(
χ−1(B)

)

defines a (regular) probability Borel measure on Ω2. To conclude by uniqueness it
remains to show that m2 is invariant with respect to the group operation in Ω2.
To this aim, let ω2 ∈ Ω2 and choose ω1 ∈ Ω1 such that χ(ω1) = ω2. This is indeed
possible since χ must be an epimorphism. Then:

χ−1(ω2 + B) = ω1 + χ−1(B)

and the invariance of mΩ1 implies:

m2(ω2 + B) = mΩ1

(
χ−1(ω2 + B)

)
= mΩ1

(
ω1 + χ−1(B)

)
= mΩ1

(
χ−1(B)

)
= m2(B) .

¤

We will focus now the attention on a single pair (Ω, Ψ) ∈ P and denote by Λ the
Haar integral of Ω and by λ the corresponding Haar measure.
A first consequence of the presence of Ψ , is that it allows an explicit representation
of Λ. Indeed, it is well known that the equality:

(6.3) Λ(U) = lim
T→+∞

1
T

∫ T

0

U(ω · t) dt

holds for every U ∈ C(Ω) and every ω ∈ Ω. The proof is again by uniqueness of
the Haar integral, the invariance following from (5.3).
Besides that, however, the presence of Ψ has another important consequence, which
seems to be overlooked in the literature: it allows to decompose the Haar measure
λ along the flow generated by Ψ , in a very convenient way for the computations.
This decomposition is the main argument of this section. To start with, we need a
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transversal section to the flow. This is obtained as in Section 4, fixing a nontrivial
ϕ ∈ Ω∗ and taking:

Σ = kerϕ 6= Ω .

As we said in Section 4, this is always possible when Ω is nontrivial, a condition
which will be implicitly assumed from now on. Exactly as in Section 4, we denote
by S > 0 the returning time on Σ and by:

(6.4) Φ : Σ× [0, S) ∼= Ω

the continuous bijection given by the restricted flow Φ(σ, t) = σ · t. The map Φ
defines a decomposition of Ω along the flow, which however is not continuous at Σ.
Hereafter we will study the measurable properties of this decomposition.
The factor Σ in the decomposition (6.4) is an element of G and then is itself in the
scope of Haar theory. Denote by M its Haar integral and by µ its Haar measure,
so that we write:

M(V ) =
∫

Σ

V dµ

for every V ∈ C(Σ). Similarly to Λ, the theory of almost periodic sequences (see
the final part of Section 5) provides an explicit representation for M , namely:

(6.5) M(V ) = lim
n→+∞

1
n

n−1∑

k=0

V (ψ(k))

where ψ(k) = Ψ(kS) for every k ∈ Z.
The second factor in (6.4) is the interval [0, S), without any identification at the
ends. It has a natural topology, inherited by R, and also a natural probability
measure:

m∗(I) =
1
S

m(I)

where m stands for the Lebesgue measure on R. Exactly as λ and µ, also m∗ is a
regular Borel measure.
Having a measure on both factors, we may now endow Σ × [0, S) with a natural
measure: the product measure µ ×m∗. In principle, this measure is only defined
on the σ–algebra generated by the open rectangles of Σ× [0, S), which are partic-
ular Borel sets. However, using that both the factors Σ and [0, S) are separable
metric spaces, it is not difficult to check that the two σ–algebras coincide. As a
consequence, the product measure µ×m∗ is a (regular) Borel probability measure.
Roughly speaking, the main goal of the present section is to show that it is the
Haar measure on Ω.

Proposition 6.3. The map Φ is an isomorphism of Borel spaces and measures,
namely:

(6.6) λ(B) = (µ×m∗)
(
Φ−1(B)

)

holds for every Borel set in Ω.

Proof. Since Φ is continuous, if B is a Borel subset of Ω then Φ−1(B) is a Borel
subset of Σ × [0, S). To prove that Φ maps Borel sets into Borel sets, it’s enough
to look at the image of an open rectangle A × I. If 0 6∈ I this image is open in
Ω \ Σ and then in Ω, while the opposite case can be worked out by separating the
contributions of {0} and I \ {0}.
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It remains to show that (6.6) holds true. To this aim, consider the measure in Ω
defined by:

λΦ(B) = (µ×m∗)
(
Φ−1(B)

)
.

This is a Borel measure, due to the first part of the proof. Normalization and
regularity are obvious. This measure induces an integral over C(Ω), namely:

ΛΦ(U) =
∫

Σ×[0,S)

U ◦ Φ d(µ×m∗) .

Notice that, if we set:

V (σ) =
1
S

∫ S

0

U(σ + Ψ(t)) dt

then Fubini theorem applies to show that ΛΦ(U) = M (V ). To conclude the proof,
it’s enough to show that Λ(U) = M (V ) is also true. But this follows from (6.3)
and (6.5), since:

Λ(U) = lim
n→+∞

1
nS

∫ nS

0

U(Ψ(t)) dt = lim
n→+∞

1
nS

n−1∑

k=0

∫ (k+1)S

kS

U(Ψ(t)) dt

= lim
n→+∞

1
n

n−1∑

k=0

(
1
S

∫ S

0

U(Ψ(t) + Ψ(kS)) dt

)

= lim
n→+∞

1
n

n−1∑

k=0

V (Ψ(kS)) = M(V ) .

¤

Proposition 6.3 allows to use Fubini theory, when computing the Haar measure on
Ω. The following characterization of the sets of Haar measure zero is a straight-
forward consequence: together with Lemma 6.1, it will represent a relevant step in
the proof of our main result, in the next section.

Corollary 6.4. Let B a Borel set in Ω. Then λ(B) = 0 if and only if:

(6.7) m
{
t ∈ [0, S) : σ · t ∈ B

}
= 0

for µ–almost all σ ∈ Σ.

Two particular cases are worth to be mentioned here. The first one corresponds to
the choice B = Σ. Since Φ−1(Σ) = Σ× {0}, we clearly have:

(6.8) λ(Σ) = 0 .

The second is a kind of opposite case, and is the argument of the next lemma.

Lemma 6.5. Assume that Ω 6∼= S1. Then λ (ω · R) = 0 for every ω ∈ Ω.

Proof. It is not restrictive to assume that ω ∈ Σ. In this case ω · t ∈ R if and only
if t ∈ SZ, so that:

ω · R =
{
ω · (kS) : k ∈ Z}× [0, S) .

Since Ω 6∼= S1, Proposition 4.1 says that Σ is perfect and then contains infinitely
many elements. This forces µ to be nonatomic. Hence µ {ω · (kS) : k ∈ Z} = 0 and
Corollary 6.4 allows to conclude. ¤
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7. Ergodic type results

By construction, the Haar measure λ is invariant under the flow on Ω. In fact, λ
is the unique normalized Borel measure having this property: this is well known
(see [9]) and it may be easily checked, using the density of Ψ(R). As a standard
consequence, the considered flow must be ergodic: in the literature, this is referred
as a case of unique ergodicity.
Given a Borel set B, the Birhoff Ergodic Theorem ergodic asserts that the amount
of time that the flow spends in B (time average) generically coincides with the
measure of B itself (space average). Precisely, it guarantees that the equality:

(7.1) lim
T→+∞

1
T

m
{
t ∈ [0, T ] : ω · t ∈ B

}
= λ(B)

is true for almost every ω ∈ Ω, with respect to the measure λ. Here, the existence
of the time averages for almost all the ω’s is not an assumption, but instead part
of the conclusion. In general, the equality may fail on a set of measure zero: next
we provide an explicit example in our concrete framework.

Example 7.1. Take any nontrivial Ω 6∼= S1 and consider the set Ψ(R): Lemma 6.5
says that λ(B) = 0. By setting B = Ψ(R)C we have an example where (7.1) fails
by defect at some point: indeed, λ(B) = 1 while the left hand side vanishes for
every ω ∈ Ψ(R).
A specular failure by excess is clearly obtained by setting B = Ψ(R), but a more
relevant example may be constructed by taking B an open set such that:

Ψ(R) ⊂ B λ(B) < 1 .

This choice is granted by the regularity of λ. The time average is again 1 for all
the starting points ω ∈ B.

A relevant fact here is that (7.1) cannot fail by excess on a closed set. This is the
sense of next result.

Lemma 7.2. Let B ⊂ Ω be a closed set. Then:

(7.2) lim sup
T→+∞

1
T

m
{
t ∈ [0, T ] : ω · t ∈ B

} ≤ λ(B)

for every ω ∈ Ω.

Proof. Take ε > 0 and choose an open set A ⊃ B such that:

λ(A) < λ(B) + ε .

This is possible due to the regularity of λ. Then choose an Urysohn function
V ∈ C(Ω) satisfying:

V (ω) =
{

1 if ω ∈ B

0 if ω 6∈ A

so that:
λ(B) ≤

∫

Ω

V dλ ≤ λ(A) < λ(B) + ε .

Fix now an arbitrary ω ∈ Ω. Because of (6.3), we know that:

lim sup
T→+∞

1
T

m
{
t ∈ [0, T ] : ω · t ∈ B

} ≤ lim sup
T→+∞

1
T

∫ T

0

V (ω · t) dt =

lim
T→+∞

1
T

∫ T

0

V (ω · t) dt =
∫

Ω

V dλ < λ(B) + ε .
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Since ε is arbitrary, the conclusion follows. ¤

Though we din’t really use this fact, it may be interesting to notice that Lemma
7.2 has a consequence on the validity of (7.1): next result says that its failure is a
kind of boundary effect.

Proposition 7.3. Let B any Borel set in Ω. If λ(∂B) = 0 then the equality (7.1)
holds for every ω ∈ Ω.

In the Example 7.1 the boundary of Ψ(R) has full measure in Ω, so explaining the
failure of (7.1). Moreover, notice that no failure is possible when B is a closed set
and λ(B) = 0. This case is probably the most relevant in the applications, and
it is considered in Section 9. There, however, a more convenient description will
be presented, which makes use of the Fubini–type decomposition of λ, given in the
previous section.

Proof. Let ω be an arbitrary element of Ω. Using (7.2) on B we have:

(7.3)
lim sup
T→+∞

1
T

m
{
t ∈ [0, T ] : ω · t ∈ B

}

≤ lim sup
T→+∞

1
T

m
{
t ∈ [0, T ] : ω0 · t ∈ B

} ≤ λ(B)

Do now the same, but starting from BC . Since its closure is the set B̊C we get:

1− λ(B̊) = λ
(
B̊C

) ≥ lim sup
T→+∞

1
T

m
{
t ∈ [0, T ] : ω · t ∈ BC

}

= 1− lim inf
T→+∞

1
T

m
{
t ∈ [0, T ] : ω · t ∈ B

}

which may be written as:

(7.4) lim inf
T→+∞

1
T

m
{
t ∈ [0, T ] : ω · t ∈ B

} ≥ λ(B̊) .

Now, the assumption of the lemma implies:

λ(B) = λ(B̊) + λ(∂B) = λ(B̊) .

As a first consequence, we know that λ(B̊) = λ(B) = λ(B). Moreover, taken
together, the two estimates (7.3) and (7.4) show that the time average at ω exists,
and that its value is exactly λ(B). ¤

Consider now U ∈ C(Ω) with the idea of estimating the time averages:

1
T

m
{
t ∈ [0, T ] : |U(ω · t)| ≤ δ

}

for large values of T and small values of δ. As it can be easily guessed, our interest
in this quantity is motivated by condition (3.17). In the light of Theorem 5.2, the
focus here is on finding estimates which are uniform in ω ∈ Ω. Next result will
provide them, by referring to the following couple of functions:

U∗(δ, ω) = lim sup
T→+∞

1
T

m
{
t ∈ [0, T ] : |U(ω · t)| ≤ δ

}

U∗(δ, ω) = lim inf
T→+∞

1
T

m
{
t ∈ [0, T ] : |U(ω · t)| ≤ δ

}
.
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These functions are manifestly monotone in δ, and then have a limit when δ tends to
zero: the value of this limit and the way it is attained are specified in the following
statement.

Proposition 7.4. Assume that U ∈ C(Ω). Then, for every δ > 0 and every ω ∈ Ω
one has:

(7.5) λ
(
U−1(0)

) ≤ U∗(δ, ω) ≤ U∗(δ, ω) ≤ λ
(
U−1 ([−δ, δ])

)

where moreover:

(7.6) λ
(
U−1 ([−δ, δ])

) → λ
(
U−1(0)

)

as δ → 0+.

Proof. The property (7.6) is a consequence of the Lebesgue Dominated Convergence
Theorem. Moreover, the a priori bound on U∗(δ, ω) follows from Lemma 7.2 with
the choice:

B = U−1 ([−δ, δ]) .

To conclude the proof, it remains to show that:

U∗(δ, ω) ≥ λ
(
U−1(0)

)

for every δ > 0 and every ω ∈ Ω. To this aim, given a δ > 0 construct an Urysohn
function V ∈ C(Ω) satisfying:

V (ω) =
{

1 if U(ω) = 0
0 if |U(ω)| ≥ δ

Then observe that, for every ω ∈ Ω:

U∗(δ, ω) = lim inf
T→+∞

1
T

m
{
t ∈ [0, T ] : |U(ω · t)| ≤ δ

} ≥ lim inf
T→+∞

1
T

∫ T

0

V (ω · t) dt

= lim
T→+∞

1
T

∫ T

0

V (ω · t) dt =
∫

Ω

V dλ ≥ λ
(
U−1(0)

)
.

¤

8. Statement and proof of the main result

In this section we come back to the nonlinear ordinary differential equation:

(8.1) ẋ = j(x) +
1
c

g(cx) + h(t)

with the aim of stating and proving an existence result in the almost periodic
framework. The notations and the assumptions on the jumping linearity j and the
nonlinearity g are the same of Sections 2 and 3. To those assumptions we add now
that the forcing term h is almost periodic and that a pair (Ω, Ψ) ∈ P is given, such
that a morphism:

(8.2) (Ω, Ψ) → (Hh, Ψh)

exists in the category P. Thus Lemma 5.1 says that h can be represented on (Ω, Ψ),
namely that a unique H ∈ C(Ω) does exist such that the equality:

(8.3) h(t) = H(Ψ(t))



24 JUAN CAMPOS AND MASSIMO TARALLO?

holds for every t. Finally, as in the last two sections, the Haar measure on Ω will
be denoted by λ.

Theorem 8.1. Under the above assumptions, if moreover:

(8.4) ‖g′‖∞ λ
(
H−1(0)

)
< α

then the equation (8.1) admits, for c large enough, a unique almost periodic solution.

Notice that, since by construction:

0 ≤ λ
(
H−1(0)

) ≤ 1

the assumption (8.4) is a kind of relaxed version of the condition:

‖g′‖∞ < α .

We recall from Section 2 that α > 0 is the minimal growth rate of the jumping
linearity j. Thus, as explained in Remark 3.4, the above condition corresponds to
a well known existence result in the literature, which is even valid for every value
of the parameter c. On the contrary (8.4) allows ‖g′‖∞ to be much larger than α,
as soon this fact is compensated by the smallness of λ

(
H−1(0)

)
: the price to pay

here is that the existence result only holds for large values of c.
Not surprisingly, the almost periodic solution to (8.1) is representable over (Ω, Ψ).
What will be really proved is that, for large values of c, all the differential equations:

(8.5) ẋ = j(x) +
1
c

g(cx) + H(ω · t)
with ω ∈ Ω, admits a unique bounded solution. Then Theorem 5.2 will be invoked
to show that these solutions writes as X(ω · t) for some suitable X ∈ C(Ω), so
proving their almost periodicity. In all that, a key role will be played by the family
of limit equations:

(8.6) ẏ = j(y) + H(ω · t)
obtained by pushing c to infinity into (8.5). As already showed in Section 3, each of
them admits a unique unique bounded solution which, again due to Theorem 5.2,
writes as YH(ω · t) where:

YH ∈ C(Ω) .

Next result says how the zeroes of YH are related to those of H.

Lemma 8.2. The estimate:

λ
(
Y −1

H (0)
) ≤ λ

(
H−1(0)

)

holds for every H ∈ C(Ω).

Proof. Consider the following derivative along the flow:

(8.7) DΨYH(ω) = lim
τ→0

1
τ

{
YH(ω · τ)− YH(ω)

}
= j(YH(ω)) + H(ω) .

It is a continuous function on Ω and we can use it to write Y −1
H (0) = A∪B where:

A = {ω ∈ Y −1
H (0) : DΨYH(ω) = 0}

B = {ω ∈ Y −1
H (0) : DΨYH(ω) 6= 0}

Notice that A ⊂ H−1(0) due to (8.7) so that, to conclude the proof, it’s enough
to show that λ(B) = 0. This is obvious when Ω = 0, since in this case H and YH

must be constant: in particular B = ∅.
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Assume now that Ω is nontrivial. Take a nontrivial ϕ ∈ Ω∗ and use its kernel Σ to
decompose λ along the flow: the terminology is that of Section 6. Because of (6.8)
we have λ(B) = λ (B \ Σ). Take now a point ω ∈ B \ Σ and use the continuity of
DΨYH to select an open neighborhood Uω such that:

(8.8) DΨYH(θ) 6= 0

for every θ ∈ Uω. It is not restrictive to assume that Uω ∩ Σ = ∅, so that we can
write:

Uω = Φ(Aω × Iω)
where Aω is open in Σ and Iω is open in (0, S). Because of (8.8) we know that, for
every σ ∈ Aω, the function:

t ∈ Iω 7→ YH(σ · t)
is strictly monotone: thus it vanishes in at most one point. Thus Corollary 6.4
applies to show that:

λ ((B \ Σ) ∩ Uω) = 0
and the conclusion λ(B \ Σ) = 0 follows from Lemma 6.1. ¤

Because of the previous lemma, the smallness condition (8.4) transfers to YH . This
finally allows to trigger the uniqueness device provided by Theorem 3.6, on the basis
of the computation rule provided by Proposition 7.4: that’s the program followed
hereafter.

Proof of Theorem 8.1. Because of Lemma 8.2, we know that:

‖g′‖∞ λ
(
Y −1

H (0)
)

< α .

The second part of Proposition 7.4 says that δ > 0 and ε > 0 exist such that:

(8.9) ε + ‖g′‖∞ λ
(
Y −1

H ([−δ, δ])
)

< α

while, using the first part, we may conclude that:

ε + ‖g′‖∞ sup
ω∈Ω

(
lim inf
T→+∞

1
T

m
{

t ∈ [0, T ] : |YH(ω · t)| ≤ δ
})

< α

for every ω ∈ Ω. Finally, set:

(8.10) c∗ =
‖g‖∞ + rε

δ

where the quantity rε ≥ 0 only depends on the behavior of the nonlinearity g, as
defined by (3.3) and (3.5). We stress that, since δ and ε are independent of ω ∈ Ω,
then the same is true for the quantity c∗.
Assume now that c ≥ c∗. Theorem 3.6 says that all the equations (8.5) have a
unique bounded solution: then Theorem 5.2 allows to conclude. ¤

A comment is due about the real extent of Theorem 8.1. The main assumption (8.4)
is manifestly dependent on the concrete choice of the pair (Ω, Ψ) which satisfies
(8.2). The question is, that infinitely many choices are always available: thus,
whereas (8.4) is an acceptable solvability condition for a given pair (Ω, Ψ), it seems
nevertheless quite unsatisfactory when referred to the forcing term h. Next lemma
shows that the question is indeed artificial. In the statement, Hh ∈ C(Hh) stands
for the map which represents h over the pair (Hh, Ψh), namely the unique continuous
map such that:

h(t) = Hh(Ψ(t))
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for all t. Moreover, λh denotes the Haar measure on Hh.

Lemma 8.3. If (8.3) is satisfied with H ∈ C(Ω) then necessarily:

λ
(
H−1(0)

)
= λh

(
H−1

h (0)
)

.

In other words, condition (8.4) just depends on the forcing term h, and not on the
particular representation we chosen for it.

Proof. The function h(t) is representable as in (8.3) if and only if (8.2) is satisfied:
see Lemma 5.1. Denoted by χ : Ω → Hh the group epimorphism which shadows
the morphism (8.2), the uniqueness of the representation yields:

H = Hh ◦ χ .

To conclude, apply Lemma 6.2 to the Borel set in Hh given by B = H−1
h (0),

obtaining:
λh

(
H−1

h (0)
)

= λ
(
χ−1(H−1

h (0))
)

= λ
(
H−1(0)

)
.

¤

9. Sets of Haar measure zero

In this section a pair (Ω, Ψ) ∈ P is assumed to be given and λ denotes, as usual,
the Haar measure on Ω. The notations are the same of Section 6.
The aim here is to describe the Borel subsets B of Ω, which satisfy the condition:

(9.1) λ(B) = 0 .

The reason goes back to condition (8.4). Assume indeed that (9.1) is satisfied with
B = H−1(0): then the conclusions of Theorem 8.1 become true independently on
the concrete behavior of the jumping linearity j (represented by α > 0) and of the
size of the perturbation g (represented by ‖g′‖∞). In other words, this is probably
the most interesting case in the applications.
The following characterization is an enhancement of the ergodic theorem, with
time averages on flow lines replaced by full Lebesgue measures: the Fubini–type
decomposition of the Haar measure, given in Section 6, plays here a key role.

Proposition 9.1. Condition (9.1) is satisfied if and only if:

(9.2) m
{
t ∈ R : ω · t ∈ B

}
= 0

for almost all ω ∈ Ω.

Notice that the information is no longer available for every ω ∈ Ω, also when B is
assumed to be closed. For instance, this may be seen in the setting of Example 7.1,
taking now B = Ψ([−1, 1]): hence B is compact and then closed.

Proof. The result is true when Ω is trivial. In all the other cases, a nontrivial
section Σ may be constructed and then the conclusions of Corollary 6.4 hold true.
Notice also that condition (9.2) is invariant under the flow: if it is satisfied for a
given ω ∈ Ω, then it is also satisfied for all the elements in ω · R.
Assume now that there exists a Borel set Ω0 ⊂ Ω such that λ(Ω0) = 1 and condition



27

(9.2) holds at every ω ∈ Ω0. It is not restrictive to assume that Ω0 is invariant
under the flow, since otherwise we may replace it by Ω0 · R. Define:

Σ0 = Ω0 ∩ Σ .

Using the invariance of Ω0, it can be easily checked that:

(9.3) Φ−1(Ω0) = Σ0 × [0, S) .

Proposition 6.3 then guarantees that µ(Σ0) = λ(Ω0) = 1, and Corollary 6.4 allows
to conclude that λ(B) = 0.
To prove the reverse implication, start assuming that λ(B) = 0 and use again
Corollary 6.4 to find a Borel set Σ0 ⊂ Σ such that µ(Σ0) = 1 and:

m
{

t ∈ [0, S) : σ · t ∈ B
}

= 0

for every σ ∈ Σ0. Then define, for every integer k:

Σk =
{
σ ∈ Σ0 : σ + Ψ(kS) ∈ Σ0

}
.

Notice that σ +Ψ(kS) ∈ Σ0 if and only if σ ∈ −Ψ(kS)+Σ0 so that we have indeed:

Σk = Σ0 ∩
{− Ψ(kS) + Σ0

}
.

By the invariance of µ we know that µ (−Ψ(kS) + Σ0) = µ(Σ0) = 1 and hence also
µ(Σk) = 1. If we define finally:

E =
⋂

k∈Z
Σk

we have that µ(E) = 1. We claim that, for every σ ∈ E:

m
{

t ∈ R : σ · t ∈ B
}

= 0 .

To show it, begin by noticing that:
{

t ∈ R : σ · t ∈ B
}

=
⋃

k∈Z
{

t ∈ [kS, (k + 1)S) : σ · t ∈ B
}

=
⋃

k∈Z
(
kS +

{
s ∈ [0, S) : σ + Ψ(kS) + Ψ(s) ∈ B

})
.

Now, if σ ∈ E then σ + Ψ(kS) ∈ Σ0 for all k ∈ Z. This implies that each set in the
above countable union has zero Lebesgue measure. The same must then be true
for the union itself, proving the claim.
To conclude the proof, observe that condition (9.2) is also satisfied at every point
of E + Ψ(R). But:

E + Ψ(R) ⊃ E + Ψ
(
[0, S)

)
= Φ (E × [0, S))

and hence Proposition 6.3 applies to show that:

λ
(
E + Ψ(R)

) ≥ µ(E) = 1 .

¤

The second part of the section is devoted to functions. The aim is to describe the
set properties of the U ∈ C(Ω) which satisfy:

(9.4) λ
(
U−1(0)

)
= 0
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and to exhibit some relevant examples.
The first question we consider is whether condition (9.4) may be expressed in terms
of a single flow line. More precisely, fix ω0 ∈ Ω and set:

u0(t) = U(ω0 · t) .

Since ω0 · R = Ω and U is continuous in Ω, the action of U on all of Ω is completely
determined by the knowledge of u0. Thus it seems reasonable that (9.4) may be
obtained from some suitable assumption on u0. This is certainly true if Ω ∼= S1.
In this case indeed, Ω is made a a single periodic flow line and hence(9.4) simply
means that the set:

(9.5)
{
t ∈ R : U(ω0 · t) = 0

}

has zero Lebesgue measure.
The situation changes drastically when Ω 6∼= S1. Of course, it is again true that the
strong sign condition:

U(ω0 · t) ≥ δ > 0 ∀t
implies U ≥ δ on all of Ω, so that condition (9.4) is satisfied. However, no other
weaker assumptions on the set (9.5) are suitable to it: this is the sense of the next
example.

Example 9.2. Take any nontrivial Ω 6∼= S1. Moreover choose 0 < ε < 1 and an open
set A in Ω such that:

Ψ(R) ⊂ A λ(A) < ε .

This is possible since the measure λ is regular and λ(Ψ(R)) = 0: see Lemma 6.5.
Then define U ∈ C(Ω) by means of:

U(ω) = d(ω, AC)

where d stands for a metric which generates the topology of Ω. Consider now the
flow line passing trough ω0 = 0, namely Ψ(R). Due to the choice of A we know
that U(Ψ(t)) > 0 for every t ∈ R: hence the set (9.5) is empty. However condition
(9.4) fails, since U−1(0) = AC and λ(AC) > 1− ε > 0 by construction. The point
here is that the set: {

t ∈ R : U(ω · t) = 0
}

has a positive Lebesgue measure, for a set of ω’s which has a positive λ–measure:
this follows from Proposition 9.1, by taking B = U−1(0). In fact, the Birkhoff
Ergodic Theorem (7.1) allows to say more: the time average of the above set is
λ(AC) for almost every ω ∈ Ω.

The above obstruction is present also when Ω = TN with N > 1. In this case,
however, a special class of functions may be identified, for which condition (9.4)
is easily tested: that is Cω(TN ), the class of real analytic functions on TN . They
may be thought of the real analytic functions on RN which are 1–periodic in each
variable. To get an element of P, complete TN with Ψ(t) = νt for a nonresonant
ν ∈ RN .

Lemma 9.3. Assume that U ∈ Cω(TN ). Then either U = 0 or condition (9.4) is
fulfilled.

In particular, this is true when U is a linear combinations of characters of TN .
Notice that the corresponding functions U(νt) are trigonometric polynomials: in
fact, all of them can be obtained by tuning the representation.
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Proof. Each function uω(t) = U(νt) is real analytic in the variable t. Thus either
uω(t) = 0 for a discrete set of t’s or it is identically zero. If the last case occurs for
a single ω, then U must be identically zero on Ω due to νR = TN . Consider now
the case where u−1

ω (0) is discrete set for every ω ∈ Ω: then is has Lebesgue measure
zero, and Proposition 9.1 applies to show that condition (9.4) is satisfied. ¤

Remark 9.4. It is well know that, if ϕ ∈ Cω(RN ) is not indentically zero, then
ϕ−1(0) has Lebesgue measure zero in RN : adding the obvious periodicity condition,
this fact would have been given an alternative proof of Lemma 9.3. Notice however
that, when N = 1, this property is exactly what we used in the proof of the lemma.
Moreover, the same property is most easily proved for N > 1 by induction on the
dimension N , taking into account that the Lebesgue measure on RN is a product
measure. This is not so different from the use we made of Proposition 9.1, based
on the decomposition of λ.

It is probably worth to stress that, the analyticity assumption considered in Lemma
9.3 cannot be transferred from Ω to a single flow line. Consider for instance the
real analytic function:

u(t) =
{
2− sin(t)− sin(

√
2t)

}3/2
.

We may represent it on T2 by means of:

U(θ1, θ2) =
{
2− sin(2πθ1)− sin(2πθ2)

}3/2

which is continuous, but certainly not analytic. Notice however that, though
Lemma 9.3 cannot apply, the condition (9.4) is satisfied. Indeed, U is nonana-
lytic only at (1/2, 1/2) ∈ T2 and the problems are then confined to the flow line
trough it. But this line has Haar measure zero, due to Lemma 6.5, and hence
Proposition 9.1 could have been used to conclude.
In fact, Proposition 9.1 may be helpful also when more complicate Ω are considered,
possibly without any differentiable structure. To make an example, consider the
function:

(9.6) u(t) =
+∞∑
n=0

1
2n

sin
(

2πt

pn

)

where p is any real number satisfying p > 1. This function is almost periodic,
inasmuch it is the uniform limit on the real line of its partial sums, which are
trigonometric polynomials. Consider now Ω = Hu with its canonical flow Ψu. If
p ∈ N then u is a limit periodic function and Hu is shown to be a p–adyc solenoid
Sp, which does not admit any differentiable structure (see [13]). The situation is
even worst when p 6∈ N but the point is that, doesn’t matter how complicate Hu

may be, we may use Proposition 9.1 to guarantee that condition (9.4) is satisfied:
it is sufficient to show that every function in Hu is real analytic, since nontriviality
is obvious. To this aim, use a standard diagonal argument to prove that all the
elements of Hh may be written as:

uθ(t) =
+∞∑
n=0

1
2n

sin
(

2π
t + θn

pn

)

for some real sequence θ = (θn)n. Indeed, only a restricted set of θ’s gives rise to
elements of the hull, but this is not relevant for the following. To prove that uθ(t)
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is real analytic, we first extend it to the complex plane by means of:

uθ(z) =
+∞∑
n=0

1
2n

sin
(

2π
z + θn

pn

)

where z = t + is. The single terms in the series are entire functions. Moreover, for
every ρ > 0, the estimate:

1
2n

∣∣∣∣sin
(

2π
z + θn

pn

)∣∣∣∣ ≤
e2πρ/pn

2n
≤ e2πρ

2n

holds in the strip |Imz| ≤ ρ. As a consequence, the series converges uniformly in all
these strips. Montel’s theorem then applies to show that uθ(z) is an entire function,
so that its trace uθ(t) on the real axis must be real analytic too.

We conclude the section with the question of the genericity, in the sense of Baire,
of condition (9.4). Here Ω is given, and we may distinguish two situations: the
average of U is assigned or it is not. To assign it, by requiring for instance that:

(9.7)
∫

Ω

U dλ = 0

may be relevant to avoid the case of U ’s with constant sign. The resulting subset
of C(Ω) will be denoted by C0(Ω). We need first a density lemma.

Lemma 9.5. For every V ∈ C(Ω) and every ε > 0, there exists U ∈ C(Ω) such
that condition (9.4) is verified and moreover:

‖U − V ‖∞ < ε and
∫

Ω

U dλ =
∫

Ω

V dλ .

The conclusion is quite evident when Ω = TN. Indeed, Cω(TN ) is a dense subsets
of C(TN ) and C0(TN ), due to the Stone–Weierstrass theorem: hence Lemma 9.3
implies the result. However, the general Ω does not admit any differentiable struc-
ture: this is for instance the case of solenoids, where to talk about analyticity does
not seem to have so much sense.

Proof. For every positive integer k, the set:

Vk =
{
c ∈ R : λ

(
V −1(c)

) ≥ 1/k
}

contains at most k elements. This follows from λ(Ω) = 1. As a consequence, the
set:

V =
{
c ∈ R : λ

(
V −1(c)

)
> 0

}
=

⋃

k

Vk

is at most countable and we can always find a sequence cn → 0 such that cn 6∈ V.
Moreover, we may also assume that 0 ∈ V, since otherwise the conclusions of the
lemma are true with U = V . Define now:

Wn(ω) = V (ω)− cn .

We know that condition (9.4) is satisfied by Wn and that ‖Wn − V ‖∞ = |cn| → 0.
However Wn has not the same average of V , due to 0 ∈ V. To overcome the
problem, we distinguish two cases.
Assume first V (ω0) 6= 0 for a suitable ω0 ∈ Ω. By continuity, we can find δ > 0 and
an open neighborhood A of zero such that:

|V (ω)| ≥ δ ∀ω ∈ ω0 + A .
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Consider a Urysohn function F in Ω, satisfying:

F (ω) =
{

1 if ω = 0
0 if ω 6∈ A .

Since F is continuous and nonnegative, clearly:

ρ =
∫

Ω

F dλ > 0 .

Consider then the continuous functions:

Un(ω) = Wn(ω) +
cn

ρ
F (ω − ω0) = V (ω) + cn

{
1
ρ

F (ω − ω0)− 1
}

.

Due to the invariance property of λ, one has now:
∫

Ω

Un dλ =
∫

Ω

V dλ

while the approximation property ‖Un − V ‖∞ → 0 is preserved. In particular, for
large values of n we know that:

|Un(ω)| ≥ δ/2 ∀ω ∈ ω0 + A .

As a consequence, Un can only vanish in ω0 + AC , where the equality Un = Wn is
satisfied. Thus, for the same values of n:

U−1
n (0) ⊂ V −1(cn)

which has zero measure, due to cn 6∈ V.
Let us finally consider the case where V is identically zero in Ω. The conclusion
follows from the previous case, if we are able to show that a sequence Vn ∈ C(Ω)
exists, satisfying:

Vn 6= 0
∫

Ω

Vn dλ = 0 ‖Vn − V ‖∞ → 0 .

To construct it, consider two points ω0 6= ω1 in Ω, choose an open neighborhood A
of zero such that:

(ω0 + A) ∩ (ω1 + A) = ∅
and define the Uryshon function F as before. Finally take a sequence αn 6= 0 such
that αn → 0 and set:

Vn(ω) = αn

{
F (ω − ω0)− F (ω − ω1)

}
.

The condition: ∫

Ω

Vn dλ = 0

follows again from the invariance of λ, while the other required properties are totally
obvious. ¤

Proposition 9.6. The class of U ∈ C(Ω) which satisfy condition (9.4) is of second
Baire category in C(Ω). The same result is true when C(Ω) is replaced by C0(Ω).
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Proof. The proof for C(Ω) is essentially the same as for C0(Ω), so that we will trait
only the second case. For ε > 0, consider the set:

Aε =
{

u ∈ C0(Ω) : λ
(
U−1(0)

)
< ε

}
.

We show that this set is open by proving that, if U ∈ Aε and Un → U in C0(Ω),
then Un ∈ Aε eventually. For writing convenience, set:

K = U−1(0) Kn = U−1
n (0)

and denote by χn the characteristic function of the set KC
n . Since for every ω 6∈ K

the equality:
χn(ω) = 1

holds eventually, the Lebesgue Dominated Convergence Theorem implies:

λ(KC
n ) ≥ λ

(
(Kn ∪K)C

)
=

∫

KC

χn dλ → λ(KC) > 1− ε.

As a consequence λ(Kn) < ε for n large, showing that Un ∈ Aε and hence that Aε

is open. On the other hand, Lemma 9.5 implies that the set Aε is dense in C0(Ω).
The conclusion then follows by noticing that the set of U ∈ C0(Ω) which satisfy
condition (9.4) writes as

⋂
n∈N+

A1/n. ¤

Next we consider a different type of generic result: in some sense, the representing
group Ω is now allowed to vary. More precisely, we will work directly in the Banach
space AP (R) of all the almost periodic functions, with the standard sup norm, or
in the subspace:

AP0(R) =
{
u ∈ AP (R) : ū = 0

}
.

Every u ∈ AP (R) is extended by continuity, i.e. represented on the pair (Hu, Ψu)
by the function Uu(v) = v(0). Denote by λu the Haar measure on Hu. Then look
at the intrinsic condition:

(9.8) λu

(
U−1

u (0)
)

= 0 .

Proposition 9.7. The class of u∈AP (R) which satisfy condition (9.8) is of sec-
ond Baire category in AP (R). The same result holds when AP (R) is replaced by
AP0(R).

Proof. Set Ku = U−1
u (0) ⊂ Hu. We adapt the proof of proposition 9.6, by restrict-

ing again to the case AP0(R) and showing that the set:

Aε =
{

u ∈ AP0(R) : λu (Ku) < ε
}

is open and dense in AP0(R). Density is no longer a problem here, since the
trigonometric polynomials are dense in AP0(R) and are real analytic. To show that
Aε is open, for every integer n consider the set:

An
ε =

{
u ∈ AP0(R) :

∫

Hu

dλu

1 + n|Uu| < ε

}
.

Since:

(9.9)
∫

Hu

dλu

1 + n|Uu| = λu(Ku) +
∫

Hu\Ku

dλu

1 + n|Uu| ≥ λu(Ku)

it is clear that:

(9.10) An
ε ⊂ Aε ∀n .



33

Moreover, from the explicit form of the Haar integral, see formula (6.3), one deduces
that: ∫

Hu

dλu

1 + n|Uu| =
1

1 + n|u| .

Now, the right hand side is continuous in u and this shows that An
ε is open in

AP0(R). To prove that also Aε is open in AP0(R), it is now enough to show that:

Aε =
⋃

n∈N+

An
ε .

One partial inclusion is given by (9.10). The other follows from (9.9), since:∫

Hu\Ku

dλu

1 + n|Uu| → 0

due to Lebesgue’s Dominated Convergence Theorem. ¤

Remark 9.8. It is maybe worth pointing out that condition (9.8) respects the hull,
in the following sense: given an arbitrary u ∈ AP (R), either it is satisfied for
all v ∈ Hu or it is by no one. Now, belonging to the same hull is an equivalence
relation in AP (R), which operates a partition of AP (R) itself in equivalence classes:
Proposition 9.7 then states that the generic equivalence class is made by functions
which satisfy condition (9.8).
To see why condition (9.8) respects the hull, take v ∈ Hu and begin by noticing
that Hu = Hv as sets and also as metric spaces. They are not the same group,
since the neutral elements are different. However, it is not too hard to check that
the map:

uτ ∈ Hu 7→ vτ ∈ Hv

is well defined and extends to a continuous homomorphisms of groups. By the very
construction, this map defines a morphism (Hu, Ψu) → (Hv, Ψv) in the category P.
In the footsteps of Lemma 8.3, one then finds that the equality:

λv

(
U−1

v (0)
)

= λu

(
U−1

u (0)
)

is always satisfied.

10. Appendix

In this section, we consider the differential equation:

(10.1) ẋ = x +
1
c

g(cx) + h(t)

where:

g(ξ) =





2 if ξ ≤ −1
−2 ξ if −1 ≤ ξ ≤ 1
−2 if ξ ≥ 1

Up to the change of variable u = cx introduced in Section 3, this equation is that
considered in the Introduction, corresponding to the nonlinearity (1.4). The aim
of this appendix is to estimate the threshold value for the parameter c, over which
Theorem 8.1 applies, when the forcing term is given by:

h(t) = sin(t) + sin(
√

2t) .
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This term is representable on the pair (T2, Ψ), where Ψ(t) = (t/2π,
√

2t/2π) for
every t, by the continuous function:

H(θ1, θ2) = sin(2πθ1) + sin(2πθ2) .

Begin by noticing that ‖g‖∞ = ‖g′‖∞ = 2. Moreover, defined:

K(r) = sup
{ |g(ξ1)− g(ξ2)|

|ξ1 − ξ2| : ξ1 6= ξ2, |ξ1| ≥ r, |ξ2| ≥ r

}

as in Section 3, it is not difficult to check that:

K(r) =
{

2 if r ≤ 1
2/r if r ≥ 1

so that we may choose:

rε =
{

2/ε if 0 < ε < 2
0 if ε ≥ 2

Following the proof Theorem 8.1, the threshold value (8.10) then becomes:

(10.2) c∗ =
2
δ

(
1 +

1
ε

)

where δ > 0 and ε > 0 are chosen according to:

(10.3) ε + 2 λ
(
Y −1

H ([−δ, δ])
)

< 1 .

Notice that this condition yields the automatic restriction 0 < ε < 1, which has
been used to write (10.2). Moreover, it is clear that condition (10.3) may be satisfied
if and only if:

λ
(
Y −1

H (0)
)

< 1/2 .

Together with Lemma 8.2, this accounts for the assumption (1.7) of Theorem 1.1
in the Introduction. Of course, the same condition is obtained by inserting the
concrete values of α and ‖g′‖∞ directly into condition (8.4).
Observe that YH has a nice expression in terms of H, namely:

YH(ω) = −
∫ +∞

0

e−t H(ω · t) dt

which permits to compute it in the case we are interested in. The result is:

YH(θ1, θ2) = −1
2

{
sin(2πθ1) + cos(2πθ1)

}− 1
3

{
sin(2πθ2) +

√
2 cos(2πθ2)

}
.

Consider now the quantity:

(10.4) λH(δ) = λ
(
Y −1

H ([−δ, δ])
)

which appears in (10.3). Clearly it depends continuously on δ, vanishes at δ = 0
and it is not difficult to check that it is unitary for every δ ≥ δ2

H , where:

δ2
H = ‖YH‖∞ =

1√
2

+
1√
3

.

Moreover, λH is strictly increasing in the interval 0 ≤ δ ≤ δ2
H .

Condition (10.3) yields a further restriction on δ, the admissible interval becoming:

0 < δ < δH where δH = λ−1
H (1/2) .
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For such δ’s, condition (10.3) is satisfied if and only if 0 < ε < 1−2λH(δ). Inserting
this information into (10.2), we finally obtains the threshold function:

(10.5) cH(δ) =
2
δ

{
1 +

1
1− 2λH(δ)

}
.

This is a continuous function which explodes at the boundary of the admissible
interval. The best condition on the parameter c then becomes:

c > c∗H := min{cH(δ) : 0 < δ < δH} .

To compute c∗H concretely, we need to know the explicit expression of the function
λH(δ): as far as we know, this is possible only numerically. Before following this
way, notice that the expression of the function YH may be simplified, without
altering the result. Indeed, the function:

FH(θ1, θ2) =
1√
2

sin(2πθ1) +
1√
3

sin(2πθ2)

is, up to the sign, a translated version of YH(θ1, θ2) and hence the equality:

λH(δ) = λ
(
F−1

H ([−δ, δ])
)

= 1− 2 λ
(
F−1

H ((δ, 1])
)

follows from the invariance property of the Haar measure and symmetry arguments.
In figure 10 we provide a picture of the level sets of the function FH , as obtained
by a numerical computation: the value of the level increases from black to white.
The zero level is regular and it is shown as a dashed line.

-0.2 0 0.2 0.4 0.6
Θ1

-0.2

0

0.2

0.4

0.6

Θ2

Figure 1. Level sets of FH

As the picture suggests, there is a change in the topology of the level sets when δ
varies in the range [0, δ2

H ]. It is not difficult to check that the bifurcation value is:

δ1
H =

1√
2
− 1√

3
.
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To see why, let us describe the involved lines by using the parameter θ2. Up to the
periodicity in θ1, the level set F−1

H (δ) is the union of two graphs, associated to the
functions:

fδ
H(θ2) =

1
2π

arcsin

(√
2 δ −

√
2
3

sin(2πθ2)

)

gδ
H(θ2) =

1
2
− 1

2π
arcsin

(√
2 δ −

√
2
3

sin(2πθ2)

)
.

Moreover, it is clear that the region inside the graphs corresponds exactly to the
points where FH > δ.
Now, when 0 ≤ δ < δ1

H the two functions are defined everywhere and don’t cross
each other: they correspond to the unbounded vertical lines which appear in the
picture above. When on the contrary δ1

H < δ ≤ δ2
H , the functions are defined in a

restricted domain. Up to the periodicity in the variable θ2, this domain is given by:

aδ
H ≤ θ2 ≤ bδ

H

where we set:

aδ
H =

1
2π

arcsin

(√
3δ −

√
3
2

)
bδ
H =

1
2
− 1

2π
arcsin

(√
3δ −

√
3
2

)
.

The two graphs intersect now exactly at the the end points of the common domain,
giving rise to a closed curve.
Notice that the above end points may be extended by continuity to the the interval
[0, δ1

H ] by setting:

aδ
H = −1

4
bδ
H =

3
4

which defines a full periodicity interval in the variable θ2. Thus, we may express
the desired measure by the quite compact formula:

(10.6) λH(δ) = 1− 2
∫ bδ

H

aδ
H

{
gδ

H(θ2)− fδ
H(θ2)

}
dθ2

which is valid in all the interval 0 ≤ δ ≤ δ2
H . Figure 2 shows the graphs of the

function λH , as obtained by a numerical computation.

0.3 0.6 0.9 1.2

0.2

0.4

0.6

0.8

1

∆H
1

∆H
2

∆H

Figure 2. Graph of the fuction λH
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The numerical computation shows that the bifurcation value δ1
H lies inside the

admissible interval (0, δH). Inserting the corresponding numerical values of λH(δ)
into (10.5), we finally obtains the graph of the threshold function.

0.2 0.4

100

200

300

400

∆H
1

∆H

0.22 0.24 0.26 0.28 0.3

28.75

29.25

29.5

29.75

30

30.25

Figure 3. Graph of the function cH

The right hand sided graph in Figure 3 is a magnified version of the left one,
centered around the minimum point. The position of the corresponding minimum
value justifies the estimate:

c∗H ≈ 28.75 .
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