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Abstract
Let the equation ẍ = f(t, x) be periodic in time, and let the equilibrium x∗ ≡ 0

be a periodic minimizer. If it is hyperbolic, then the set of asymptotic solutions is a
smooth curve in the plane; this is stated by the Stable Manifold Theorem. The result
can be extended to nonhyperbolic minimizers provided only that they are isolated and
the equation is analytic [5]. In this paper we provide an example showing that one
cannot say the same for C2 equations. Our example is pathological both in a global
sense (the global stable manifold is not arcwise connected), and in a local sense (the
local stable manifolds have points which are not accessible from the exterior and are
not locally connected).
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1 Introduction

Consider the Newtonian equation
ẍ = f(t, x) , (1)

where the force f = f(t, x) is defined on the cylinder (R/Z) × R and smooth. Throughout
this paper, we shall always assume that f is bounded (so that solutions do not explode in
finite time), and

f(t, 0) = 0 , t ∈ R/Z ,

so that x∗ ≡ 0 is an equilibrium (it will be referred to as the trivial equilibrium). The force
f (or equation (1), or the trivial equilibrium) will be said to be repulsive if

f(t,−x) < 0 < f(t, x) , t ∈ R/Z, x > 0 . (2)

It follows from this assumption that ∂xf(·, 0) ≥ 0 on R/Z. If ∂xf(·, 0) 6≡ 0, then multipli-
cation by ξ and integration by parts in the left side of the equation shows that all eigenvalues
λ of the periodic eigenvalue problem

ξ̈ =
(
∂xf(t, 0)− λ

)
ξ , ξ(0) = ξ(1), ξ̇(0) = ξ̇(1) , (3)

∗Supported by project MTM2008-02502, Ministerio de Educación y Ciencia, Spain, and FQM2216, Junta
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are strictly positive. Under this condition, the trivial equilibrium x∗ ≡ 0 is hyperbolic; this
is a well-known result which may be traced back to Liapounoff [2]. The Stable Manifold
Theorem (see, for instance, [3]), then implies that the associated (global) stable manifold

W S(x∗) :=
{

(x(0), ẋ(0)) such that x : [0, +∞[→ R solves (1) and lim
t→+∞

(x(t), ẋ(t)) = (0, 0)
}

,

is an injectively immersed curve in the plane.
However, this analysis is not valid anymore if ∂xf(·, 0) ≡ 0; it is, for instance the case of

the Duffing equation ẍ = x3. In such situations, the first eigenvalue of (3) is λ = 0, so that the
trivial equilibrium is parabolic, and the usual formulations of the Stable Manifold Theorem
do not apply. Yet, our repulsive assumption (2) implies that the trivial equilibrium is an
isolated minimizer of the periodic action functional (the potential V (t, x) := − ∫ x

0
f(t, y)dy

attains its maximum at x = 0 for any value of t). In this framework it has been recently
shown [5] that, at least when the force f is analytic in x, there is a topological version of
the Stable Manifold Theorem which states that the stable manifold W S(x∗) is an injectively
immersed topological curve in the plane. It motivates the question of whether this analyticity
assumption is actually necessary or, on the contrary, the above-mentioned result could be
extended to repulsive forces, say, of class C0,1. In this paper we answer to this question by
constructing an example of a repulsive force f = f(t, x) of class C0,2 for which W S(x∗) fails
to be a curve:

Theorem 1.1. There exists a repulsive force f : (R/Z)×R→ R of class C0,2, such that the
stable manifold W S(x∗) of the trivial equilibrium x∗ ≡ 0 is not arcwise connected.

Let us have a second look now to the Stable Manifold Theorem [3]. We observe that the
global stable manifold W S(x∗) being an immersed curve is just a particular consequence of
this result, which, in its full strength, states the existence a basis of neighborhoods of the
origin such that, for any element B of that basis, the associated local stable manifold W S

B(x∗)
of the trivial equilibrium x∗ ≡ 0,

W S
B(x∗) :=

{
(x(0), ẋ(0)) such that x : [0, +∞[→ R solves (1) and (x(n), ẋ(n)) ∈ B ∀n ≥ 0

}
,

is a smooth curve in B. This holds if one assumes that the trivial equilibrium is hyperbolic,
but also, -after replacing ‘smooth curve’ by ‘topological curve’-, in the parabolic case provided
that the repulsive force f is analytic; this is the main result of [5]. Of course, the stable
manifold associated to the equation of Theorem 1.1 must be pathological also in a local
sense, because, if W S

B0
(x∗) were arcwise connected for some small neighborhood B0 of the

origin, then the global stable manifold W S(x∗), which may be expressed as the union of all
past iterates of W S

B0
(x∗) by the associated Poincaré mapping, would have the same property.

However, looking only at Theorem 1.1 one might still wonder if perhaps all the nonsmoothness
of the pathological stable manifold found in Theorem 1.1 is concentrated at the fixed point
(0, 0). Thus, we shall show that our counterexample is strange also in the sense that for
any bounded neighborhood B of the origin, the local stable manifold W S

B has many points
which are not accessible from the exterior, i.e., points p ∈ W S

B(x∗) for which there are not
continuous curves γ : [0, 1] → R2 such that γ([0, 1[) ⊂ R2\W S

B(x∗) and γ(1) = p. We remark
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that the validity of this result does not contradict the fact that, as it will follow from the
combination of Proposition 5.1 and item 4. of Lemma 3.2, all local stable manifolds W S

B(x∗)
have empty interior. A topological argument will subsequently be used to conclude that these
local stable manifolds W S

B are not even locally connected:

Theorem 1.2. There exists a repulsive force f : (R/Z) × R → R of class C0,2 such that,
for any bounded neighborhood B of the origin, the local stable manifold W S

B(x∗) is not locally
connected and contains points p 6= (0, 0) which are not accessible from R2\W S

B(x∗).

This paper is distributed as follows. We begin by Section 2, which is devoted to give an
intuitive overview of some of the key arguments of the paper. The next Sections 3,4 and
5 are devoted to proof the Stable Manifold Theorem for analytic minimizers in the special
case of repulsive equilibria. On the other hand, Sections 6 and 7 are devoted to obtain the
pathologies for a certain equation of class C0,2 whose existence was announced in Section 2.
The actual construction of this equation is the aim of Sections 16 and 6, while the Appendix
is devoted to obtain some properties of the winding number which were crucial in Section 6.

Before closing this Introduction, I want to express my gratitude to R. Ortega. His indi-
cations have been crucial in Section 7 and Theorem 1.2, as well as with the references.

I am also pleased to thank Prof. Ch. Pommerenke, who kindly answered to my questions
on planar topology.

2 Towards the proofs

In this Section we introduce the main ideas of this work. The starting point will be a planar
set W ⊂ R2 where we have distinguished three different points O, p, q. The parameterized
curve γ : [0, 1] → R2 is said to pass through z if z ∈ γ([0, 1]).

Lemma 2.1. Assume that:

(H1) Every continuous curve γp : [0, 1] → W passing though O and p also passes through
q, while every continuous curve γq : [0, 1] → W passing though O and q also passes
through p.

Then, no continuous curve γp : [0, 1] → W passing through O and p does exist; in particular,
W is not arcwise connected.

This elementary result will be the basis of our proof of Theorem 1.1, for we shall construct
a force f for which the stable manifold W S(x∗) = W contains three points O, p, q verifying
(H1). The precise details will be given later, but the main idea may be introduced in a few
lines now. It consists in building f in such a way that equation (1) has two solutions x1, x2

which are asymptotic to the trivial equilibrium x∗ ≡ 0 as t → +∞, while crossing with each
other infinitely many times:

Proposition 2.2. There exists a bounded and repulsive force f : (R/Z) × R → R of class
C0,2 such that (1) has two different positive solutions x1, x2 : [0, +∞[→ R with

(i) limt→∞ x1(t) = limt→∞ x2(t) = 0,
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t0 = 0 t1 = 1 t2 = 3

x = x1(t)

x = x2(t)

Figure 1: The graphs of x1 and x2.

(ii) x1 and x2 coincide on infinitely many points 0 = t0 < t1 < t2 < ... → +∞.

Observe that, the force f being repulsive, the positive solutions x1, x2 must be convex,
and yet, it does not contradict the fact that they intersect infinitely many times on [0, +∞[.
Of course, uniqueness of solutions to initial value problems means that all these crossing
points must be transversal. The reasoning will be completed in Section 6, where we shall
show that assumption (H1) holds for the set W = W S(x∗) and the points O = (0, 0), p =
(x1(0), ẋ1(0)), q = (x2(0), ẋ2(0)).

We do not know whether the regularity of the function f of Proposition 2.2 may be
improved. The question has some importance, as any improvement in that direction would
immediately yield more regular examples for Theorems 1.1 and 1.2. On the other hand, f
cannot be analytic, as, in this case, Proposition 4.2 of [5] states that two solutions cannot
intersect twice as long as they remain near to the trivial equilibrium x∗.

The same force f of Proposition 2.2 will be a suitable example for Theorem 1.2. This
result will follow from the preliminary version below:

Proposition 2.3. Let f be as in Proposition 2.2. Then, the (global) stable manifold of
the trivial equilibrium W S(x∗), contains a point p 6= (0, 0) which is not accessible from the
exterior.

A key role in our argumentations will be played by the so-called winding number wb
a(γ, q)

of the continuous curve γ : [a, b] → R2 around the base point q, which is defined (see, for
instance, [1]) as follows:

wb
a(γ, q) :=

θγ(b)− θγ(a)

2π
,

the function θγ : [a, b] → R being any continuous determination of the (multivalued) argument
function along γ − q. This winding number is defined provided that q 6∈ γ([a, b]), and, since
we are not assuming γ to be closed, it may take any real value and not necessarily an integer.
As it is well known, it does not depend on the choice of the lifting θγ, and remains invariant
under orientation-preserving reparametrizations of γ.

There is a further property of the winding number function, which also follows immedi-
ately from its definition, and concerns its continuous dependence with respect to the end-
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points a, b of the interval where it is measured. In Lemma 2.4 below, the continuous curve
γ : [a, b] → R2 and the base point q ∈ R2\γ([a, b]) are assumed to be fixed:

Lemma 2.4. For any sequences an ↘ a and bn ↗ b, wbn
an

(γ, q) → wb
a(γ, q).

Notice that, in some particular cases, this result may be used to prove that a given point
p of the subset W ⊂ R2 is not accessible from the exterior of W . For instance, it will happen
provided that there is another point q ∈ W , q 6= p, with the following property:

(H2) For any third point r0 ∈ R2\W and any natural number N there exists some ε > 0
such that any continuous curve γ : [0, 1] → R2\W with γ(0) = r0 and |γ(1) − p| < ε
verifies that |w1

0(γ, q)| ≥ N .

To illustrate this assumption we observe that it is verified, for instance, by the set W
composed by some segment [p, q] together with an spiral winding around it, see Fig. 2 below:

p q

r0

W

Figure 2: In order to approach p from r0 one has to rotate many times around q.

Corollary 2.5. Assume (H2). Then, p is not accessible from the exterior of W .

The proof of this result is an easy consequence of Lemma 2.4, for if there were a continuous
curve γ : [0, 1] → R2 with γ(1) = p and γ([0, 1[) ⊂ R2\W , the winding number of γ around q
should be infinite. We shall see that, if f is chosen as in Proposition 2.2, the stable manifold
W S(x∗) = W and the points p = (x1(0), ẋ1(0)), q = (x2(0), ẋ2(0)) verify (H2), thus leading
us to Proposition 2.3. This work will be postponed to Section 6, since, at this moment, we
are going to concentrate ourselves on the precise implications that analyticity has on the
structure of the stable manifold associated to a repulsive equilibrium.

3 The role of analyticity

The main contribution of [5] is an stable/unstable manifold Theorem for isolated minimizers
when the equation is analytic. Although elementary, the proof provided there combines
several arguments and is therefore somewhat lengthy. However, in the particular case in
which the minimizer is the trivial equilibrium of a repulsive potential, the upper and lower
solutions argument which was employed in the general case is no longer required, and the
reasoning may be considerably simplified. We devote the next three sections to this proof,
on the one hand motivated by our belief that it has some interest on its own, on the other
because it will shed some light on how our example has been built, and finally, also because it
contains some aspects which will be needed subsequently. Thus, we shall prove the following
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Proposition 3.1. Let the repulsive force f : (R/Z) × R → R have class C0,ω. Then there
exists a basis of neighborhoods of the origin such that, for any neighborhood B of that basis,
the associated local stable manifold W S

B(x∗) of the trivial equilibrium x∗ ≡ 0 may be described
as the graph v0 = v(x0) of a continuous function v defined on some open interval containing
x0 = 0.

Our proof of Proposition 3.1 will be based on five facts, which concern to the dynamics
of (not necessarily analytic) repulsive equations. From these properties, which are presented
below, the first three refer to the structure of the global stable manifold W S(x∗) of the trivial
equilibrium, while the last two point out to the connections between this set and the local
stable manifolds W S

B(x∗) associated to different neighborhoods B of the origin.

Lemma 3.2. Let the C0,1 force f : (R/Z)× R→ R be repulsive. Then:

1. For each x0 ∈ R there exists at least one v0 ∈ R such that (x0, v0) ∈ W S(x∗).

2. If ∂xf ≥ 0 on some band (R/Z)×]− δ, δ[, then for any x0 ∈]− δ, δ[ there exists exactly
one v0 ∈ R such that (x0, v0) ∈ W S(x∗).

3. W S(x∗) is closed in R2.

4. W S
B(x∗) ⊂ W S(x∗) for any bounded neighborhood B of the origin.

5. For any δ > 0, the vertical band Bδ =]− δ, δ[×R verifies that W S
Bδ

(x∗) = W S(x∗)∩Bδ.

Proof of Proposition 3.1 modulus Lemma 3.2: Observe, to start, that the force f being C0,ω

and repulsive, there must exist some small band (R/Z)×]− δ0, δ0[ where ∂xf ≥ 0 (this is the
only moment of the proof of Proposition 3.1 where the analyticity of f will be used). Thus,
item 2. of Lemma 3.2 implies the existence of some function v :]− δ0, δ0[→ R such that

W S(x∗) ∩Bδ0 =
{
(x0, v(x0)) : |x0| < δ0

}
,

and, in view of 5., we obtain

W S
Bδ

(x∗) =
{
(x0, v(x0)) : |x0| < δ

}
, 0 < δ ≤ δ0 . (4)

We further deduce from 3. that the graph of v is closed on the band Bδ0 , and thus, v is
continuous. In particular, v(x0) → v(0) = 0 as x0 → 0. It means that the family {Cδ}0<δ≤δ0

of subsets of the plane defined by

Cδ := {(x0, v0) ∈ R2 : |x0| < δ, |v0| < max
[−δ,δ]

|v|+ δ} , 0 < δ ≤ δ0 ,

is a basis of neighborhoods of the origin. Now, since Cδ ⊂ Bδ, we deduce that W S
Cδ

(x∗) ⊂
W S

Bδ
(x∗), while the inclusion W S

Bδ
(x∗) ⊂ Cδ, which follows from (4) and the choice of Cδ,

implies that both local stable manifolds coincide. Consequently,

W S
Cδ

(x∗) = W S
Bδ

(x∗) = {(x0, v(x0)) : |x0| < δ} ,

for any 0 < δ ≤ δ0. The proof is complete.
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The argumentation above gives some insight into the choice of the force f of Proposition
2.2 in our search of a pathological stable manifold. Because, as already observed, the only
stage in the proof of Proposition 3.1 where analyticity is used consists in claiming the existence
of some δ0 > 0 such that ∂xf ≥ 0 on (R/Z)×] − δ0, δ0[. Thus, if our pathological example
is to exist, the stable manifold W S(x∗) cannot be a graph of the position, not even locally
near the origin and, furthermore, ∂xf must oscillate infinitely many times around zero near
the line {x = 0}.

We still have to prove Lemma 3.2; this will be done in Section 5. With this goal, it will be
convenient to start with a classification of the solutions of (1) attending to their qualitative
behavior.

4 Classifying solutions of repulsive equations

Our repulsive assumption (2) may be interpreted mechanically. In fact, we can think of (1)
as modeling the motion, under the influence of a constant gravity force of intensity 1, of a
particle of mass 1 which is subjected to glide on the slope of the pulsing mountain contoured
by the graph of the potential V (t, x) = − ∫ x

0
f(t, y)dy. This mountain changes its shape as

the time goes on, but repulsiveness means that, at any time, it has its only peak at x∗ = 0.
Consequently, solutions should not have negative local minima nor positive local maxima.

t0

t0

x ≡ 0

x ≡ 0x = x(t)

x = x(t)

Figure 3: The behavior of a solution near a critical point t0

Let us check now that this intuition is accurate. With this aim, let x 6≡ 0 be a solution
of our repulsive equation (1). Then, ẍ(t) = f(t, x(t)) has the same sign as x(t) at each time
t ∈ R. As a consequence, at a critical point t0, the solution x attains either a strict local
maximum or a strict local minimum depending, respectively, on whether it is negative or
positive there (the nontrivial solution x cannot vanish at a critical point by uniqueness).

As a consequence, x has at most one critical point t0 in R. Should such a point exist, one
of the two following possibilities must hold:

(−−) x < 0, ẋ > 0 on ]−∞, t0[, ẋ < 0 on ]t0, +∞[, and limt→±∞ x(t) = −∞ .

(++) x > 0, ẋ < 0 on ]−∞, t0[, ẋ > 0 on ]t0, +∞[, and limt→±∞ x(t) = +∞ .

The only part in the classification above which does not completely follow from the
previous comments is the statement concerning the limits at ±∞ of x. However, having just
a critical point, x must be eventually monotonous, so that the mentioned limits do exist in
the extended real line [−∞, +∞]. Should one of these limits be finite, it must be a zero of
f(t, ·) for any t ∈ R, and the repulsive condition that f verifies implies that this limit must
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(−−)
t0

t0

(++)

x = x(t)

x = x(t)

Figure 4: Possible behaviors of solutions having some (unique) critical point t0

be zero. But it cannot be the case if x has just a critical point t0 where it attains a positive
minimum or a negative maximum.

This argument may be repeated when the solution x has no critical points in R to deduce
that the limits at ±∞ of x, if finite, must vanish. For instance, should x be increasing, one
of the following three possibilities must hold:

(−+) ẋ > 0 on R, limt→−∞ x(t) = −∞, limt→+∞ x(t) = +∞ ,

(−0) ẋ > 0 on R, limt→−∞ x(t) = −∞, limt→+∞ x(t) = 0 ,

(0+) ẋ > 0 on R, limt→−∞ x(t) = 0, limt→+∞ x(t) = +∞ .

(−+)

x = x(t)

(−0)

x = x(t)

x = x(t)

(0+)

Figure 5: Possible behaviors of increasing solutions

Then, we have also the three analogous possibilities for decreasing solutions:

(+−) ẋ < 0 on R, limt→−∞ x(t) = +∞, limt→+∞ x(t) = −∞ ,

(0−) ẋ < 0 on R, limt→−∞ x(t) = 0, limt→+∞ x(t) = −∞ ,

(+0) ẋ > 0 on R, limt→−∞ x(t) = +∞, limt→+∞ x(t) = 0 .

x = x(t)

(+−) (0−)

x = x(t)

x = x(t)

(+0)

Figure 6: Possible behaviors of decreasing solutions

In this way, we have obtained a classification of the solutions of repulsive equations.
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Proposition 4.1. Let x 6≡ 0 be a nontrivial solution of the repulsive equation (1). Then,
there is one of the eight possibilities listed above which holds.

We emphasize the following immediate consequence:

Corollary 4.2. Let the solution x = x(t) of the repulsive equation (1) have limit 0 as
t → +∞. Then, x is monotonous.

Observe that Proposition 4.1 may be seen as a particular case of Proposition 3.1 of [5],
where a related result was established in the more general framework of (not necessarily
repulsive) periodic minimizers. Also, the reader may find close links between Corollary 4.2
and Corollary 3.2 of [5]. Proposition 4.1 will be key through our next section to explore the
stable manifold W S(x∗) of the trivial equilibrium.

5 A closer look into the stable manifold

Having at hand the classification of solutions of repulsive equations given by Proposition 4.1,
we have now all the ingredients needed to establish Lemma 3.2, upon which relied our proof
of Proposition 3.1:

Proof of Lemma 3.2. Observe that item 4. follows directly from Proposition 4.1, while 5.
follows from 4. and Corollary 4.2. In order to prove items 1. and 3. we consider the so-called
‘resolvent function’ X = X (t, x0, v0), defined as the value at time t of the solution x of (1)
verifying the initial condition x(0) = x0, ẋ(0) = v0. Since our force f is assumed to be
bounded, X is globally defined on R3, although we shall only consider it on the half space
{t ≥ 0}. We consider the sets S± defined by

S± :=
{

(x0, v0) : lim
t→+∞

X (t, x0, v0) = ±∞
}

=

=
{

(x(0), ẋ(0)) : x solves (1) and belongs to one of the classes (i±)
}

(5)

It follows from Proposition 4.1 that

S+ =
{

(x0, v0) : X (t0, x0, v0) > 0, ∂tX (t0, x0, v0) > 0 for some t0 > 0
}

,

while S− admits a similar characterization after reversing both inequalities in the right hand
side above. Thus, continuous dependence on the initial conditions implies that S± are open
in R2, so that the stable manifold W S(x∗) = R2\(S− ∪ S+) is closed, as stated by 3. On
the other hand, the boundedness of the force f implies the existence, for each x0 ∈ R,
of some M = M(x0) > 0 such that {x0}×] − ∞,−M [⊂ S− and {x0}×]M, +∞[⊂ S+; in
particular, ({x0} × R) ∩ S± 6= ∅, and these sets being open and disjoint, we deduce that
W S(x∗) ∩ ({x0} × R) = ({x0} × R)\(S− ∪ S+) 6= ∅, proving 1. In order to check 2., assume,
by a contradiction argument, that there were two different solutions x1, x2 : [0, +∞[→ R of
(1) with x1(0) = x2(0) ∈]− δ, δ[ and limt→+∞ xi(t) = limt→+∞ ẋi(t) = 0. Then, Corollary 4.2
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implies that |xi(t)| < δ for any t ∈ [0, +∞[. We consider the function ϕ : [0, +∞[×[0, 1] → R
defined by

ϕ(t, λ) :=

∫ t

0

L
(
s, (1− λ)x1(s) + λx2(s), (1− λ)ẋ1(s) + λẋ2(s)

)
ds, (t, λ) ∈ [0, +∞[×[0, 1] ,

where L(s, x, ẋ) = ẋ2/2 +
∫ x

0
f(s, y)dy is the lagrangian associated with our equation (1).

Then, integration by parts may be used to obtain

∂λϕ(t, 0) = ẋ1(t) (x2(t)− x1(t)) , ∂λϕ(t, 1) = ẋ2(t) (x2(t)− x1(t)) ,

so that ∂λϕ(t, 1)− ∂λϕ(t, 0) =

∫ 1

0

∂2
λλϕ(t, λ)dλ → 0 as t → +∞. However, our assumption

∂xf ≥ 0 implies

∂2
λλϕ(t, λ) ≥

∫ t

0

(ẋ1(s)− ẋ0(s))
2 ds , (t, λ) ∈ [0, +∞[×[0, 1] ,

a contradiction because, the positive and increasing function t 7→ ∫ t

0
(ẋ1(s)−ẋ0(s))

2 ds cannot
tend to zero as t → +∞ (remember that, by assumption, x1(0) = x2(0) and x1 6≡ x2). It
completes the proof.

Let us investigate a little bit closer the sets S± defined in (5). As we have already seen,
these sets are open and disjoint, and W S(x∗) = R2\(S−∪S+). However, something more can
be said:

Lemma 5.1. S± are simply connected, and their union S+ ∪ S− = R2\W S(x∗) is dense in
the plane.

Proof. Let us start by showing that S+ ∪ S− is dense in R2, or, what is the same, that
W S(x∗) has empty interior. Indeed, a stronger result holds: that W S(x∗) has Lebesgue
measure zero. This is a well-known argument for measure-preserving flows which we pass
to sketch. Indeed, if W S(x∗) had positive measure, Egorov’s Theorem would imply that, on
some positive-measure subset of W S(x∗), the flow of the equation would converge uniformly
to (0, 0), which is not possible, since it is measure-preserving.

Let us show now that the sets S+ and S− defined above are simply connected; we shall
concentrate ourselves in the case of S+ since S− admits a completely analogous analysis. Our
argument will be based in the construction of an homeomorphism Φ between S+ and the
three-quadrant set D := R2\(]−∞, 0]×]−∞, 0]).

Given (x0, v0) ∈ S+ it may happen that x0, v0 ≥ 0; in this case, we define Φ(x0, v0) :=
(x0, v0).

It may also happen that x0 > 0 > v0; in this case, there exists an unique time t0 =
t0(x0, v0) > 0 such that ∂tX (t0, x0, v0) = 0, and we define Φ(x0, v0) := (X (t0, x0, v0),−t0).

Finally, if x0 < 0 < v0, then X (·, x0, v0) is strictly increasing and divergent, so that
there is an unique s0 = s0(x0, v0) > 0 such that X (t0, x0, v0) = 0. This allows us to define
Φ(x0, v0) := (−s0, ∂tX (s0, x0, v0)) in this case.

The mapping Φ constructed in this way is continuous and injective, and the domain S+

being open, also Φ is open. Thus, Φ it is an homeomorphism into its image, which is easily
seen to be D. In particular, S+ is simply connected and the proof is complete.

10



Before closing this Section, a few lines to explore the set of crossing points between two
solutions x, y : [0, +∞[→ R of our repulsive equation (1). In general, this set might be
infinite (remember the example of Proposition 2.2), but that cannot be the case anymore
if x is asymptotic to the trivial equilibrium -i.e., (x(0), ẋ(0)) ∈ W S(x∗)-, while y is not. In
this situation, Proposition 4.1 implies that the set of crossing points is bounded, and, as
these crossing points are all of them transversal (by uniqueness), then there are only finitely
many of them. In Lemma 5.2 below we generalize this result to the situation where, instead of
having just two solutions x, y, we deal with continuous paths {xs}s and {ys}s. More precisely,
we assume that we are given continuous curves α, β : [0, 1] → R2 such that

α([0, 1]) ⊂ W S(x∗) , β([0, 1]) ⊂ R2\W S(x∗) ,

and we define, for each s ∈ [0, 1], xs := X (·, α(s)) and ys := X (·, β(s)).

Lemma 5.2. Assume the above. Then, there exists some positive constant b > 0 (not
depending on s) such that every crossing point between xs and ys is smaller than b.

Proof. We start by using the continuity of α and β to pick some number R > 0 such that

|xs(0)| < R , |ys(0)| < R , s ∈ [0, 1] .

Now, we recall that β([0, 1]) ⊂ R2\W S(x∗) = S− ∪S+, and, since these sets are open and
disjoint, the curve β must actually be contained in one of them. We assume, for instance,
that β([0, 1]) ⊂ S+, and observe, with the help of Proposition 4.1, that for any s ∈ [0, 1]
there exists exactly one time Ts > 0 such that ys(Ts) = R. Moreover, at this point ẏ(Ts) > 0,
and the Implicit Function Theorem implies that the function s 7→ Ts defined in this way is
continuous on [0, 1].

We define b := max[0,1] Ts. Observe that if t ≥ b then ys(t) ≥ R, independently of the
value of s. It implies that xs and ys do not cross on [b, +∞[ since, by Corollary 4.2, the
solutions xs are monotonous and thus verify |xs(t)| < R for any s, t. The proof is complete.

At this point, we have concluded our study of general repulsive equations. The next
section is devoted to prove that the stable manifold W S(x∗) associated to the force f of
Proposition 2.2 is pathological in the sense established by Theorem 1.1 and Proposition 2.3.

6 Branches of the stable manifold wrapping many times

around some points

As announced in Section 2, one of the main ideas of this paper consists in estimating the
winding number of certain curves in the plane. With this goal, a crucial role will be played
by the result which opens the present Section. We assume that u, v, η : [a, b] → R are C1

functions such that u and η cross m ≥ 0 times, while v and η cross n ≥ 0 times. These crossing
points are not allowed to be tangential, nor to lie at the right endpoint b of the interval where

11



the functions are defined. Then, it is possible to establish a connection between the difference
n−m, and the winding number of the planar curve

γ(s) := (H(a, s), ∂tH(a, s)) , s ∈ [0, 1] , (6)

around the base point q := (η(a), η̇(a)). Here, the C1,0 homotopy H : [a, b] × [0, 1] → R,
(t, s) 7→ H(t, s), is assumed to verify:

(i) H(t, 0) = u(t), H(t, 1) = v(t) for any t ∈ [a, b].

(ii) (H(t, s), ∂tH(t, s)) 6= (η(t), η̇(t)) for any (t, s) ∈ [a, b]× [0, 1].

(iii) H(b, s) 6= η(b) for any s ∈ [0, 1].

We may interpret the homotopy H as being the continuous family {H(·, s)}s of C1[a, b]
functions. In this way, (i) states that this family connects u and v, (ii) presupposes that
any crossing point between η and the curves of this family must be transversal, and (iii)
establishes that these crossing points do not pass through t = b.

Observe that, by assumption (ii), the crossing points between η and the curves in the
homotopy should move continuously on the interval [a, b] as the parameter s varies. If n 6= m,
some extra crossing points have appeared or disappeared along the homotopy, while, by (iii),
they have not passed through t = b. Then, the additional crossing points must have entered
(or exited) the interval [a, b] from t = a. On the other hand, transversality also implies that,
for any value of s, the sign of the derivative Ht(·, s)− η̇ alternates from each zero to the next.
As the zeroes go through t = a, it forces the curve γ defined in (6) to intersect the vertical
line {η(a)}×R, consecutively, above and below the point q = (η(a), η̇(a)), making each time
half a revolution more (clockwise if the crossing point leaves the interval [a, b]). This leads
us to conjecture the following result:

Proposition 6.1. Assume (i),(ii) and (iii) above. Then,

∣∣∣∣w1
0(γ, q)−

(
n−m

2

)∣∣∣∣ <
3

2
, (7)

where q = (η(a), η̇(a)), m and n denote, respectively, the number of crossing points between
u and η and v and η, and γ is given by (6).

Proposition 6.1 is elementary; however, we could not find it in the literature and it will
be rigourously proved in the Section 10. We observe that the constant 3/2 appearing in
the right hand side of the inequality is not optimal, and, actually, it might be improved
to 1/2. However, we shall not need this fact in our argumentation, and consequently, we
sacrifice sharpness to gain simplicity. Through the remaining of this Section we trust upon
Proposition 6.1 (and Proposition 2.2) to complete our proofs of Theorem 1.1 and the weaker
version of Theorem 1.2 given by Proposition 2.3:

Proof of Proposition 2.3. We consider the force f of Proposition 2.2. Remembering Corollary
2.5 it suffices to check that the associated stable manifold W S(x∗) = W and the points
p = (x1(0), ẋ1(0)) and q = (x2(0), ẋ2(0)) verify assumption (H2). Thus, we fix some natural
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number N > 0 and some point r0 ∈ R2\W S(x∗). This point must belong to one of the sets
S± defined in (5), and, in particular, the number m of crossing points between u := X (·, r0)
and η := x2 must be finite. On the other hand, x1 and x2 intersect infinitely many times,
and the resolvent function X being continuous, there must exist some ε > 0 such that for
any r ∈ R2\W S(u∗) with |r − p| < ε the number of crossing points between X (·, r) and η
is at least m + 2N + 3. To conclude the argumentation we choose some continuous curve
γ : [0, 1] → R2\W S(u∗) such that γ(0) = r0 and |γ(1) − p| < ε. Applying Lemma 5.2 to
the curves α ≡ (x2(0), ẋ2(0)) and β = γ, we find that there exists some number b > 0 (not
depending on s) such that any crossing point between x2 and X (·, γ(s)) is strictly smaller
than b. We call v := X (·, γ(1)), which crosses with η at n ≥ m+2N +3 points, and consider
the homotopy H : [0, b] × [0, 1] → R defined by H(t, s) := X (t, γ(s)). This homotopy
verifies the assumptions of Proposition 6.1 and hence, inequality (7) holds. But, in this case,
(n−m)/2 ≥ N + 3/2 and it follows that w1

0(γ, q) ≥ N . Corollary 2.5 may be now applied to
deduce that the point p is not accessible from R2\W S(x∗).

Proof of Theorem 1.1. We consider again the force f of Proposition 2.2, and we claim that the
associated stable manifold W S(x∗) = W and the points p = (x1(0), ẋ1(0)), q = (x2(0), ẋ2(0)),
O = (0, 0) verify assumption (H1); Lemma 2.1 will then complete the proof. Thus, let the
continuous curve γ : [0, 1] → W with γ(0) = O and γ(1) = p be given. Our reasoning will
consist in showing that there exists a sequence {qk}k → q with qk 6∈ W for any k ∈ N and
such that w1

0(γ, qk) → +∞. Of course, this implies that γ passes through q, as the continuity
of the winding number with respect to the base point would otherwise imply the winding
number of γ with respect to q to be infinite. The symmetry on our assumptions on x1 and
x2 means that we can exchange the points p and q, so that also any continuous curve going
from O to q must pass through p.

We choose any sequence {qk}k → q with qk 6∈ W S(x∗) for any k ∈ N. The existence of such
sequence is ensured by the fact that W S(x∗) has empty interior (Lemma 5.1). For any k ∈ N
we denote by nk to the number of intersection points between X (·, qk) and x1 on [0, +∞[.
Observe that nk → +∞ as k →∞, as the continuity of X implies that X (·, qk) → X (·, q) = x2

uniformly on compact subsets of [0, +∞[. We claim that

w1
0(γ, qk) ≥ nk − 2 , k ∈ N . (8)

so that w1
0(γ, qk) → +∞ and the result follows. To check (8) we fix some k ∈ N and apply

Lemma 5.2 to the curves α(s) := γ(s), β(s) ≡ qk. It follows that there exists some b > 0 (not
depending on s) such that any crossing point between X (·, γ(s)) and η := X (·, qk) is strictly
smaller than b. We define u ≡ 0 and v := x1 and consider the homotopy H : [0, b]× [0, 1] → R
defined by H(t, s) := X (t, γ(s)). This homotopy links u and v, and it verifies all other
assumptions of Proposition 6.1, and hence, inequality (7) holds. But, in this particular case,
m, the number of crossing points between u ≡ 0 and η, is either 0 or 1 (by Proposition 4.1),
while n is what we called nk. This implies (8) and concludes the proof.
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7 Accessible points, simply connected domains and lo-

cal connectedness

Proposition 2.3, whose proof was carried out in the previous Section, was a first step towards
Theorem 1.2. In this Section we complete the proof of this result, and, with this aim, we
shall first show that, under the framework of Proposition 2.2, the (global) stable manifold
W S(x∗) of the trivial equilibrium cannot be locally connected:

Proposition 7.1. Let f be as given by Proposition 2.2. Then, W S(x∗) is not locally con-
nected.

At first sight, Proposition 7.1 does not seem to be a consequence from Proposition 2.3,
since there are closed subsets W ⊂ R2, even with empty interior, which have some points
which are not accessible from the exterior while being locally connected; consider, for instance,
the set W composed by some straight line R passing through the origin, plus a sequence of
concentric circumferences Cn centered there and whose decreasing radii converge to zero, see
Fig. 7 a). However, such examples cannot happen under a further assumption:

(H3) W divides the plane into two (open) connected components A,B, and both of them
are simply connected.

Proposition 7.2. Let the closed set W ⊂ R2 have empty interior and verify (H3) above.
Assume further that W has a point which is not accessible from R2\W . Then, W is not
locally connected.

C1C2

Cn

0 R

a) The set W

A

B

b) The sets A and B.

Figure 7: a) The set W is locally connected and contains the origin, which is not accessible
from the exterior. b) It does not contradict the fact that the complement of W may be
written as the disjoint union of the open sets A (which is disconnected), and B.

Proposition 7.2 is a planar topology result; observe that no mention to differential equa-
tions or dynamical systems is made there. We do not pretend to be original in this result,
which, as most of this Section, is probably well known to the specialists. On the other hand,
we do not know whether the assumption on A and B being simply connected is fully neces-
sary; however, the result does not hold if these sets are not assumed to be at least connected.
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To check this, we consider again the set W constructed above, we call B the exterior region of
the circumference C1, and define A as the infinite sequence of annular regions which remains
when the sequence Cn of circumferences is removed from the interior region of C1, see Fig. 7
b).

Having said this, we observe that the stable manifold W = W S(x∗) associated to the
trivial equilibrium of any repulsive potential does always verify assumption (H3); this was
already seen in Lemma 5.1 . Thus, the combination of Propositions 2.3 and 7.2 immediately
implies Proposition 7.1.

For this reason, we devote our efforts now to prove of Proposition 7.2; it will occupy
us through much of this Section. It will be convenient to work on the compactified plane
R2 ∪ {∞}. This set is endowed with the metric d transported from the geodesic distance
on the unit sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} by means of the stereographic
projection. In this way, R2 ∪ {∞} becomes a compact metric space; moreover, d(x, y) ≤ π
for any x, y ∈ R2 ∪ {∞}. For any points p, q ∈ R2 ∪ {∞} with d(p, q) < π (i.e., points which
are not antipodal when seen on the sphere), it makes sense to define the segment [p, q] as
the image by the stereographic projection of the shorter geodesic of the sphere connecting p
and q. Observe that d(r, s) ≤ d(p, q) for any r, s ∈ [p, q]; in other words, the diameter of the
segment [p, q] is d(p, q).

A well known result says that if the closed set E ⊂ R2∪{∞} ≡ S2 has a locally connected
boundary ∂E, then E itself is locally connected. In our argumentation we shall need an
auxiliary lemma which slightly generalizes this statement:

Lemma 7.3. Let the closed sets E,F ⊂ R2 ∪ {∞} verify that ∂E ⊂ F . If F is locally
connected, so is E ∪ F .

Proof. Before going into the details we recall a well known characterization of local connect-
edness for compact metric spaces (see, for instance, [4], page 19): the compact set S is locally
connected if and only if for each ε > 0 there is some δ > 0 such that, for any points p, q ∈ S
whose distance is smaller than δ, there is a continuum C ⊂ S containing both p and q, and
with diameter smaller than ε.

Now, let 0 < ε < π be given, and choose 0 < δ < ε/3 as given by the characterization
above for the compact set F and the positive quantity ε/3. Given points p, q ∈ E ∪ F with
d(p, q) < δ, it may happen that the segment [p, q] is contained inside E ∪ F , or not. In
the first case, the segment [p, q] itself provides the required continuum with diameter smaller
than ε which joins p and q, and thus, we may assume that [p, q] 6⊂ E ∪ F . We call a to
the last point x ∈ [p, q] which verifies [p, x] ⊂ E ∪ F , and we denote by b to the first point
y in the same segment with [y, q] ⊂ E ∪ F . The points a and b belong to F , and, since
d(a, b) ≤ d(p, q) < δ, there must exist some continuum C1 ⊂ F containing both a and b, and
with diameter smaller than ε/3. Now, it suffices to take C := C1 ∪ [p, a] ∪ [b, q].

A key role in our reasoning will be played by Theorem 2.1 of [4], which characterizes those
simply connected domains G of the sphere R2 ∪ {∞} ≡ S2 for which conformal mappings
from the open disc D onto G can be continuously extended to the closure D̄. An immediate
consequence of this result is the following
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Lemma 7.4. Let G ⊂ R2 ∪ {∞} be open and simply connected. If ∂G (boundary relative to
the sphere R2 ∪ {∞}) has a point which is not accessible from G, then (R2 ∪ {∞})\G is not
locally connected.

Proof. If ∂G has some points which are not accessible from G, then no conformal mapping
h : D→ G can be extended to the boundary. Thus, the above-mentioned Theorem 2.1 of [4]
states that (R2 ∪ {∞})\G is not locally connected.

One easily checks that the boundary of simply connected subsets G of the plane may be
disconnected if G is unbounded. Our next result shows that this is no longer true when we
add the infinity point:

Lemma 7.5. Let G ⊂ R2 ∪ {∞} be simply connected. Then ∂G is connected.

Proof. Assume that the result were not true; then, there would be open sets U, V ⊂ R2∪{∞}
such that

U ∩ (∂G) 6= ∅ 6= V ∩ (∂G), U ∪ V ⊃ ∂G, U ∩ V ∩ (∂G) = ∅ . (9)

Remark that U ∩ (∂G) and V ∩ (∂G) are both open and closed in ∂G. Since ∂G is compact,
the distance between these sets must be positive and we may replace U, V by smaller sets so
that U ∩V = ∅ and (9) still holds. We remember the Riemann mapping theorem and choose
some homeomorphism ϕ : D→ G between the (open) unit disc in the complex plane and G.
Finally, we define

Ũ := ϕ−1(U ∩G) , Ṽ := ϕ−1(V ∩G) ,

which are open sets in D. We claim that there exists some 0 < r < 1 such that the ring
D\(rD) is contained inside Ũ ∪ Ṽ . Indeed, the contrary would mean the existence of a
sequence {p̃n}n ⊂ D such that |p̃n| → 1 and p̃n 6∈ Ũ ∩ Ṽ for any n ∈ N. We let pn := ϕ(p̃n);
in this way we obtain a sequence of points in G with no adherence points in G. It means that
dist(pn, ∂G) → 0, but this is not possible since ∂G is a compact subset of U∪V and pn 6∈ U∪V
for any n ∈ N. Thus, there is some 0 < r < 1 such that, as claimed, D\(rD) ⊂ Ũ ∪ Ṽ . But
Ũ and Ṽ are open and disjoint, implying that D\(rD) is disconnected, a contradiction. It
concludes the proof.

The combination of the last three lemmas immediately implies a first version of Proposi-
tion 7.2, even though it refers to subsets W of the sphere R2 ∪ {∞} instead of the plane.

Proposition 7.6. Let the closed set W ⊂ R2 ∪ {∞} have empty interior and divide the
sphere R ∪ {∞} into two connected components which are simply connected. Then:

(i) W is connected.

(ii) If W has a point which is not accessible from R2\W , then W is not locally connected.
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Proof. (i): Let us denote by A,B to the connected components of (R2 ∪ {∞})\W . Observe
that, the set W having empty interior, (∂A)∪ (∂B) = W and (∂A)∩ (∂B) 6= ∅. But ∂A and
∂B are connected; this is given by Lemma 7.5. The result follows.

(ii): Using a contradiction argument, assume instead that W were locally connected.
Since ∂(A ∪ W ) ⊂ W , Lemma 7.3 above implies that A ∪ W = (R2 ∪ {∞})\B is locally
connected. But then, Lemma 7.4 states that every point in ∂B is accessible from B. Similarly,
every point in ∂A should be accessible from A, and consequently, all points in W = ∂A∪ ∂B
are accessible from A ∪B = (R2 ∪ {∞})\W , contradicting our assumptions.

At first glance, Proposition 7.6 does not seem to imply Proposition 7.2, since our as-
sumption (H3) implies W to be unbounded, and then, it might happen that the only point
without a basis of connected neighborhoods were the infinity. The following lemma states
that the last part of this reasoning was mistaken:

Lemma 7.7. Let the metric space X be connected and locally compact. We consider the set

S :=
{

p ∈ X such that p has a basis of connected neighborhoods
}

.

Then, X\S does not have isolated points.

Proof. Using a contradiction argument we assume, on the contrary, that p0 ∈ X\S were
isolated. Using the local compactness of X we may find some number r > 0 verifying the
three properties below:

(a) Br(p)\{p0} is locally connected.

(b) Every neighborhood of p0 contained inside Br(p0) is disconnected.

(c) Br(p0) is compact.

Choose now positive numbers 0 < r2 < r1 < r. We are going to find a contradiction with (a)
by showing that the ring

R := Br1(p0)\Br2(p0)

contains another point q ∈ X\S.
It follows from (b) that Br(p0) is disconnected, and we shall call F to the family of its

connected components. Again using (b) we see that the connected component C0 containing
p0 cannot be a neighborhood of p0. But, in view of (a), all other connected components,
C ∈ F\{C0} are open; moreover, also C0\{p0} is open. On the other hand, all elements
C ∈ F are closed relative to Br(p0).

We claim that there are infinitely many elements C ∈ F for which C ∩ Br2(p0) 6= ∅.
Because, if there were only finitely many, say C0, C1, . . . , Ck, then the intersections Br2(p0)∩
Ci would be closed relative to Br2(p0), but then they would be also open, and C0 would be
an open connected neighborhood of p0, contradicting (b).

We also claim that all elements C ∈ F\{C0} with C ∩Br2(p0) 6= ∅ verify that C ∩R 6= ∅.
Since, otherwise, such a set C would be contained inside Br2(p0), and hence, it would be
clopen in X, contradicting the connectedness of our space
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Then, there are infinitely many elements C ∈ F such that C ∩R 6= ∅, and we may choose
sequences {Cn}n ⊂ F, {pn}n ⊂ R with pn ∈ Cn for all n and Cn 6= Cm if n 6= m. But (c)
implies that R is compact, and thus, {pn} has some adherence point q.

Observe that q belongs to the open set Br(p0)\{p0}. We claim that q does not have
connected neighborhoods V ⊂ Br(p0)\{p0}. Indeed, if V were such a neighborhood, then
it could be decomposed as a disjoint union of open sets (here, the word open is understood
relative to V ):

V =
⋃

C∈F

C ∩ V ,

implying that there exists some element C∗ ∈ F such that C∗ ⊃ V . But there is at most one
element of the sequence {pn}n in the set C∗, contradicting the fact that q is an adherence
point of this sequence. This concludes the proof.

At this point, the combination of Proposition 7.6 and Lemma 7.7 yields Proposition 7.2.
And Propositions 2.3 and 7.2 together imply Proposition 7.1. We conclude this Section by
showing how Propositions 2.3 and 7.1 imply Theorem 1.2:

Proof of Theorem 1.2. Choose some bounded neighborhood of the origin B. Remembering
the boundedness of f and Proposition 4.1 we observe that the band Bδ :=]− δ, δ[×R verifies
that W S

Bδ
(x∗) ⊂ B provided only that δ > 0 is small enough. We fix such a number δ and

observe that W S
Bδ

(x∗) ⊂ W S
B(x∗); it follows from Corollary 4.2. Define next N := B ∩ Bδ,

which is a bounded neighborhood of the origin. Items 4. and 5. of Lemma 3.2 imply that

W S
B(x∗) ∩N = W S(x∗) ∩N . (10)

On the other hand, the combination of Propositions 2.3 and 7.1 ensure the existence of
points q̃1, q̃2 ∈ W S(x∗) such that q̃1 is not accessible from R2\W S(x∗) and q̃2 does not have
basis of connected neighborhoods in W S(x∗). We call P to the Poincaré mapping associated
to our periodic equation (1),

P : R2 → R2 , (x0, v0) 7→
(X (1, x0, v0), ∂tX (1, x0, v0)

)
,

the resolvent function X being defined as in Section 5. We choose some k ∈ N such that the
iterates q1 := P k(q̃1), q2 := P k(q̃2) belong to the interior of N . In view of (10) one sees that

q1, q2 ∈ W S
B(x∗) ∩N .

We define now Ñ := P−k(N), which is a neighborhood of both q̃1 and q̃2. The mapping
P k establishes an homeomorphism from Ñ to N which sends Ñ ∩W S(x∗) into N ∩W S(x∗) =
W S

B(x∗) ∩N and q̃1, q̃2 into q1, q2. Then q1 is not accessible from the exterior of W S
B(x∗) and

q2 does not have basis of connected neighborhoods in W S
B(x∗). It concludes the proof.
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8 Interpolating Newtonian equations

We devote the next two sections to construct the function f = f(t, x) whose existence was
claimed by Proposition 2.2. Our approach will consist in building f from the solution curves
x1, x2 : [0, +∞[→ R described there. Accordingly with the just-mentioned proposition, the
positive functions x1, x2 should verify two properties, which we rewrite here for the reader’s
convenience:

(i) limt→∞ x1(t) = limt→∞ x2(t) = 0,

(ii) x1 and x2 coincide on infinitely many points 0 = t0 < t1 < t2 < ... → +∞.

Uniqueness of solutions to initial value problems means that x1 and x2 should always intersect
transversally. As a consequence, intersection points must be isolated and they all may be
integrated into the sequence {tn}. With other words, there is no loss of generality in assuming
that

(iii) x1(t) 6= x2(t) if t 6∈ {t0, t1, t2, . . .} .

Other properties that x1 and x2 must verify are

(iv) ẋ1(tn) 6= ẋ2(tn) and ẍ1(tn) = ẍ2(tn) for any n ≥ 0.

(v) ẋ1(t), ẋ2(t) < 0 < ẍ1(t), ẍ2(t) for any t ∈ [0, +∞[.

(vi) limt→+∞ ẋi(t) = limt→+∞ ẍi(t) = 0 , i = 1, 2 .

In the main result of this section, we pick arbitrary C2 functions x1, x2 : [0, +∞[→ R
verifying all these conditions. We shall make a further assumption:

(vii) max{x1(t + 1), x2(t + 1)} < min{x1(t), x2(t)} for any t ≥ 0 ,

which guarantees that new crossing points do not appear when the graphs of x1 and x2 are
projected into the cylinder (R/Z)×R. In this framework we construct a Newtonian equation
which is solved at the same time by x1 and x2. Indeed, this can be done with C0,∞ regularity
on the upper half cylinder (R/Z)×]0, +∞[:

Lemma 8.1. Let the positive, C2 functions x1, x2 : [0, +∞[→ R verify conditions (i)-(vii)
above. Then, there exists a 1-periodic in time, C0,∞ and positive function f : (R/Z)×]0, +∞[→
R such that x1 and x2 both solve (1).

Proof. Consider the functions xm, xM defined on [0, +∞[ by

xm(t) := min{x1(t), x2(t)}, xM(t) := max{x1(t), x2(t)} , t ≥ 0 . (11)

We continuously extend them to on the negative part of the real axis by means of a same
arch of parabola arriving at t = 0 with speed v0 := ẋ1(0)+ ẋ2(0) and curvature ẍ1(0) = ẍ2(0):

xm(t) = xM(t) := x1(0) + v0t + ẍ1(0)t2/2 , t ∈]−∞, 0[ .
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t0 = 0 t1 = 1 t2 = 3

x = xM (t)x = xm(t)

Figure 8: The graphs of xM and xm.

We observe now that x1 and x2 are solutions of (1) if and only if

f(t, x1(t)) = ẍ1(t) , f(t, x2(t)) = ẍ2(t) , t ∈ [0, +∞[ ,

or, what is the same,

f(t, xm(t)) = ẍm(t) , f(t, xM(t)) = ẍM(t) , t ∈ [0, +∞[ . (12)

Equality (12) requires some explanation. For the functions xm and xM are continuous, but
only piecewise differentiable; they have class C2 on each closed interval ]−∞, t0] or [tn, tn+1],
but, since x1 and x2 intersect always transversally, the lateral derivatives are different at the
nodes tn. However, (12) is meaningful because, by the second part of our assumption (iv),
the left and right limits of ẍm and ẍM coincide at tn for each n ≥ 0. In fact, one may regard
ẍm, ẍM as continuous functions on R. With this in mind, we extend f to the left side of the
graph of xm (which coincides with that of xM) by letting

f(t, xm(t)) := ẍm(t) = ẍ1(0) , t ∈]−∞, 0[ . (13)

Observe now that, if f is to be 1-periodic in time, the discussions above also establish the
value of f on the translations of these graphs by integer multiples of the vector (1, 0). For
instance, from (13) and the second part of (12), we deduce

f(t, xM(t + 1)) = ẍM(t + 1) , t ∈ R . (14)

This new definition does not contradict those already made, because, in view of assump-
tion (vii), xM(t + 1) < xm(t) for any t ∈ R. It motivates us to consider the open subset Ω of
the plane defined by

Ω := {(t, x) ∈ R2 : xM(t + 1) < x < xM(t)} .

Our function f will be first defined on Ω. With this goal, observe that this is a connected
domain; however, it is divided into infinitely many connected components by the right half
of the graph of xm. One of them, which we shall call Ω0, is unbounded:

Ω0 := {(t, x) ∈ R2 : xM(t + 1) < x < xm(t)} .
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t0 = 0 t1 = 1 t2 = 3

Ω0

Ω1

Ω2
Ω3

Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ ...

Figure 9: The set Ω.

The other connected components are bounded, and may be ordered into a sequence {Ωn}n:

Ωn := {(t, x) ∈ R2 : tn−1 < t < tn, xm(t) < x < xM(t)} , n ≥ 1 .

The most immediate extension of f to these sets would possibly be the piecewise linear
interpolation in the vertical direction between the values of f on the respective boundaries,
which have already been established in (12,13,14). However, after pasting the various defini-
tions of f on the subdomains Ωi, this procedure would lead to a continuous but only piecewise
differentiable function f . We are interested in constructing a smooth function f , and, with
this goal, we shall force the successive partial derivatives of f to vanish on the boundaries of
these sets.

Thus, we choose some C∞ function h : [0, 1] → R with

h(0) = 0 , h(1) = 1 , h(k)(0) = h(k)(1) = 0 for any k ≥ 1 ,

which will be fixed in what follows. We define f on Ω0 by setting

f(t, (1− λ)xM(t + 1) + λxm(t)) := (1− h(λ))ẍM(t + 1) + h(λ)ẍm(t) , t ∈ R , 0 < λ < 1 ,
(15)

and we extend f to Ωn for any n ≥ 1 by the rule

f(t, (1− λ)xm(t) + λxM(t)) := (1− h(λ))ẍm(t) + h(λ)ẍM(t) , t ∈]tn−1, tn[ , 0 < λ < 1 .
(16)

In this way, we have defined f on the closure of Ω so that it is a C0,∞ function. It verifies
that ∂n

xf(t, x) = 0 for any (t, x) ∈ ∂Ω and any n ≥ 1, and consequently, its periodic extension
to the upper half plane R×]0, +∞[,

f(t, x) := f(t−m,x) , (t, x) ∈ (m, 0) + Ω , m ∈ Z ,

has also class C0,∞, see Fig. 10 below. The construction is complete.
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−1−2 t0 = 0 t1 = 1 t2 = 3

ΩΩ− (1, 0) Ω + (1, 0) Ω + (3, 0)

Figure 10: The translations of Ω̄ fill the upper half plane.

9 From the upper half plane to R2

In this Section we complete the proof of Proposition 2.2. With this aim we start by observing
that the function f of Lemma 8.1 may be extended to a (continuous) repulsive function
defined on the whole cylinder:

Lemma 9.1. Let the C2 functions x1, x2 : [0, +∞[→ R verify conditions (i)-(vii) from the
previous section. Then, the function f of Lemma 8.1 may be continuously extended to a
repulsive function on (R/Z)× R.

Proof. It follows from (15,16) that

|f(t, x)| ≤ max
{
ẍM(t+1), ẍm(t), ẍM(t)

} ≤ max
{
ẍ1(t+1), ẍ2(t+1), ẍ1(t), ẍ2(t)

}
, (t, x) ∈ Ω .

When combined with assumption (vi), these inequalities yield

lim
t→+∞

f(t, x) = 0 uniformly with respect to x as long as (t, x) ∈ Ω ,

or, what is the same, due to the geometry of the set Ω ,

lim
x→0

f(t, x) = 0 uniformly with respect to t as long as (t, x) ∈ Ω ,

and then, from the periodicity of f in its time variable, we deduce that limx→0 f(t, x) = 0
uniformly with respect to t ∈ R . It follows that the antisymmetric extension of f to the
whole plane R2,

f(t, 0) := 0 , f(t,−x) := −f(t, x) , x > 0 , (17)

is continuous. It is also 1-periodic in time and repulsive, showing the result.

At this stage, we are now interested in deciding whether, at least for some particular
choices of the functions x1 and x2, the function f built above has some additional regularity.
Such a possibility seems reasonable, because our construction makes f of class C0,∞ on the
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upper and lower cylinders (R/Z)×]0, +∞[ and (R/Z)×]−∞, 0[. This motivates us to study
the partial derivatives (∂pf/∂xp)(t, x) as x → 0. Differentiating with respect to λ in (15), we
deduce that

∣∣∣∣
∂pf

∂xp
(t, x)

∣∣∣∣ ≤ ‖h(p)‖∞ |ẍm(t)− ẍM(t + 1)|
(xm(t)− xM(t + 1))p

, (t, x) ∈ Ω0 , (18)

while the analogous move in (16) provides the inequality

∣∣∣∣
∂pf

∂xp
(t, x)

∣∣∣∣ ≤ ‖h(p)‖∞ |ẍM(t)− ẍm(t)|
(xM(t)− xm(t))p

, (t, x) ∈
⋃
n≥1

Ωn , (19)

for any p ≥ 1. We arrive to the following result:

Lemma 9.2. Let the C2 functions x1, x2 : [0, +∞[→ R verify conditions (i)-(vii) from the
previous section. We further assume that

(viii) lim
t→+∞

[
x1(t)− x2(t)

x1(t− 1)− x1(t)

]
= lim

t→+∞

[
x1(t)− x2(t)

x1(t)− x1(t + 1)

]
= 0 ,

and, for some p ∈ N,

(ix)p lim
t→+∞

[
ẍ1(t)− ẍ2(t)(
x1(t)− x2(t)

)p

]
= lim

t→+∞

[
ẍ1(t)− ẍ1(t + 1)(
x1(t)− x1(t + 1)

)p

]
= 0 .

Then, there exists a repulsive function f : (R/Z) × R → R of class C0,p such that x1, x2

both solve equation (1).

Proof. We consider the function f constructed on the upper half cylinder as in Lemma 8.1
and extended to the whole cylinder as in (17). As seen above, this makes f continuous on
(R/Z)×R and C0,∞ on (R/Z)× (

R\{0}). To complete the proof it will suffice to show how
our new assumptions (viii) and (ix)p imply that, for any q ∈ {1, . . . , p},

lim
x→0

∂qf

∂xq
(t, x) = 0 uniformly with respect to t ∈ R/Z .

With this goal we recall the functions xm, xM defined as in (11). We may now rewrite the
first part of our assumption (ix)p as

lim
t→+∞

[
ẍM(t)− ẍm(t)(
xM(t)− xm(t)

)p

]
= 0 , (20)

while the combination of (viii) and the first part of (ix)p gives

lim
t→+∞

[
ẍ1(t)− ẍ2(t)(

x1(t− 1)− x1(t)
)p

]
= lim

t→+∞

[
ẍ1(t)− ẍ2(t)(

x1(t)− x1(t + 1)
)p

]
= 0 . (21)
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On the other hand,

lim
t→+∞

[
ẍm(t)− ẍM(t + 1)(
xm(t)− xM(t + 1)

)p

]
= lim

t→+∞

[
ẍm(t)− ẍM(t + 1)(
x1(t)− x1(t + 1)

)p

]
lim

t→+∞

(
x1(t)− x1(t + 1)

xm(t)− xM(t + 1)

)p

.

Observe that the first of the limits of the right side above vanishes; this follows from (21)
and the second part of assumption (ix)p. Assumption (viii) implies that the last limit is one
and we deduce that

lim
t→+∞

[
ẍm(t)− ẍM(t + 1)(
xm(t)− xM(t + 1)

)p

]
= 0 . (22)

But, in view of (18,19), expressions (20,22) imply

lim
t→+∞

∂qf

∂xq
(t, x) = 0 uniformly with respect to x as long as (t, x) ∈ Ω ,

for any 1 ≤ q ≤ p. And having into account the geometry of the set Ω we deduce

lim
x→0

∂qf

∂xq
(t, x) = 0 uniformly with respect to t as long as (t, x) ∈ Ω .

The periodicity of f in its time variable now means that the above limit holds uniformly with
respect to t on the upper half plane R×]0, +∞[. Consequently, the antisymmetric extension
(17) of f to the whole plane verifies, for any 1 ≤ q ≤ p

lim
x→0

∂qf

∂xq
(t, x) = 0 uniformly with respect to t ∈ R ,

so that f ∈ C0,p(R × R), and further, ∂qf/∂xq ≡ 0 on the axis {x = 0} for any 0 ≤ q ≤ p.
This concludes the proof.

At a first glance, one might think that Lemma 9.2 provides a procedure to construct
examples of smoother and smoother equations under the conditions of Proposition 2.2; it
would suffice to start with curves x1 and x2 verifying assumptions (i)-(viii) and (ix)p for
higher and higher choices of p. However, this argumentation fails because there are not such
curves if p ≥ 3. Let us briefly show this now: we let `(t) = x1(t)− x1(t + 1), which, in view
of the second part of (ix)p, must verify

lim
t→+∞

῭(t)

`(t)p
= 0 ,

which, if p ≥ 3, implies

lim
t→+∞

῭(t)

`(t)3
= 0 ,

and consequently, by L’Hôpital rule,

lim
t→+∞

˙̀(t)2

`(t)4
= 0 ,
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or, what is the same,

lim
t→+∞

˙̀(t)

`(t)2
= 0 .

L’Hôpital rule may be applied again, to conclude

lim
t→+∞

1/`(t)

t
= 0 ,

or, equivalently,
lim

t→+∞
t `(t) = +∞ .

In particular, there must be some n0 ∈ N such that

`(n) ≥ 1

n
, n ≥ n0 ,

implying that

+∞ =
∞∑

n=0

`(n) =
∞∑

n=0

(
x1(n)− x1(n + 1)

)
= x1(0) < +∞ ,

a contradiction.
Having checked that assumptions (i)-(viii) and (ix)p cannot be fulfilled if p ≥ 3, let us

close this paper by giving an example showing that these conditions are actually feasible for
p = 2. Together with Lemma 9.2, this will complete the proof of Proposition 2.2.

We define x1 : [0, +∞[→ R by

x1(t) :=
1

log(2 + t)
, t ∈ [0, +∞[ . (23)

Observe that this is a C2 function on [0, +∞[. One easily verifies that

lim
t→+∞

x1(t) = lim
t→+∞

ẋ1(t) = lim
t→+∞

ẍ1(t) = 0 , (24)

and also,
ẋ1(t) < 0 < ẍ1(t) , t ∈ [0, +∞[ . (25)

Moreover, straightforward computations show that, as t → +∞,

ẋ1(t) ' −1

t(log t)2
, ẍ1(t) ' 1

t2(log t)2
,

...
x 1(t) ' −2

t3(log t)2
, (26)

in the sense that the limit of the quotient is 1 in every case. We combine the first and the
last assertions of (26) to get

lim
t→+∞

ẍ1(t)− ẍ1(t + 1)

(x1(t)− x1(t + 1))2
= 0 . (27)
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The construction of x2 will be a little more sophisticated. We start from some C4 function
ϕ : [0, 1] → R with

ϕ(k)(0) = ϕ(k)(1) = 0 for k = 0, 2, 3, 4, ϕ > 0 on ]0, 1[, ϕ̇(0) = −6 ϕ̇(1) > 0,

and we define Φ : [1, +∞[→ R by the rule

Φ(t) :=
(−1)n

3n
ϕ

(
t− 2n−1

2n−1

)
if 2n−1 ≤ t < 2n, n ∈ N .

0 1

ϕ = ϕ(t)

Φ = Φ(t)

1 2 4 8 16

Figure 11: The graphs of ϕ and Φ.

Observe that Φ is a C2 function on [1, +∞[. It verifies

Φ(t) = 0 if and only if t = 2n for some n ≥ 0 , (28)

and also
Φ̇(2n) 6= 0 = Φ̈(2n) , n ≥ 0 . (29)

We may estimate the rate at which Φ tends to zero as t → +∞:

|Φ(t)| ≤
(

1

3n

)
max
[0,1]

ϕ <

(
1

t

)log(3)/ log(2) (
max
[0,1]

ϕ

)
, t ∈ [2n−1, 2n[ , n ∈ N . (30)

Actually, analogous analysis, when applied to Φ̇ and Φ̈, give

∣∣∣Φ̇(t)
∣∣∣ =

2

6n

∣∣∣∣ϕ̇
(

t− 2n−1

2n−1

)∣∣∣∣ <

(
2 max

[0,1]
|ϕ̇|

)(
1

t

)1+log(3)/ log(2)

, t ∈ [2n−1, 2n[ , n ∈ N ,

(31)
∣∣∣Φ̈(t)

∣∣∣ =
4

12n

∣∣∣∣ϕ̈
(

t− 2n−1

2n−1

)∣∣∣∣ <

(
4 max

[0,1]
|ϕ̈|

)(
1

t

)2+log(3)/ log(2)

, t ∈ [2n−1, 2n[ , n ∈ N .

(32)

We combine (30) with the first assertion of (26) to deduce

lim
t→+∞

(
Φ(t)

x1(t− 1)− x1(t)

)
= lim

t→+∞

(
Φ(t)

x1(t)− x1(t + 1)

)
= 0 , (33)
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while, comparing (31,32) with the first and middle statements of (26), we get

lim
t→+∞

Φ̇(t)

ẋ1(t)
= lim

t→+∞
Φ̈(t)

ẍ1(t)
= 0 . (34)

Finally, we have the inequality
∣∣∣∣∣
Φ̈(t)

Φ(t)2

∣∣∣∣∣ = 4

(
3

4

)n ∣∣∣∣
(

ϕ̈

ϕ2

)(
t− 2n−1

2n−1

)∣∣∣∣ ≤ 4

(
3

4

)n

max
]0,1[

∣∣∣∣
ϕ̈

ϕ2

∣∣∣∣ , t ∈ [2n−1, 2n[ , n ∈ N ,

(observe that ϕ̈(t)/ϕ(t)2 → 0 as t → 0, 1). We deduce that

lim
t→+∞

Φ̈(t)

Φ(t)2
= 0 . (35)

Proof of Proposition 2.2. We define x1 as in (23), and x2 by

x2(t) := x1(t) + ε Φ(t + 1) , t ∈ [0, +∞[ ,

for some positive number ε > 0. We claim that, if ε is small enough, these functions verify
assumptions (i)-(viii) and (ix)2 for the sequence tn = 2n−1. Indeed, (i) follows from (24,30),
while (ii),(iii) come from (28). In the other hand, (29) implies (iv), while (v) follows, if ε > 0
is small enough, from the combination of (25) and (34). Assumption (vi) follows at once from
(24,34), while (33) implies (vii) for small ε. Also (viii) was shown in (33), while the first part
of (ix)2 was obtained in (35) and the second in (27). Thus, Lemma 9.2 may be applied for
p = 2 and the proof is complete.

10 Appendix: On the winding number of planar curves

Let γ : [a, b] → R2 be a (not necessarily closed) continuous path in the plane, and let the
point q ∈ R2\γ([a, b]) be given. As we already mentioned in Section 2, the winding number
of γ with respect to the base point q is defined by

wb
a(γ, q) :=

θγ(b)− θγ(a)

2π
,

for any continuous determination θγ : [a, b] → R of the argument function on γ − q. Some
well known properties of the winding number function are the following:

(i) The winding number is additive. For any continuous path γ : [a, b] → R2, any point
q ∈ R2\γ([a, b]) and any t ∈]a, b[, wb

a(γ, q) = wt
a(γ, q) + wb

t (γ, q) .

(ii) It vanishes on constant paths and changes sign when the orientation of the path is
reversed. Given p ∈ R2\{q}, the constant path γ∗ ≡ p (defined on any closed interval
[a, b]) has winding number with respect to q equal to zero. On the other hand, given
some continuous γ : [a, b] → R2\{q}, the orientation-reversed path

γ−1 : [a, b] → R2\{q} , t 7→ γ(a + b− t) ,

has winding number wb
a(γ

−1, q) = −wb
a(γ, q)
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(iii) It remains invariant under fixed endpoints homotopies. Let M : [a, b]× [0, 1] → R2\{q}
be continuous and such that M(a, ·) and M(b, ·) are constant mappings. Then,

wb
a(M(·, 0), q) = wb

a(M(·, 1), q) . (36)

If the condition on the homotopy -which we shall now call J- to have fixed endpoints
is removed, then (36) may not hold; however, there is still a ‘commutative square’ equality
which is the aim of Lemma 10.1 below:

Lemma 10.1. Let the continuous homotopy J : [a, b]× [0, 1] → R2\{q} be given. Then,

wb
a(J(·, 0), q) + w1

0(J(b, ·), q) = w1
0(J(a, ·), q) + wb

a(J(·, 1), q) .

Proof. We consider the fixed endpoints homotopy M : [a− 1, b+1]× [0, 1] → R2\{q} defined
by

M(t, s) :=





J(a, (−a + 1 + t)s) if a− 1 ≤ t ≤ a ,

J(t, s) if a ≤ t ≤ b ,

J(b, (b + 1− t)s) if b ≤ t ≤ b + 1 .

Using by the invariance property (iii) of the winding number, we deduce

wb+1
a−1(M(·, 0), q) = wb+1

a−1(M(·, 1), q) ,

and the additive property (i) gives

wa
a−1(M(·, 0), q) + wb

a(M(·, 0), q) + wb+1
b (M(·, 0), q) =

= wa
a−1(M(·, 1), q) + wb

a(M(·, 1), q) + wb+1
b (M(·, 1), q) .

Now, the curve M(·, 0) is constant on [a − 1, a] and also on [b, b + 1], and, by (ii),
wa

a−1(M(·, 0), q) = wb+1
b (M(·, 0), q) = 0. Also by (ii), wb+1

b (M(·, 1), q) = −w1
0(J(1, ·), q).

Since M and J coincide on [a, b]× [0, 1], the result follows.

We shall be particularly interested in the case which occurs when the path γ has the
special form γ(t) = αx(t) := (x(t), ẋ(t)) for some C1 function x with only nondegenerate
zeroes. In this case, the winding number of αx around O = (0, 0) may be estimated from the
number kx of zeroes of x on [a, b]:

Lemma 10.2. Let x : [a, b] → R be a C1 function with no degenerate zeroes. Then,

∣∣∣wb
a(αx, O) + kx/2

∣∣∣ ≤ 1/2 .
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Proof. Observe that, the curve x having only nondegenerate zeroes, αx(t) 6= O for any
t ∈ [a, b], and we may assign a sign to each point where αx intersects the vertical axis {0}×R
according to the side of the punctured axis which the point belongs to. It follows that such
positive and negative intersection points alternate on the time, and, moreover, between a
positive and its consecutive negative one, αx stays to the right of the vertical axis, while,
if it is a negative intersection point which comes first, then αx stays on the left half plane
until the next (positive) intersection point. It means that αx spins clockwise and the result
follows.

Proof of Proposition 6.1. As before, we let O := (0, 0). We consider the homotopy J :
[a, b]× [0, 1] → R2\{O} defined by

J(t, s) := (H(t, s)− η(t), Ht(t, s)− η̇(t)) , (t, s) ∈ [a, b]× [0, 1] ,

and, according to Lemma 10.1, one has

w1
0(J(a, ·), O) = wb

a(J(·, 0), O)− wb
a(J(·, 1), O) + w1

0(J(b, ·), O) . (37)

Remembering the definition of γ in (6), J(a, s) = γ(s)− q for any s ∈ [0, 1]; in particular,
w1

0(J(a, ·), O) = w1
0(γ, q). Concerning the right hand side of (37), we have

• J(·, 0) = αu−η and, in view that m = ku−η, Lemma 10.2 states that

|wb
a(J(·, 0), O) + m/2| < 1/2 ,

• J(·, 1) = αv−η and, in view that n = kv−η, Lemma 10.2 states that

|wb
a(J(·, 1), O) + n/2| < 1/2 ,

• J(b, [0, 1]) does not intersect the vertical section {0} × R, so that

|w1
0(J(b, ·), O)| < 1/2 ,

implying the result.
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