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1 Introduction

Consider the differential equation

ü = − 1
u2

+ p(t), u > 0 (1)

where p : R → R is a continuous and 2π-periodic function. The results by
Lazer and Solimini in [8] imply that the condition∫ 2π

0
p(t)dt > 0 (2)

is necessary and sufficient for the existence of a 2π-periodic solution. The
results by Campos and Torres in [6] are also applicable and the equation
has a simple dynamics of saddle type. In particular the periodic solution
is unique and unstable (hyperbolic). In both papers the solutions are un-
derstood in a classical sense and no collisions are admitted. The purpose of
the present paper is to point out that the equation has a rich dynamics of
twist type if one admits solutions with collisions. As it is typical in Celestial
Mechanics for a binary collision, at an instant where u = 0 the velocity
becomes infinity but the energy remains finite and has a well defined limit;
that is,

u(t±0 ) = 0 =⇒ u̇(t±0 ) = ∓∞ and h(t±0 ) = lim
t→t±0

{1
2
u̇(t)2 − 1

u(t)
} is finite.
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This observation leads to consider generalized solutions satisfying

ü = − 1
u2

+ p(t), u ≥ 0 (3)

and the additional condition

u(t0) = 0 =⇒ h(t−0 ) = h(t+0 ). (4)

It is easy to understand why the condition (2) is necessary for the existence
of classical periodic solutions. Integrating the equation (1) over a period
one obtains

0 = u̇(2π)− u̇(0) =
∫ 2π

0
ü(t)dt = −

∫ 2π

0

dt

u(t)2
+
∫ 2π

0
p(t)dt.

For a periodic solution with collisions the first two integrals are not con-
vergent and the above identity does not produce any restriction on p. This
is consistent with the following results on the existence of harmonic and
sub-harmonic solutions.

Theorem 1 Assume that p(t) is 2π-periodic and of class C1. Then (3)-(4)
has at least two generalized periodic solutions of period 2π and having exactly
one collision in the interval [0, 2π[.

Theorem 2 Assume that p(t) is 2π-periodic and of class C1. Then for
each integer N ≥ 2 the equation (3)-(4) has at least two periodic solutions
of minimal period 2Nπ, having exactly one collision in the interval [0, 2π[
and no collision on [2π, 2Nπ[.

The basic tools for proving these results will be the regularization of binary
collisions as presented by Sperling in [13] and an elementary version of the
Poincaré-Birkhoff Theorem valid for twist maps. It seems reasonable to
expect that the use of more sophisticated versions of the Poincaré-Birkhoff
Theorem or KAM and Aubry-Mather theory could lead to more precise
results on existence and stability of periodic solutions, as well as results on
boundedness and recurrence.

The rest of the paper is organized in six sections. In Section 2 we follow
[13] and discuss the behavior of a solution of (1) at a collision. This dis-
cussion leads to the concept of generalized or bouncing solution. In Section
3 we prove that the generalized Cauchy problem is well posed. This result
shows that the notion of bouncing solution is meaningful. In Section 4 we
present the version of the Poincaré-Birkhoff that will be employed. A sketch
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of the well known proof is given for completeness. In Sections 5, 6 and 7
we study different aspects of the successor map. This is a map in the plane
sending each couple (t0, h0) into the next couple (t1, h1), where t0 is the
instant of collision and h0 is the corresponding energy. This map is an exact
symplectic twist map and the study of some of its periodic points leads to
the proof of the results stated above.

2 Collisions and bouncing solutions

The periodicity of p(t) will not play a role until Section 5. By now it is
sufficient to assume that p : R → R is a continuous and bounded function
with ||p||∞ := supt∈R |p(t)|.

Let u(t) be a maximal solution of (1) defined in ]t0, t1[ and assume that
t0 > −∞. We will prove that the following limits exist,

lim
t↓t0

u(t) = 0 (5)

lim
t↓t0

{1
2
u̇(t)2 − 1

u(t)
} = h0 (6)

with h0 finite.
To prove (5) we notice that the general theory of Cauchy problems im-

plies that one of the following statements must hold at t = t+0 . Either the
solution blows up,

lim
t↓t0

{u(t)2 + u̇(t)2} = +∞ (7)

or it touches the boundary,

lim inf
t↓t0

u(t) = 0. (8)

Indeed the second alternative always holds. Otherwise there should exist
δ > 0 and ρ > 0 with

u(t) ≥ δ if t ∈ I :=]t0, t0 + ρ].

From the equation (1) we obtain

|ü(t)| ≤ 1
δ2

+ ||p||∞ on I

and now it is easy to deduce that also |u̇(t)| and u(t) are bounded on I.
This is against the first alternative (7) and so none of the two alternatives
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would hold. This contradiction shows the validity of (8) and we can apply
the Lemma in Section 3 of [13] and deduce that the stronger assertion (5)
is also valid.

To prove the existence of the limit in (6) we apply the results of Section
6 in [13] and conclude that the ”energy function”

h(t) =
1
2
u̇(t)2 − 1

u(t)

is bounded in a neighborhood of t+0 . The next Section in the same paper
leads to the asymptotic expansions

u(t) = (
9
2
)1/3(t− t0)2/3 +O((t− t0)4/3), t ↓ t0, (9)

u̇(t) =
2
3
(
9
2
)1/3(t− t0)−1/3 +O((t− t0)1/3), t ↓ t0. (10)

The obtention of these expansions has some subtleties and we add the de-
tails. From (7.4) in [13] it can be deduced that R(t) := u(t)2 solves

Ṙ = (8R1/2 + b(t)R)1/2

on some interval of the type I =]t0, t0 + δ[ with b : I → R continuous and
bounded. The change of unknown z = R3/4 transforms the equation to

ż =
3
4
(8 + b(t)z2/3)1/2.

The solution z(t) is continuous at t = t+0 and we arrive at the integral
equation

z(t) =
3
4

∫ t

t0

(8 + b(s)z(s)2/3)1/2ds.

From the initial estimate z(t) = O(t− t0) as t ↓ t0 it is easy to deduce that

z(t) =
3
4

∫ t

t0

(81/2 +O((s− t0)2/3))ds =
3√
2
(t− t0)[1 +O((t− t0)2/3)]

and (9) can be obtained from u = z2/3. The expansion (10) follows from
u̇ = 2

3z
−1/3ż and

ż(t) =
3√
2

+O((t− t0)2/3).

This last formula can be derived from the differential equation in z.
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Once (9) and (10) have been proved we can go back to the proof of (6).
Differentiating the energy function one gets ḣ = p(t)u̇ and

h(t) = h(τ) +
∫ t

τ
p(s)u̇(s)ds, t, τ ∈]t0, t1[.

From (10) we deduce that p(t)u̇(t) is integrable (in the Lebesgue sense) in
]t0, τ [. In particular h has a limit when t decreases to t0.

Next we describe a procedure to regularize collisions that is standard in
Celestial Mechanics. Given a maximal solution in the previous conditions,
the Sundman integral is defined as

S(t) =
∫ t

t0

ds

u(s)
, t ∈ [t0, t1[.

The asymptotic expansion (9) guarantees that it is convergent. As a function
S has a continuous inverse T = T (s) defined in some interval [0, σ[ and taking
values on [t0, t1[. The function T is of class C2 in ]0, σ[ and the triplet

U(s) = u(T (s)), T = T (s), H(s) = h(T (s))

is a solution of the autonomous system

U ′′ = 1 + 2UH + p(T )U2, T ′ = U, H ′ = p(T )U ′. (11)

This can be proved by straightforward differentiation or following the dis-
cussions of Section 8 in [13]. A nice feature of the new equation is that
it defines a continuous vector field on the phase space R4 with coordinates
(U,U ′, T,H). The definition of T and the limits (5) and (6) imply that
T (0) = t0 and U(0) = 0,H(0) = h0. Also, from the Lemma in Section 5 of
[13],

U ′(s) = u̇(T (s))T ′(s) = u̇(T (s))u(T (s)) → 0 as s ↓ 0.

In consequence the functions U,U ′, T,H are well defined and continuous on
some interval of the type [0, σ[ and so they can be extended to the left of
s = 0 as a solution of (11) satisfying the initial conditions

U(0) = U ′(0) = 0, T (0) = t0, H(0) = h0. (12)

This process can be reversed. To this end it is useful to notice that the
quantity

I = U2H − 1
2
(U ′)2 + U (13)
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is a first integral of the system (11). Assume now that we are given a
solution of (11), (12) and notice that U ′′(0) = 1. This implies that U(s) > 0
if s is positive and small enough. Going to the second equation in (11) it
is observed that T ′ is positive on the same interval. Thus it is possible to
construct a local inverse of T , say S, that is defined on an interval [t0, t0+δ[.
A direct computation shows that the function u(t) = U(S(t)) satisfies

ü = − 1
u2

+
2I
u3

+ p(t), t0 < t < t0 + δ.

From the initial conditions (12) we deduce that I = 0 and the limits (5) and
(6) holds. Hence u(t) is a solution of (1), (5), (6) in some neighborhood of
t+0 .

The previous construction leads to a result on the existence and unique-
ness of solution with a prescribed collision.

Lemma 3 Given two numbers t0 and h0 there exists a maximal solution of
(1), (5), (6) defined on ]t0, t1[ with t0 < t1 ≤ +∞. Moreover this solution
is unique as soon as p(t) is Lipschitz-continuous.

Proof. The existence is a consequence of Cauchy-Peano Theorem applied
to (11). For the uniqueness we assume that u1(t) and u2(t) are solutions of
(1), (5), (6). The corresponding solutions of (11) will satisfy the same initial
conditions at s = 0. Hence they must coincide. In particular T1 = T2 and so
the inverse functions S1(t) and S2(t) will coincide in a neighborhood of t+0 .
Differentiating the identity T1 = T2 one obtains U1 = U2 and so u1 = U1 ◦S1

coincides with u2 = U2 ◦ S2 in a neighborhood of t+0 . This argument proves
only the local uniqueness around t+0 , but this is enough. Once we know that
u1 and u2 coincide in some interval, we can invoke the standard uniqueness
result for the initial value problem.

The previous result motivates a notion of generalized solution with a
long tradition in Celestial Mechanics. A generalized or bouncing solution of
(1) is a continuous function u : R → [0,∞[ satisfying

• Z = {t ∈ R : u(t) = 0} is discrete

• For any open interval I ⊂ R\Z the function u is in C2(I) and satisfies
(1) on I

• For each t0 ∈ Z the limit

lim
t→t0

{1
2
u̇(t)2 − 1

u(t)
}

exists.
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Let us stress that the above limit is taken from both sides of t0. Hence the
energy function h(t) has a well defined value at t0 and h(t0 +0) = h(t0− 0).
This means that the energy must be preserved at the collision. In the rest
of the paper we will prefer the terminology bouncing solution. The reason is
that the term generalized solution is employed in the literature with many
different meanings. Notice that our concept of bouncing solution is more
demanding than that employed in [12] and [14], where the only conditions
at collisions are u(t0) = 0, u̇(t0 − 0) = −∞, u̇(t0 + 0) = +∞. The related
notion of collision solution was introduced in [4], see also [7]. These collision
solutions can be obtained by juxtaposing maximal classical solutions and
discontinuities of the energy are admissible. We also refer to [2] for some
interesting remarks on the meaning of the notion of collision solutions for
systems. I thank Pedro Torres for informing me on these definitions. In
the recent paper [5] there is an interesting notion of generalized solution
guaranteeing the continuity of the energy in the non-autonomous case.

3 The generalized Cauchy problem

From now on solutions without collisions will be called classical solutions.
Classical solutions of (1) which are defined on the whole line can be under-
stood as bouncing solutions with Z = ∅. A less trivial example of bouncing
solution is the function

u(t) = (
9
2
)1/3(t− t0)2/3,

solving (1) for p ≡ 0 and having a unique collision, Z = {t0}.
Next we obtain a global result on the existence of a bouncing solution

when the instant and energy of the collision are prescribed.

Proposition 4 Assume that p(t) is Lipschitz-continuous and t0, h0 are
given real numbers. Then there exists a unique bouncing solution satisfy-
ing (5) and (6).

Remark. A consequence of this result is the global extendibility of all
solutions of (3)-(4). Given a classical solution u(t) defined on a maximal
interval ]t0, t1[ we distinguish two cases. If t0 = −∞ and t1 = +∞ then u(t)
is also a bouncing solution. If one of the extremes is finite, say t0 > −∞,
then we know that (5) and (6) hold and so, once collisions are admitted,
it is possible to extend u to a larger interval using Lemma 3. The case
t1 < +∞ is similar and can be reduced to the previous situation by the
change reflecting the time, u = u(s), s = −t.

7



In view of the above Remark the proof of this Proposition looks as an
immediate consequence of Lemma 3. Indeed we could apply this Lemma
recursively and juxtapose the resulting classical solutions at the collision
instants. The objection is that at this point we have no reasons to discard a
situation where the length between successive collisions shrinks to zero very
fast. In such a case the resulting function would not be defined on the whole
line and the set of bouncing instants could have an accumulation point. The
proof will be complete if we are able to obtain an uniform lower estimate for
the distance between successive collisions. To obtain this estimate we need
several preliminary results which will be presented in two subsections.

3.1 Continuous dependence

Let u(t) be a classical solution of (1) with maximal interval ]t0, t1[ and t0
finite. We know that (5), (6) hold for an appropriate h0. Given ε > 0 with
h0 + 1

ε > 0, the solution of (1) satisfying the initial conditions

u(t0) = ε, u̇(t0) = +

√
2(h0 +

1
ε
) (14)

is denoted by uε(t). Next we present a result on the convergence of uε(t) to
u(t).

Lemma 5 In the previous notations assume that p(t) is Lipschitz-continuous
and J is a compact interval contained in ]t0, t1[. Then there exists εJ > 0
such that if 0 < ε < εJ then the solution uε(t) is well defined and positive in
J and

uε(t) → u(t), u̇ε(t) → u̇(t) as ε→ 0,

uniformly in J .

Proof. The procedure of regularization of collisions can be applied to u(t),
leading to the Sundman’s integral S(t) and the triplet U, T,H solving (11)-
(12). The main idea of the proof will be to apply a similar procedure to the
solutions uε(t) which do not have collision at t = t0. Let U ε, T ε, Hε be the
solution of (11) with initial conditions

U ε(0) = ε, (U ε)′(0) = ε

√
2(h0 +

1
ε
), T ε(0) = t0, Hε(0) = h0. (15)

Fix two numbers τ1 and τ2 with t0 < τ1 < τ2 < t1 and J ⊂]t0, τ1[. We
define σ1 = S(τ1), σ2 = S(τ2) and observe that, by continuous dependence
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for (11), the solution (U ε, (U ε)′, T ε,Hε) is well defined on [0, τ2] for small ε
and converges to (U,U ′, T,H) uniformly on this interval. We claim that

U ε(s) > 0 if s ∈ [0, σ2]. (16)

To prove this positivity we go back to (11) and observe that U ′′(0) = 1. Then
we find s1 ∈]0, σ2] such that U ′′(s) ≥ 1

2 if s ∈ [0, s1]. Since (U ε)′′ converges
uniformly to U ′′ on [0, σ2], we select ε small enough so that (U ε)′′(s) ≥ 1

4 if
s ∈ [0, s1]. Using a Taylor expansion at the origin we find ξ ∈]0, s[ such that

U ε(s) = ε+ ε

√
2(h0 +

1
ε
)s+ (U ε)′′(ξ)

s2

2
≥ ε if s ∈ [0, s1].

The positivity of U ε on the interval [s1, σ2] is straightforward since U is
strictly positive on this interval.

Once (16) has been established we can go back to (11) and observe that
(T ε)′ = U ε > 0 on [0, σ2]. In consequence the inverse function Sε = (T ε)−1

is well defined and smooth on the interval [t0, τ1]. Moreover it converges
uniformly to S on this interval. Since Sε([t0, τ1]) ⊂ [0, σ2] for small ε, we
deduce that vε := U ε ◦Sε converges to u = U ◦S uniformly on [t0, τ1]. From
the initial conditions (15) we observe that the first integral I vanishes for the
solution (U ε, (U ε)′, T ε,Hε) and a computation shows that vε is a solution
of (1) defined on the interval [t0, τ1]. Since vε satisfies the initial conditions
(14) we deduce that uε = vε on [t0, τ1]. This proves that uε converges to
u uniformly in J ⊂ [t0, τ1]. It remains to show that the derivative also
converges. Since u is uniformly positive on J it is possible to find a number
δ > 0 such that uε(t) ≥ δ if ε is small enough and t ∈ J . It is now easy to
verify that

u̇ε(t) =
(U ε)′(Sε(t))
U ε(Sε(t))

→ U ′(S(t))
U(S(t))

= u̇(t)

and this convergence is uniform in J .

3.2 Comparison principles

Imagine two identical particles P1 and P2 attracted by the sun S. Initially
both have zero velocity but P1 is closer to S than P2. Then P1 will arrive at
the sun before P2. This is an intuitive argument that can be made rigorous
for the Kepler problem and even extended to non-autonomous equations.

Let u1(t) and u2(t) be classical solutions of (1) defined on maximal in-
tervals I1 =]t0, t1[ and I2 =]t∗0, t

∗
1[. Assume that for some τ ∈ I1 ∩ I2,

u1(τ) ≤ u2(τ), u̇1(τ) ≤ u̇2(τ), (17)
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then

t1 ≤ t∗1 and u1(t) ≤ u2(t), u̇1(t) ≤ u̇2(t) for each t ∈ [τ, t1[. (18)

To prove this assertion it is convenient to employ the theory of quasi-
monotone systems (see [15]). After transforming the equation in the first
order system

u̇ = v =: f1(t, u, v), v̇ = − 1
u2

+ p(t) =: f2(t, u, v),

we observe that the conditions of quasi-monotonicity ∂f1

∂v ≥ 0, ∂f2

∂u ≥ 0 are
satisfied. Therefore the standard ordering in R2 is preserved in the future
and so (17) implies (18). The same conclusion can be obtained when u1(t),
u2(t) are solutions of different equations, say

ü = − 1
u2

+ pi(t), i = 1, 2 (19)

with p1, p2 : R → R Lipschitz-continuous and bounded functions satisfying

p1(t) ≤ p2(t) for each t ∈ R.

The above discussion dealt with classical solutions but it admits an extension
to collisions.

Lemma 6 Assume that p1 and p2 are as before and u1(t), u2(t) are solu-
tions of (19) for i = 1, 2, having maximal intervals I1 =]t0, t1[, I2 =]t0, t∗1[
with t0 finite. Define

h0i = lim
t↓t0

{1
2
u̇i(t)2 −

1
ui(t)

}, i = 1, 2.

If h01 ≤ h02 then t1 ≤ t∗1 and

u1(t) ≤ u2(t), u̇1(t) ≤ u̇2(t) if t ∈]t0, t1[.

Proof. Let us fix any τ with t0 < τ < min{t1, t∗1}. A combination of the
previous discussion with Lemma 5 leads to the inequalities for u1(t) and
u2(t) on the interval ]t0, τ [. Hence t1 ≤ t∗1 and the conclusion follows.

The following refinement of the above Lemma will be employed later.

Lemma 7 In the conditions of Lemma 6 assume that p1 = p2 and h01 <
h02. Then t1 < t∗1.
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Proof. In principle we know that t1 ≤ t∗1 and we are going to discard
the equality by a contradiction argument. Assuming for the moment that
t1 = t∗1, we observe that the function w(t) = u1(t)− u2(t) satisfies

ẅ = − 1
u2

1

+
1
u2

2

, w(t0) = w(t1) = 0, w > 0 on ]t0, t1[. (20)

The asymptotic expansion (10) leads to

lim
t→t±i

ẇ(t) = 0,

where the limit is understood to the right or to the left depending on whether
i = 0 or i = 1. With this information we multiply the equation in (20) by
w and integrate between t0 and t1. This integration is understood in the
improper sense of Riemann. In principle the integrals could be divergent
but this is not the case since an integration by parts shows that

−
∫ t1

t0

ẇ(t)2dt =
∫ t1

t0

w(t)ẅ(t)dt =
∫ t1

t0

(− 1
u1(t)2

+
1

u2(t)2
)(u1(t)− u2(t))dt.

This is a contradiction because the first term has to be negative and the last
one should be positive.

3.3 Remarks on the autonomous equation

Next we analyze the equation (1) when p(t) ≡ P is a non-zero constant.
When P is negative a phase portrait analysis shows that each classical so-
lution has a bounded maximal interval I and a unique critical point at the
mid point of I. The maximum is reached at this instant and has the value

U(h0, P ) = (−h0 −
√
h2

0 − 4P )/2P

where h0 is defined via the first integral

1
2
u̇2 − 1

u
− Pu = h0.

Notice that h0 can also be obtained as the limit

1
2
u̇(t)2 − 1

u(t)
→ h0 as t ↑ t1 or t ↓ t0.

The length of I is given by the integral

τ(h0, P ) =
√

2
∫ U(h0,P )

0
(
1
ξ

+ Pξ + h0)−1/2dξ.
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It is not hard to show that τ(·, P ) is a continuous positive function with

lim
h0→−∞

τ(h0, P ) = 0, lim
h0→+∞

τ(h0, P ) = +∞.

For positive P the maximal interval of a classical solution is bounded when-
ever h0 < −2P 1/2 and u < P−1/2. The above formulas for U and τ are still
valid in this case. Again τ(h0, P ) → 0 as h0 → −∞.

3.4 Proof of Proposition 4

We proceed by contradiction and assume that u(t) is a solution obtained
by successive juxtapositions at collisions accumulating at a finite time. Let
us say that the collisions occur at a bounded and increasing sequence of
instants tn with

u(tn) = 0, lim
t→tn

{1
2
u̇(t)2 − 1

u(t)
} = hn.

From Lemma 6 we know that

τ(hn,−||p||∞) ≤ tn+1 − tn,

and so the series
∑

n τ(hn,−||p||∞) is dominated by the convergent series∑
n(tn+1−tn). In particular limn→∞ τ(hn,−||p||∞) = 0. The behavior of the

function τ(·, P ) previously described allows us to conclude that hn → −∞.
From the derivative of the energy, ḣ(t) = p(t)u̇(t), we obtain

hn+1 − hn =
∫ tn+1

tn

p(s)u̇(s)ds = −
∫ tn+1

tn

ṗ(s)u(s)ds.

Notice that the integration by parts is possible. Indeed, since p(t) is Lipschitz-
continuous then it is also absolutely continuous and its derivative, defined
almost everywhere, is bounded. Assuming that hn is negative and large we
apply again the comparison, now for p(t) and ||p||∞, and deduce that

max
[tn,tn+1]

u(t) ≤ U(hn, ||p||∞) → 0 as n→∞.

This implies that the series
∑
|hn+1−hn| is dominated by ||ṗ||∞

∑
(tn+1−tn)

and so it converges. We have arrived at a contradiction since we proved
before that hn goes to −∞ and now we find that

lim
n→∞

hn = h0 +
∑
n≥0

(hn+1 − hn)

is finite.
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4 Exact symplectic twist maps and the Poincaré-
Birkhoff Theorem

Let us consider a plane with coordinates (θ, r) and a domain of the type

Ω = {(θ, r) ∈ R2 : a < r < ψ(θ)}

where a is a fixed constant and ψ : R →]a,+∞] is a 2π-periodic function
which is lower semi-continuous. We will work with a one-to-one map defined
on the closure of Ω and denoted by S : Ω → R2, S(θ, r) = (θ1, r1). The
coordinates of S are given by

θ1 = F (θ, r), r1 = G(θ, r),

where F,G : R2 → R are functions of class C1 satisfying

F (θ + 2π, r) = F (θ, r) + 2π, G(θ + 2π, r) = G(θ, r).

We say that S is exact symplectic if the differential form r1dθ1−rdθ is exact
in the cylinder. This means that there exists a function V ∈ C1(Ω) such
that

dV = r1dθ1 − rdθ and V (θ + 2π, r) = V (θ, r) for each (θ, r) ∈ Ω.

We say that S is a twist map if the function r ∈]a, ψ(θ)[7→ F (θ, r) is strictly
increasing for each θ ∈ R. We present a simplified version of the Poincaré-
Birkhoff Theorem for this class of maps. Notice that, in contrast to the most
classical situations, the region Ω has not to be invariant under S. We refer
to [9, 10] for recent related results.

Theorem 8 Assume that S is an exact symplectic twist map in the above
conditions. Let us fix an integer N and assume that for each θ ∈ R, there
exists rθ ∈]a, ψ(θ)[ with

F (θ, a) < θ + 2Nπ < F (θ, rθ). (21)

Then the system

F (θ, r) = θ + 2Nπ, G(θ, r) = r, θ ∈ [0, 2π[, (θ, r) ∈ Ω

has at least two solutions.
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Proof. The quotient space T = R/2πZ will be thought as a space of angles,
denoted by θ = θ + 2πZ with θ ∈ R. It will be convenient to work on the
cylinder C = T×R with the covering map Π(θ, r) = (θ, r). The periodicity
properties of the map S allow to define a new map, also denoted by S,
mapping Π(Ω) into C. In particular this map is a topological embedding.
Given a continuous and 2π-periodic function ϕ : R → R, the graph in the
cylinder

Γ = {(θ, ϕ(θ)) : θ ∈ R}

defines a Jordan curve that is not contractible in C and has positive orienta-
tion. We are going to prove that Γ and Γ1 = S(Γ) must intersect in at least
two points of the cylinder. Let us fix two numbers α < β such that Γ and Γ1

are contained in the finite cylinder {α < r < β}. By the Jordan Curve The-
orem on the cylinder there are two connected components of {α < r < β}\Γ
and, since the curve is not contractible, the circumferences r = α and r = β
cannot lie in the same component. We denote these components by Rα(Γ)
and Rβ(Γ). Since S is a topological embedding we deduce that Γ1 = S(Γ)
is also a non-contractible Jordan curve and denote by Rα(Γ1), Rβ(Γ1) the
components of {α < r < β} \ Γ1. Notice that Γ1 is not necessarily a graph
but it has positive orientation. This is a consequence of the periodicity
property of the function F , since F (θ + 2π, ϕ(θ + 2π)) = F (θ, ϕ(θ)) + 2π.
We claim that

µ(Rα(Γ)) = µ(Rα(Γ1)),

where µ = dθdr is the Haar measure in the cylinder. This result would be
almost obvious if the function ϕ were smooth. In such a case the classical
Green’s formula implies that

µ(Rα(Γ)) =
∫

Γ
rdθ − 2πα, µ(Rα(Γ1)) =

∫
Γ1

rdθ − 2πα =
∫

Γ
r1dθ1 − 2πα.

Here it has been important that both curves are positively oriented. The
conclusion follows since

µ(Rα(Γ))− µ(Rα(Γ1)) =
∫

Γ
(r1dθ1 − rdθ) =

∫
Γ
dV = 0.

If ϕ is only continuous we approximate it by C1 functions ϕn with period 2π
and then pass to the limit. Let χn and χ

(1)
n be the characteristic functions

of Rα(Γn) and Rα(S(Γn)). Then χn converges to the characteristic function
of Rα(Γ) outside Γ. Since Γ is the graph of a continuous function, Fubini’s
Theorem implies that it is of measure zero in the cylinder and so the con-
vergence is almost everywhere. Similarly we conclude that χ(1)

n converges
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almost everywhere to the characteristic function of Rα(Γ1). This time one
uses that S is a Lipschitz continuous map and so it preserves zero measure
sets. Once we know that the sets Rα(Γ) and Rα(Γ1) have the same measure
we can conclude that either Γ = Γ1 or Γ1 ∩Rα(Γ) 6= ∅ and Γ1 ∩Rβ(Γ) 6= ∅.
In any case there are at least two intersection points.

For each θ ∈ R the equation F (θ, r) = θ+2Nπ has a unique solution r :=
φ(θ). This is a consequence of (21) and the twist condition. In particular
the uniqueness implies that φ is continuous and 2π-periodic. The graph
of φ in the cylinder and its image under S must intersect in at least two
points of the cylinder. This will complete the proof since the solutions of the
system can be obtained as lifts of these intersection points with argument θ
in [0, 2π[.

5 A twist map associated to collisions

From now on it is assumed that p(t) is 2π-periodic. Given (t0, h0) ∈ R2,
the bouncing solution satisfying (5) and (6) will be denoted by u(t; t0, h0).
Throughout this Section it will be assumed that p(t) is Lipschitz-continuous
and so Proposition 4 implies that this solution is unique and globally defined.
The number t1 > t0 will indicate the next instant of collision while h1 will
be the corresponding energy. It can happen that no collisions occur after t0
and in that case t1 = +∞. The successor map is defined as

S : D ⊂ R2 → R2, S(t0, h0) = (t1, h1)

with
D = {(t0, h0) ∈ R2 : t1 < +∞}.

The periodicity of p(t) implies that u(t; t0 + 2π, h0) = u(t − 2π; t0, h0) and
so

S(t0 + 2π, h0) = S(t0, h0) + (2π, 0).

This identity leads to the interpretation of t0 as an angle variable.
Given a bouncing solution u(t; t0, h0) with successive collisions at times

t0 < t1 < · · · < tn < · · · and corresponding energies h0, h1, ..., hn, ... each
point (tn, hn) belongs to D and

(tn+1, hn+1) = S(tn, hn).

This fact explains why S plays an important role in the study of the dy-
namics of bouncing solutions. In particular the search of periodic solutions
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of period 2πm having n collisions in [0, 2mπ[ is reduced to the equation

Sn(t0, h0) = (t0 + 2πm, h0).

The next result describes the geometry of the set D and shows that S has
the twist property.

Proposition 9 There exists a function ψ : R → R ∪ {+∞} such that

D = {(t0, h0) ∈ R2 : h0 < ψ(t0)}.

This function is 2π-periodic, lower semi-continuous and minR ψ ≥ −2||p||1/2
∞ .

The map S : D → R2, S(t0, h0) = (t1, h1), is one-to-one and such that, for
each t0 ∈ R,

h0 ∈]−∞, ψ(t0)[7→ t1(t0, h0)

is increasing.

Notice that the above properties imply that D is an open and connected
subset of the plane. Before the proof we need two preliminary results on
continuous dependence.

Lemma 10 The Sundman’s integral

S(t; t0, h0) =
∫ t

t0

dτ

u(τ ; t0, h0)

is continuous as a function of three variables defined on the set

D = {(t; t0, h0) ∈ R3 : t0 < t < t1}.

Proof. We go back to the process of regularization of collisions and consider
the solution of (11) satisfying

U(0) = U ′(0) = 0, T (0) = t0, H(0) = h0.

The Theorem on continuity with respect to initial conditions is applicable
to (11) and so the functions

U(s; t0, h0), U ′(s; t0, h0), T (s; t0, h0), H(s; t0, h0)

are continuous in the three variables. Assume that σ > 0 is a number such
that

U(s; t0, h0) > 0 if s ∈]0, σ].
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In particular it is assumed that the corresponding solution (U, T,H) of (11)
is well defined on [0, σ]. Let {(t0n, h0n)} be a sequence converging to (t0, h0),
we claim that

U(s; t0n, h0n) > 0 if s ∈]0, σ], (22)

for large n. The argument to prove the positivity is analogous to one already
employed in the proof of Lemma 5. By continuous dependence the solution
of (11) satisfying U(0) = U ′(0) = 0, T (0) = t0n, H(0) = h0n, is well defined
on [0, σ] and U ′′(·; t0n, h0n) converges to U ′′(·; t0, h0) uniformly on [0, σ].
The positivity of U(s; t0n, h0n) in a small but fixed interval of the type ]0, ε]
follows from Taylor’s expansion. Outside this interval U(s; t0, h0) is positive
and (22) follows easily. The previous argument can also be employed to
prove that D is open in R3 but we will not need this fact.

To prove the continuity of S on D we assume that {(tn; t0n, h0n)} is
a sequence in D converging to (t; t0, h0) ∈ D. We observe that sn =
S(tn; t0n, h0n) and s = S(t; t0, h0) are such that

T (sn; t0n, h0n) = tn and T (s; t0, h0) = t.

The convergence of sn to s will be obtained in two steps.

Step 1: {sn} is bounded.

Since T (·; t0, h0) is strictly increasing as long as U(·; t0, h0) is positive, we
find σ > s and δ > 0 such that t+ δ < t1 and

T (σ; t0, h0) = t+ δ.

By continuity we know that, for large n,

T (σ; t0n, h0n) > t+
δ

2
> tn.

From (22) we know that T (·; t0n, h0n) is strictly increasing on [0, σ] and we
deduce that 0 < sn < σ.

Step 2: For every convergent subsequence {sk}, limk→∞ sk = s.

Assume that {sk} → s∗ ∈ [0, σ]. Since T is continuous, T (s∗; t0, h0) = t and
the monotonicity of T with respect to s implies that s = s∗.

Lemma 11 The map

(t; t0, h0) ∈ D 7→ (u(t; t0, h0), u̇(t; t0, h0)) ∈ R2

is continuous.
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Proof. We employ the identities

u(t; t0, h0) = U(s; t0, h0), u̇(t; t0, h0) = U ′(s; t0, h0)/U(s; t0, h0),

where s = S(t; t0, h0). The continuity is a consequence of the continuity of
U , U ′ and the previous Lemma.

Proof of Proposition 9. We start with the following
Claim: Let u(t) be a solution of (1) such that for some τ ∈ R,

u(τ)2||p||∞ < 1, u(τ) > 0, u̇(τ) < 0. (23)

Then the first collision after τ occurs at some instant t∗ satisfying

τ < t∗ < τ − u(τ)
u̇(τ)

.

Let t∗ > τ be the first instant of collision. In principle we admit the possi-
bility t∗ = +∞. From the equation (1) and the conditions at τ it is easy to
prove that

ü(t) < 0, u̇(t) < u̇(τ), if t ∈]τ, t∗[.

Hence,
0 < u(t) < u(τ) + u̇(τ)(t− τ), τ < t < t∗

and this inequality proves the claim.
It is now easy to prove that D is open. If (t0, h0) is a point in D we

know that t1 = t1(t0, h0) < +∞ and u(t1) = 0, u̇(t−1 ) = −∞ where u(t) :=
u(t; t0, h0). This allows us to find some τ ∈]t0, t1[ in the conditions of the
Claim (23). The previous Lemma on continuous dependence guarantees
the existence of a neighborhood U of (t0, h0) such that if (t̂0, ĥ0) ∈ U and
(τ ; t̂0, ĥ0) ∈ D then û(t) := u(t; t̂0, ĥ0) satisfies the condition (23) at t = τ
and so t̂1 is finite and (t̂0, ĥ0) ∈ D. From the definition of D we can now
deduce that the whole neighborhood U is contained in D and this proves
that D is open.

Next we are going to describe D geometrically. For each t0 ∈ R consider
the set of energies producing a collision in the future; that is,

Ct0 = {h0 ∈ R : t1 = t1(t0, h0) <∞}.

By comparison of the equation (1) and an autonomous equation, p1(t) =
p(t) and p2(t) = ||p||∞, we deduce from Lemma 6 that t1(t0, h0) < ∞ if
h0 < −2||p||1/2

∞ . Hence Ct0 is non-empty, actually it contains the interval
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] −∞,−2||p||1/2
∞ [. Again from Lemma 6 we deduce that Ct0 is an interval,

now p1 = p2 = p. Define ψ(t0) = sup Ct0 . Knowing that D is open we
conclude that

D = {(t0, h0) : h0 < ψ(t0)}.

The lower semi-continuity of ψ is automatic. Given α < ψ(t0), the point
(t0, α) is in D and so we can find a neighborhood of this point contained in
D. In particular there exists δ > 0 such that if |t̂0− t0| < δ then (t̂0, α) ∈ D,
and so α < ψ(t̂0).

To complete the proof we must discuss the properties of the map S. The
uniqueness given by Proposition 4 implies that S is one-to-one. To prove
the twist condition fix t0 and h0 < h∗0 < ψ(t0). Then Lemma 7 implies that
t1 = t1(t0, h0) < t∗1 = t1(t0, h∗0).

6 The successor map is exact symplectic

In the variables time and energy the successor map can be interpreted as
a return map associated to the differential equation (1) and the transversal
section {u = 0}. There are standard methods to prove that certain return
maps associated to Hamiltonian flows are exact symplectic. The general
theory can be seen in Chapter 9 of [3] and some related examples can be
found in [1, 11]. However our situation is more delicate because the section
u = 0 coincides with the set of singularities of the equation. To overcome
this difficulty we will approximate S by the return map associated to the
section {u = ε} with ε > 0. To make precise this idea consider (t0, h0) ∈ R2

and ε > 0 with h0 + 1
ε > 0. The solution of (1) satisfying

u(t0) = ε, u̇(t0) = +

√
2h0 +

2
ε

will be denoted by u(t; t0, h0, ε). These initial data have been chosen so that

h0 =
1
2
u̇(t0)2 −

1
u(t0)

and it seems reasonable to extend this family of solutions to ε = 0. From now
on the family u(t; t0, h0) appearing in the previous Section will be interpreted
as u(t; t0, h0, 0).

Proposition 12 Assume that the forcing p(t) is of class C1 and let (t∗0, h
∗
0)

be a given point of D. Then there exists ε∗ > 0, a neighborhood V of (t∗0, h
∗
0)

and two functions τ,H : V × [0, ε∗] → R of class C1,0 satisfying
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(i) S(t0, h0) = (τ(t0, h0, 0),H(t0, h0, 0)) for each (t0, h0) ∈ V

(ii) Given ε ∈]0, ε∗], τ = τ(t0, h0, ε) is such that τ > t0, u(t; t0, h0, ε) =
ε, u(t; t0, h0, ε) > ε if t ∈]t0, τ [, H(t0, h0, ε) = 1

2 u̇(τ ; t0, h0, ε)2 − 1
ε .

Remark. A function f : V × [0, ε∗] → R, f = f(t0, h0; ε) is of class C1,0 if
it is continuous, (t0, h0) ∈ V 7→ f(t0, h0; ε) is of class C1 for each ε ∈ [0, ε∗]
and the partial derivatives ∂f

∂t0
, ∂f

∂h0
are continuous as functions of the three

variables. In particular it follows from the previous Proposition that the
successor map S is C1 in D.

Proof. Given (t0, h0) ∈ R2 and ε ≥ 0 with εh0 + 1 > 0, there is a unique
solution of (11) with initial conditions

U(0) = ε, U ′(0) = +
√

2ε2h0 + 2ε, T (0) = t0, H(0) = h0, (24)

denoted by U(s; t0, h0, ε), T (s; t0, h0, ε), H(s; t0, h0, ε). The value of U ′(0)
has been adjusted so that the first integral I given by (13) vanishes for
this solution. The function (h0, ε) 7→

√
2ε2h0 + 2ε is of class C1,0 on ε ≥ 0,

εh0+1 > 0, and this regularity is inherited by U,U ′, T and H as functions of
(s, t0, h0) and ε. At this point the regularity of p(t) is important to guarantee
the applicability of the Theorem of differentiability with respect to initial
conditions.

The point (t∗0, h
∗
0) ∈ D has been fixed and t∗1 is the first zero to the right

of t∗0 for the solution u(t; t∗0, h
∗
0, 0). For the associated solution of (11) we

can find σ∗0 > 0 such that t∗1 = T (σ∗0; t
∗
0, h

∗
0, 0) and

U(s; t∗0, h
∗
0, 0) > 0, if s ∈]0, σ∗0[, U(σ∗0; t

∗
0, h

∗
0, 0) = 0.

In particular [0, σ∗0] in contained in the maximal interval of this solution.
We would like to obtain a function σ = σ(t0, h0, ε) by an application of

the Implicit Function Theorem to the problem

U(σ; t0, h0, ε) = ε, σ(t∗0, h
∗
0, 0) = σ∗0. (25)

This is not possible since I = 0 at this solution and so U ′(s; t∗0, h
∗
0, 0) has to

vanish at s = σ∗0. However the equation for U in (11) shows that

U ′′(σ∗0; t
∗
0, h

∗
0, 0) = 1

and this allows to apply the Implicit Function Theorem to the problem

U ′(σ; t0, h0, ε) = −
√

2ε+ 2ε2H(σ; t0, h0, ε), σ(t∗0, h
∗
0, 0) = σ∗0. (26)
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Indeed we need a slight variant of this Theorem because we do not have
differentiability in the parameter ε. Given a problem of the type

F (x, λ;µ) = 0, x(λ0, µ0) = x0

with F of class C1,0 and det{∂F
∂x (x0, λ0;µ0)} 6= 0, then the solution x =

x(λ, µ) is also of class C1,0. In our case we obtain a function σ = σ(t0, h0, ε)
with differentiability in t0 and h0. The equation appearing in (26) has been
deduced from the first integral (13) with I = 0, U = ε, U ′ > 0. Next
we prove that the function solving (26) is also a solution of (25), at least
in a small neighborhood of (t∗0, h

∗
0, 0), say V1 × [0, ε]. To prove this we fix

numbers ν > 0 and η > 0 with 2ην < 1 and ν > |h∗1|. Here h∗1 is the energy
of u(t; t∗0, h

∗
0, 0) at t = t∗1. The neighborhood can be chosen so small that,

for σ = σ(t0, h0, ε),

|H(σ; t0, h0, ε)| ≤ ν, |U(σ; t0, h0, ε)| ≤ η if (t0, h0, ε) ∈ V1 × [0, ε]. (27)

and the derivative of U satisfies U ′(σ; t0, h0, ε) ≤ 0. The identity I = 0 for
s = σ leads to

U ′(σ; t0, h0, ε) = −
√

2U(σ; t0, h0, ε) + 2U(σ; t0, h0, ε)2H(σ; t0, h0, ε). (28)

The estimates (27) are now useful to deduce that the function

ξ ∈ [−η, η] 7→ 2ξ + 2ξ2H(σ; t0, h0, ε)

is one-to-one. The identities in (26) and (28) imply that U(σ; t0, h0, ε) = ε.
Our next task is to prove that

U(s; t0, h0, ε) > ε if s ∈]0, σ(t0, h0, ε)[ (29)

where (t0, h0) ∈ V2 and ε ∈ [0, ε2] for new and smaller neighborhoods. If
the above statement were false, there should exist sequences {(t0n, h0n)} →
(t∗0, h

∗
0) and εn ↓ 0 with

U(σ̂n; t0n, h0n, εn) = εn for some σ̂n, 0 < σ̂n < σn := σ(t0n, h0n, εn).

The sequence σn converges to σ(t∗0, h
∗
0, 0) = σ∗0 and we extract a convergent

subsequence of {σ̂n}, say σ̂k, with limk→∞ σ̂k = `, 0 ≤ ` ≤ σ∗0. The con-
tinuity of U implies that ` is a zero of U(·; t∗0, h∗0, 0) and so either ` = 0 or
` = σ∗0. The function U ′′(s; t∗0, h

∗
0, ε) is continuous in all its variables as long

as it is defined. This is a consequence of continuous dependence and the
first equation in (11). Moreover

U ′′(0; t∗0, h
∗
0, 0) = U ′′(σ∗0; t

∗
0, h

∗
0, 0) = 1

21



and therefore it is possible to find k0 > 0 and δ > 0 such that

U ′′(s; t0k, h0k, εk) ≥
1
2

if s ∈ [0, δ] ∪ [σ∗0 − δ, σ∗0], k ≥ k0.

In particular U ′(·; t0k, h0k, εk) is strictly increasing in [0, δ] and [σ∗0 − δ, σ∗0].
From (26) and (24),

U ′(σk; t0k, h0k, εk) ≤ 0 ≤ U ′(0; t0k, h0k, εk).

Hence U(·; t0k, h0k, εk) is increasing in [0, δ] and decreasing in [σk − δ, σk].
Thus

U(s; t0k, h0k, εk) > εk s ∈]0, δ] ∪ [σk − δ, σk[.

Since U(·; t∗0, h∗0, 0) is positive on [δ, σ∗0 − δ] this is not compatible with the
existence of σ̂k. Once we know that (29) holds we define

τ(t0, h0; ε) = T (σ(t0, h0, ε); t0, h0, ε), H(t0, h0, ε) = H(σ(t0, h0, ε); t0, h0, ε).

By chain rule we observe that these functions are in the class C1,0. The
properties (i) and (ii) are a consequence of the known connections between
the original equation (1) and the solutions with I = 0 of (11).

Proposition 13 Assume that p(t) is of class C1. Then the differential form
h1dt1 − h0dt0 is exact in the cylinder. This means that dG = h1dt1 − h0dt0
for some function G = G(t0, h0) in C1(D) which is 2π-periodic in t0. Notice
that (t1, h1) = S(t0, h0).

Proof. Consider the differential form ω = hdt defined in the plane with
coordinates (t, h) or in the cylinder with coordinates (t, h), t = t+ 2πZ. It
is enough to prove that ∫

Γ
ω =

∫
Γ1

ω

for each smooth Jordan curve in the cylinder with lift contained in D and
Γ1 = S(Γ). From now on we assume that Γ is not contractible to a point, the
contractible case can be treated similarly. To start with we fix a parametriza-
tion of the curve given by

t0 = t0(ξ), h0 = h0(ξ)

satisfying
t0(ξ + 2π) = t0(ξ) + 2π, h0(ξ + 2π) = h0(ξ).
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By a compactness argument applied to Proposition 12 we can extend the
functions τ , H to W × [0, ε1], where W is a neighborhood of Γ and ε1 > 0.
Next we consider a three dimensional space with coordinates u, v, t contain-
ing the surface Sε with parametric equations

u = u(t′; t0(ξ), h0(ξ), ε), v = u̇(t′; t0(ξ), h0(ξ), ε), t = t′,

where ξ ∈ [0, 2π], t0(ξ) ≤ t′ ≤ τ(t0(ξ), h0(ξ), ε). This is a surface contained
in {u ≥ ε} that is smooth everywhere excepting at four corner points at the
boundary. These are the points corresponding to ξ = 0 or 2π and t = t0(ξ)
or τ(t0(ξ), h0(ξ), ε). Notice that, rigorously speaking, we must prove that
the map X : (ξ, t′) 7→ (u, v, t) is a chart for Sε. This means that X is one-
to-one, of class C1 and such that the Jacobian matrix DX(ξ, t′) has rank
two. The most delicate point is the computation of the rank. Notice that

DX(ξ, t′) =

 uξ u̇
u̇ξ ü
0 1

 , where
(
uξ

u̇ξ

)
=

(
∂u
∂t0

∂u
∂h0

∂u̇
∂t0

∂u̇
∂h0

)(
t′0(ξ)
h′0(ξ)

)

and u = u(t; t0(ξ), h0(ξ), ε). The functions y1 = ∂u
∂t0

, y2 = ∂u
∂h0

are solutions
of the linearized equation

ÿ =
2

u(t; t0(ξ), h0(ξ), ε)3
y (30)

with respective initial conditions y1(t0) = −
√

2h0 + 2
ε , ẏ1(t0) = 1

ε2
− p(t0)

and y2(t0) = 0, ẏ2(t0) = 1√
2h0+ 2

ε

. The Jacobi-Liouville formula applied to

(30) implies that the Wronskian of y1 and y2 is constant, namely

det

(
∂u
∂t0

∂u
∂h0

∂u̇
∂t0

∂u̇
∂h0

)
= −1.

Since Γ is a regular curve, the velocity vector (t′0(ξ), h
′
0(ξ)) is not zero and

so the vector (uξ, u̇ξ) does not vanish. This implies that DX(ξ, t′) has rank
two.

We intend to apply Stokes Theorem on Sε. Following [3] we consider the
Poincaré-Cartan differential form

Ω = vdu− Edt, E =
1
2
v2 − 1

u
+ p(t)u.

This form is defined in R3, with coordinates u, v, t and we are going to
restrict it to Sε. This means that we consider Σ = i∗Ω, pull-back form
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associated to the inclusion i : Sε → R3. Using ξ and t as coordinates in Sε

we express Σ in terms of dξ and dt,

Σ = v(uξdξ + vdt)− Edt.

Analogously we express dΣ in terms of dξ ∧ dt,

dΣ = (vvξ − v̇uξ − Euuξ − Evvξ)dξ ∧ dt.

By construction Sε is composed by trajectories of the Hamiltonian system
u̇ = Ev, v̇ = −Eu and therefore dΣ = 0. By Stokes Theorem

∫
∂Sε

Σ =∫
Sε
dΣ = 0 and the integral on the boundary is split in∫

∂Sε

=
∫

Γε

+
∫

γ̃ε

−
∫

Γ̃ε

−
∫

γε

,

where

Γε :


u = ε,

v = +
√

2(h0(ξ) + 1
ε ),

t = t0(ξ),

Γ̂ε :


u = ε,

v = +
√

2(H(t0(ξ), h0(ξ), ε) + 1
ε ),

t = τ(t0(ξ), h0(ξ), ε)

with ξ ∈ [0, 2π] and γε, γ̃ε are the trajectories associated to ξ = 0 and
ξ = 2π. The periodicity of the curve and the differential equation imply
that

u(t; t0(2π), h0(2π), ε) = u(t− 2π; t0(0), h0(0), ε).

As a consequence

γ̃ε = γε + (0, 0, 2π) and
∫

γ̃ε

Σ =
∫

γε

Σ.

In this way we arrive at
∫
Γε

Σ =
∫
Γ̃ε

Σ, equivalent to∫
Γε

Edt =
∫

Γ̃ε

Edt

because u = ε on Γε∪ Γ̃ε and so du vanishes on these curves. These integrals
can be expressed as∫ 2π

0
{h0(ξ) + εp(t0(ξ))}t′0(ξ)dξ =

∫
Γε

Edt =
∫

Γ̃ε

Edt =
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∫ 2π

0
{H(t0(ξ), h0(ξ), ε) + εp(τ(t0(ξ), h0(ξ), ε))}τ ′(ξ)dξ,

with

τ ′(ξ) =
∂τ

∂t0
(t0(ξ), h0(ξ), ε)t′0(ξ) +

∂τ

∂h0
(t0(ξ), h0(ξ), ε)h′0(ξ).

Letting ε to go to zero and using the property (i) stated in Proposition 12,∫ 2π

0
h0(ξ)t′0(ξ)dξ =

∫ 2π

0
h1(t0(ξ), h0(ξ))

d

dξ
t1(t0(ξ), h0(ξ))dξ

where t1 = t1(t0, h0), h1 = h1(t0, h0), are the components of S. This is
precisely the identity we were looking for.

7 An asymptotic expansion for the successor map
and the completion of the proofs

In this Section we discuss the behavior of the map (t1, h1) = S(t0, h0) when
the energy is negative and tends to infinity. The main result is

Proposition 14 Assume that p(t) is Lipschitz-continuous and 2π-periodic.
Then {

t1 = t0 + π√
2|h0|3/2 +O( 1

|h0|5/2 ),

h1 = h0 +O( 1
|h0|5/2 ),

when h0 → −∞, uniformly in t0 ∈ R.

The method of proof will be comparison with the autonomous equation for
P+ = ||p||∞ and P− = −||p||∞. In the notations of Subsection 3.3 and
according to Lemma 6,

τ(h0, P−) ≤ t1 − t0 ≤ τ(h0, P+).

A repetition of some of the arguments in the proof of Proposition 4 leads to

|h1 − h0| ≤ ||ṗ||∞U(h0, P+)τ(h0, P+).

The proof of the above result is a direct consequence of these inequalities
and the following expansions.
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Lemma 15 For any P 6= 0,

U(h0, P ) =
1
|h0|

+O(
1

|h0|2
), τ(h0, P ) =

π√
2|h0|3/2

+O(
1

|h0|5/2
)

as h0 → −∞.

Proof. The first assertion is almost automatic since U(h0, P ) can be ex-
pressed as

U(h0, P ) =
2

−h0 +
√
h2

0 − 4P
.

For the expansion of τ we assume P > 0. The case of negative P is similar.
The polynomial 1 + Px2 + h0x can be factorized as P (α − x)(β − x) with

0 < α = U(h0, P ) < β = −h0+
√

h2
0−4P

2P . Then

τ(h0, P ) =

√
2
P

∫ α

0

√
ξ√

(α− ξ)(β − ξ)
dξ,

and the change of variables ξ = αv leads to

τ(h0, P ) =

√
2
P
α

∫ 1

0

√
v√

(1− v)(β − αv)
dv.

Next we claim that

1√
β − αv

=
1√
β

+O(
1

|h0|5/2
), as h0 →∞, uniformly in v ∈ [0, 1].

Indeed

0 ≤ 1√
β − αv

− 1√
β
≤ 1√

β − α
− 1√

β
=

α√
β − α

√
β(
√
β +

√
β − α)

and the claim follows because β|h0|−1 → 1
P and α|h0| → 1 as h0 → −∞.

From αβ = 1
P we observe that

α√
β

=
√
Pα3/2 =

√
P (

1
|h0|

+O(
1

|h0|2
))3/2 =

√
P

|h0|3/2
+O(

1
|h0|5/2

).

Going back to the integral

τ(h0, P ) =

√
2
P

α√
β

∫ 1

0

√
v√

1− v
dv +O(

1
|h0|5/2

) =
π√
2
α3/2 +O(

1
|h0|5/2

),
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and the expansion for t1 follows from the expansion for α = U .

Proof of Theorems 1 and 2. The discussions of Section 5 show that it is
enough to prove the existence of two solutions of the system

S(t0, h0) = (t0 + 2πN, h0), t0 ∈ [0, 2π[, (t0, h0) ∈ D

for each N ≥ 1. To this end we are going to apply Theorem 8 with θ = t0,
r = h0, and

Ω = {(t0, h0) ∈ R2 : a < h0 < ψ(t0)}

with a < −2||p||1/2
∞ . The constant a is chosen so that t1−t0 < 2πN whenever

t1 = t1(t0, h0) and h0 = a. This is possible thanks to Proposition 14. It
remains to prove that for each t0 ∈ R there exists h∗0 with a < h∗0 < ψ(t0)
such that t1 − t0 > 2πN with t1 = t1(t0, h∗0). We shall distinguish two cases
depending on whether ψ(t0) is finite or infinite.

Case i) ψ(t0) <∞.

We take an increasing sequence {h0n} converging to ψ(t0) and prove that,
for some n,

t1n = t1(t0, h0n) > t0 + 2πN.

By a contradiction argument assume that t1n − t0 ≤ 2πN for all n. Then
we extract a convergent subsequence t1n → η ∈ [t0, t0 + 2πN ]. The use
of Lemma 6 with p1(t) = −||p||∞, p2(t) = p(t) implies that t1n − t0 ≥
τ(h0n,−||p||∞). Passing to the limit, t0+2πN ≥ η ≥ t0+τ(ψ(t0),−||p||∞) >
t0. For large n, t0 < η̂ < t1n with η̂ = t0+η

2 . From here we deduce that the
triplet (η̂; t0, h0n) belong to D for large n. Here D is the set introduced in
Lemma 11. Since t1 = +∞ if h0 = ψ(t0) we deduce that also (η̂; t0, ψ(t0)) ∈
D. In consequence

(u(η̂; t0, h0n), u̇(η̂; t0, h0n)) → (u(η̂; t0, ψ(t0)), u̇(η̂; t0, ψ(t0)))

as n → ∞. The solution u(t; t0, ψ(t0)) has no collisions after t0 and so it
is well defined and positive on the compact interval [η̂, t0 + 2πN + 1]. The
standard Theorem on continuous dependence applied to (1) says that, for
large n, also u(t; t0, h0n) is well defined and positive on this interval. This
is contradictory with the assumption t1n → η ≤ t0 + 2πN .

Case ii) ψ(t0) = +∞.

We go back to Subsection 3.3 and select h∗0 > 0 large enough so that
τ(h∗0, P ) > 2πN with P = −||p||∞. By comparison t1−t0 ≥ τ(h∗0, P ) > 2πN .

27



References

[1] V. M. Aleekseev, Quasirandom dynamical systems. II. One-dimensional
nonlinear oscillations in a field with periodic perturbation, Math.
USSR-Sb. 6 (1968) 505-560.

[2] A. Ambrosetti, V. Coti Zelati, Periodic solutions of singular Lagrangian
systems, Progress in Nonlinear Differential Equations and Their Appli-
cations, Vol. 10, Birkhäuser 1993.
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