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The forced sine-Gordon equation can be considered as a natural extension to partial
differential equations of the forced pendulum equation. It is known that, if f is
almost periodic and not too large, the pendulum equation has almost periodic
solutions. Our aim is to extend this result to the sine-Gordon equation. A crucial
tool in the proofs is a recent maximum principle for the telegraph equation. This
maximum principle holds up to space dimension three.

1. Introduction

The aim of this note is to study almost periodic solutions of the sine-Gordon

equation

utt − ∆xu + cut + a sin u = f(t, x) in D
′(R × T

n) (1)

when n = 1, 2 or 3, 0 < a < c2

4 , c > 0, f is almost periodic and T = R/2πZ.

As it is usual, it is convenient to consider the linear equation associated

to (1). In our case it is the telegraph equation

utt − ∆xu + cut + λu = f(t, x) in D
′(R × T

n). (2)

In dimension one (n = 1) it is known that the solutions of (2) gain regularity

(see Refs. 3 and 5). This is sufficient to have compactness and we can apply

a reasoning due to Amerio (see Ref. 1) in order to get our purpose. When

n = 3 there is no regularity and we can not use Amerio’s ideas.

Nevertheless we are going to give a simpler argument which is based

on completeness, more exactly on Banach Contraction Principle. Anyway

(with compactness or with completeness) we need a maximum principle
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and this is impossible when n ≥ 4 (see Ref. 4). So this is the reason why

we take n = 1, 2 or 3.

On the other hand, the results that we are going to get can be considered

as extensions of the equivalent ones for the forced pendulum equation

ü + cu̇ + a sin u = h(t). (3)

In fact, in Ref. 2 it is proved the following

Theorem 1.1. If c ≥ 0 and h is almost periodic and such that ‖h‖L∞ < a,

then there exists ε > 0 such that (3) has a unique solution u ∈ C1(R) almost

periodic satisfying

π

2
+ ε ≤ u(t) ≤

3π

2
− ε.

Moreover, u̇ is almost periodic also.

Again the proof is based on an argument of Amerio’s type and the com-

pactness plays a crucial role.

Remark 1.1. In the previous theorem we consider c ≥ 0 and in equation

(1) we take c > 0. The reason of this difference is that we are going to use

a maximum principle that fails for the wave equation (c = 0).

Finally, and before going on to the following section, we must recall the

notion of almost periodicity. Since R × T
n is a locally compact topological

group we can use Bochner definition. Given a function f : R×T
n → R and

a vector α = (α0, α̃) in R × T
n, the translate Tαf is defined as

(Tαf)(t, x) = f(t + α0, x + α̃).

A continuous function f is almost periodic if from every sequence {αm}m∈N

in R × T
n it is possible to extract a subsequence {αk}k∈N such that Tαk

f

has a uniform limit. The class of almost periodic functions will be denoted

by AP (R × T
n), endowed with the L∞-norm it becomes a Banach space

immersed in L∞(R × T
n) ∩ C(R × T

n).

A similar definition will be considered when we will take a function h :

R → R. In this case, we will use the spaces AP k(R) = {h ∈ AP (R) / h ∈

Ck(R) and h(j) ∈ AP (R) for each 1 ≤ j ≤ k}, k ∈ Z.

2. Ordinary differential equations

Before considering equation (1), we are to going to apply our strategy to

obtain a new proof of Theorem 1.1.
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First we recall some results on the linear equation

ü + cu̇ − λu = h(t), t ∈ R, (4)

with c ≥ 0 and λ > 0.

Lemma 2.1. If h ∈ C(R) ∩ L∞(R) then (4) has a unique solution u ∈

C1(R) satisfying

‖u‖L∞ ≤
1

λ
‖h‖L∞ (5)

and

‖u̇‖L∞ ≤
1

ν
‖h‖L∞,

with ν =
√

λ + c2

4 . Moreover, if h(t) ≥ 0, ∀t ∈ R, then u(t) ≤ 0, ∀t ∈ R.

In Ref. 6, Sec. 6, there is an explicit formula for u which uses a Green’s

function. The proof of the lemma is trivial with it.

From (5), it is easy to verify that

‖Tαu − Tβu‖L∞ ≤
1

λ
‖Tαh − Tβh‖L∞

for arbitrary numbers α, β in R. A similar inequality is valid for u̇. So, we

have proved the following

Lemma 2.2. If h is in AP (R) then u ∈ AP 1(R).

Remark 2.1. It is possible to improve the previous two lemmas. In fact,

u ∈ C2(R) and a L∞-estimate exists for ü. Therefore, u belongs to AP 2(R).

Now we are ready to give the different proof of Theorem 1.1. We fix

constants A and U satisfying

‖h‖L∞ ≤ A < a, 0 < U <
π

2
, a sin U > A.

We consider the complete metric space

Ω = {u ∈ AP (R) / ‖u− π‖L∞ ≤ U}

and the mapping Fu = v, where v is the almost periodic solution of

v̈ + cv̇ − av = −au− a sin u + h(t).

From its definition we can say that F maps Ω into AP (R) and the fixed

points of F correspond to the almost periodic solutions of (3) satisfying

‖u− π‖L∞ ≤ U .
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Next we prove that F maps Ω into itself. Given u ∈ Ω, we know that

−U ≤ u − π ≤ U and we observe that the function ϕ(ξ) = −aξ − a sin ξ is

decreasing. Hence

aπ − aU + a sin U ≤ au + a sin u ≤ aπ + aU − a sin U.

Constants π + U and π − U are solutions in AP (R) of

ẅ1 + cẇ1 − aw1 = −a(π + U) and ẅ2 + cẇ2 − aw2 = −a(π − U)

respectively. We can apply Lemma 2.1 to compare w2 = π − U , v and

w1 = π + U . In fact, π − U ≤ v(t) ≤ π + U everywhere.

Once we know that F(Ω) ⊂ Ω we must prove that F is a contraction.

To do this we consider u1, u2 ∈ Ω with v1 = Fu1, v2 = Fu2. The difference

d = v1 − v2 is a solution of

d̈ + cḋ − ad = −a(u1 − u2) − a(sin u1 − sin u2).

Since

‖u1 + sin u1 − u2 − sin u2‖L∞ ≤ (1 + cos (π − U)) ‖u1 − u2‖L∞,

we can apply (5) to conclude that

‖v1 − v2‖L∞ ≤
1

a
a ‖u1 + sin u1 − u2 − sin u2‖L∞ ≤ k ‖u1 − u2‖L∞

with k = 1 − cosU . Since k < 1 the fixed point of F will be the searched

almost periodic solution. Letting A to tend to a and U to π
2 , the uniqueness

of the fixed point shows that there are no other almost periodic solutions in

the ball ‖u−π‖L∞ < π
2 . Finally, u satisfies ü + cu̇− au = g(t) with g(t) =

−au− a sin u + h(t). Because g ∈ AP (R), we conclude that u ∈ AP 1(R).

Remark 2.2. Having in mind Remark 2.1, we prove that u ∈ AP 2(R).

In the previous proof we have used a classical maximum principle in

o.d.e.’s. We can use an anti-maximum principle (see Ref. 5) to obtain a

new result in the ball ‖u‖L∞ < π
2 (for c > 0 and 0 < a ≤ c2

4 ). Now we take

ü + cu̇ + λu = h(t), (6)

with c > 0 and 0 < λ ≤ c2

4 . We sum up in the following lemmas the results

for (6) which correspond to Lemmas 2.1 and 2.2 for (4).

Lemma 2.3. If h ∈ C(R) ∩ L∞(R) then (6) has a unique solution u ∈

C1(R) satisfying (5) and

‖u̇‖L∞ ≤
1

ν
‖h‖L∞,
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with ν =
√

c2

4 − λ if 0 < λ < c2

4 and ν = ec
4 if λ = c2

4 . Moreover, if

h(t) ≥ 0, ∀t ∈ R, then u(t) ≥ 0, ∀t ∈ R.

Lemma 2.4. If h is in AP (R) then u belongs to AP 1(R).

Remark 2.3. Remarks 2.1 and 2.2 also can be applied in this case.

3. Partial differential equations

In this section we are going to see results of almost periodicity for (1) that

were exposed in Refs. 3 and 4. First we will state some results for bounded

solutions of the telegraph equation (2). We recall in a precise manner the

concept of solution when n = 3. Cases n = 1 and n = 2 are similar.

Definition 3.1. Let c > 0 and f ∈ L∞(R × T
3). A bounded solution of the

problem

Lu + λu := utt − ∆xu + cut + λu = f(t, x) in R × R
3

u(t, x1 + 2π, x2, x3) = u(t, x1, x2 + 2π, x3) = u(t, x1, x2, x3 + 2π) = u(t, x)

is a function u ∈ L∞(R × T
3) satisfying

∫

R×T3

(L∗φ + λφ)u =

∫

R×T3

fφ,

for all φ ∈ D(R × T
3), where L

∗φ = φtt − ∆xφ − cφt, i.e.

Lu + λu = f in D
′(R × T

3), u ∈ L∞(R × T
3). (7)

The key results is the following one, valid for n = 1, 2 or 3.

Lemma 3.1. For each λ ∈
(

0, c2

4

]

and each f ∈ L∞(R×T
n), the problem

(7) has a unique solution u such that

(i) if n = 1 then u ∈ W 1,∞(R × T).

(ii) if n = 2 then u is continuous.

Moreover, if f ≥ 0 a.e. in R × T
n, then u ≥ 0 a.e. in R × T

n.

Remark 3.1. W 1,∞(R × T) denotes the Banach space of functions u ∈

L∞(R × T) which are Lipschitz-continuous, with the norm

‖u‖W 1,∞ = ‖u‖L∞ + [u]Lip,

where [u]Lip is the best Lipschitz constant of u.
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Remark 3.2. When n = 3, the solution u can be discontinuous. An

example is shown in Ref. 4.

Remark 3.3. When n = 4 there is not maximum principle. An example

for λ = c2

4 is shown in Ref. 4 too.

Remark 3.4. The bounded solution of equation (7) satisfies the estimate

‖u‖L∞ ≤
1

λ
‖f‖L∞.

Our final result is the following

Theorem 3.1. Assume that

0 < a ≤
c2

4
, f ∈ AP (R × T

n) and ‖f‖L∞ < a.

Then the equation (1) has a solution u in AP (R×T
n). Moreover it satisfies

‖u‖L∞ < π
2 and it is unique among the almost periodic solutions having this

property.

The proof is similar to the o.d.e. case.

Remark 3.5. If n = 1 then u is more regular, namely, u ∈ W 1,∞(R × T).
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