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Abstract

In this paper we derive a criterion of trivial dynamics based on the theory of

translation arcs. This criterion extends and unifies some results in the literature.

Applications in continuous and discrete models of population dynamics are given.
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1 Introduction

Convergence of all solutions to equilibria is the simplest asymptotic behavior of a
dynamical system. In planar flows, Poincaré-Bendixson’s theory can be used to
derive criteria ensuring this simple behavior. In particular, this dynamics occurs
when there are no closed orbits or poly-cycles. In planar discrete-time dynamical
systems, however, the situation is more delicate since chaotic behavior can appear.
This fact has motivated a broad literature dealing with criteria of global attraction
for planar systems using different tools such as the theory of monotone systems, the
notion of translation arcs developed by Brouwer, Carathéodory’s prime ends just
to mention a few different approaches (see, for instance [1, 3, 4, 6, 11, 14, 16, 22,
26, 28, 37, 38, 39] for some significant examples and applications).
The purpose of the present paper is to establish a new criterion of trivial dynamics
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for planar discrete-time dynamical systems. In this framework, we will say that
there is trivial dynamics if the omega limit set of any bounded orbit (in the future)
is a connected set contained in the fixed point set. After this definition we properly
explain our criterion. Indeed, consider

pn+1 = H(pn), (1.1)

where H : M −→ M is an orientation preserving embedding (not necessarily onto)
and the phase space M is a simply connected two dimensional manifold with bound-
ary ∂M . Assume that every fixed point in the interior of M can be connected with
a fixed point on ∂M through an invariant arc. Under these conditions, H has trivial
dynamics.
The prototype of manifold M is the first quadrant of R2, that is

R2
+ := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}.

The figure below illustrates a hypothetical situation where our result can be applied.

Figure 1: Example where we can use our criterion. The blue arcs are invariant
under H and the black points represent the fixed points of H.

In connection with the related literature, in [6], Campos et al. considered ∆ a
topological disk and H : ∆ −→ ∆ an orientation preserving homeomorphism (H
must be onto) satisfying that the fixed point set is contained in the boundary of
∆. In this situation, they proved that H has trivial dynamics. Notice that we can
recover this result in a more general setting. To be more precise, in our criterion,
we do not need to suppose that H is onto or ∂∆ is invariant or ∆ is compact. This
extension is meaningful in applications, see Sections 3 and 4.
As a direct consequence of our arguments, we are able to deduce criteria of trivial
dynamics when H is defined on whole R2. In this direction if we assume that
H : R2 −→ R2 is an orientation preserving embedding so that there exist disjoint
sets γ1, ..., γn ⊂ R2 satisfying that for all i = 1, ..., n,
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• H(γi) ⊂ γi,

• γi = Φi([0,+∞[) where Φi : [0,+∞[−→ Φi([0,+∞[) ⊂ R2 is a homeomor-
phism with Φi(0) a fixed point of H and limt→∞ |Φi(t)| = +∞,

then H has trivial dynamics.
This result is mainly motivated by Alarcón et al. in [1] and Ortega and Ruiz del
Portal in [28]. In these interesting papers, the authors give a weaker variant. Specif-
ically, they assume that there is a unique set γ1 enjoying the previous conditions
and a unique fixed point for H being locally asymptotically stable (see Theorem 11
in [28]).
The main motivation of our abstract results comes from the study of certain planar
models of population dynamics in both discrete and continuous setting. Firstly we
describe the applications in the discrete models. Mainly, our aim in this context
is to relax some conditions of monotony considered in Liang-Jiang [22], Smith [35],
[37] and Wang-Jiang [39]. Indeed, consider the system{

xn+1 = xng1(xn, yn)
yn+1 = yng2(xn, yn),

(1.2)

where gi is a strictly positive function and the map G : R2
+ −→ R2

+ defined by

G(x, y) = (xg1(x, y), yg2(x, y))

is one-to-one and of class C1. For this system we derive the following:

• Trichotomy in system (1.2) without assuming conditions of monotony.
Roughly speaking, this problem is the following. An usual situation in system
(1.2) is that in each axis, there exists a positive equilibrium, namely V ∗

1 > 0
in the x-axis and V ∗

2 > 0 in the y-axis, attracting all non-zero orbits with
initial condition in such an axis. If we also assume that each orbit is bounded
in the future and the origin is a repeller then given (x0, y0) ∈ Int(R2

+), one of
the following condition holds:

– there exists a fixed point of G in Int(R2
+),

– GN (x0, y0) −→ (V ∗
1 , 0),

– GN (x0, y0) −→ (0, V ∗
2 ).

• Partially competitive maps. In this part of the paper we obtain a criterion
of global attraction for a fixed point p = (p1, p2) ∈ Int(R2

+) assuming only
conditions of monotony in a concrete region. More precisely, assume that p is
the unique fixed point of G in Int(R2

+), every orbit is bounded in the future,
and

G′(x, y) =

(
a11 a12
a21 a22

)
is a competitive matrix (i.e. a11, a22 > 0 and a12, a21 < 0) for all (x, y) ∈
{(x, y) : 0 ≤ x ≤ p1, 0 ≤ y ≤ p2} ∩ Int(R2

+). Then p is a global attractor in
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Int(R2
+) if and only if W s(q) ∩ Int(R2

+) = ∅ for all q fixed point of G on the
boundary of R2

+. Here, we have employed the notation

W s(q) = {z ∈ R2
+ : lim

N−→∞
Gσ(N)(z) = q with {σ(N)} ⊂ N}.

For continuous models, we consider the system of differential equations{
x′
1 = x1f1(t, x1, x2)

x′
2 = x2f2(t, x1, x2),

(1.3)

where each fi : R×R2
+ −→ R is a function of class C1 and T -periodic in time. This

kind of systems has been extensively used to model the evolution of two species
sharing the same environment. We recall that the periodicity in time is introduced
to model day-night or seasonal forcing. Apart from this hypothesis, due to the lim-
itations of the environment, it is natural to assume that system (1.3) is dissipative,
i.e. there exists a constant R > 0 satisfying that for all z0 = (x0, y0) ∈ R2

+, the
solution with this initial condition is defined for all t > 0 and

lim sup
t→∞

∥(x1(t; z0), x2(t; z0))∥ < R.

In this setting, the Poincaré map associated with system (1.3),

P : R2
+ −→ P (R2

+) ⊂ R2
+

P (ξ) = (x1(T ; ξ), x2(T ; ξ)),

is well defined on R2
+ and an orientation preserving embedding. This map will be

the key to link our abstract results with the dynamics of system (1.3). Namely we
must take M = R2

+ and H = P . Observe that, by using the bounded behavior of
the solutions, the concept of trivial dynamics implies that the omega limit set of
any orbit is a connected set contained in the fixed point set of P .
After this discussion, we summarize some aims for system (1.3).

• Global attraction for semi-coexistence states. A fundamental issue in
population dynamics is to give the minimal conditions to ensure the extinction
of a concrete species. In this paper we show that there is a natural connection
between this problem in case of two species and the notion of index on the
convex set R2

+. More precisely, assume that there is intra-species competition
in system (1.3), i.e.

∂f1
∂x1

(t, x1, 0) < 0

∂f2
∂x2

(t, 0, x2) < 0,

and each species has logistic growth with semi-trivial coexistence states (V1(t),
0) and (0, V2(t)) (see P3 in Section 4.1). Then solution (V1(t), 0) is a global



Topological Criteria of Global Attraction with Applications in Population Dynamics 5

attractor in Int(R2
+) if and only if system (1.3) has no T -periodic solutions in

Int(R2
+) and

indexR2
+
(P, (V1(0), 0)) = 1.

Notice that this result is somehow unusual because no conditions on (0, V2(t))
are assumed.

• Attraction of invariant curves. A classical result of monotone systems
says that if (1.3) is competitive together with certain additional conditions,
then the Poincaré map admits an invariant curve γ, the so-called carrying
simplex, joining all its fixed points. Moreover system (1.3) has trivial dy-
namics (see [15, 19, 20, 29, 32]). As a consequence of our results, we show
that the presence of an invariant curve like γ implies, independently of any
property of monotony, the previous simple dynamics for (1.3).

• Coexistence states via permanence in predator prey systems. From
a biological point of view, we understand that system (1.3) is permanent if for
every positive initial data, both species survive in the time. This definition is
translated mathematically assuming that there is a compact set in the interior
of R2

+ such that every solution with positive initial condition enters and remain
in such a compact set. Apart from the biological consequences of this notion,
it is well known that a permanent system always has a coexistence state. An
end of this paper will be to prove that the presence of a coexistence state is
also a sufficient condition in the class of predator prey systems.

The structure of the paper is as follows. In Section 2 we give some definitions
and the main results. In Section 3 we apply our results in discrete models. In
Section 4 we apply our results in continuous models. In the last section we prove
the main results.
Notation:
The usual omega limit set is denoted by ω(z,H) and represents

ω(z,H) = {q : Hσ(n)(z) −→ q where {σ(n)}n∈N ⊂ N is strictly increasing}.
Given H a continuous map, we define Fix(H) as the fixed point set of H.
degR2(F,Ω) denotes Brouwer’s degree of F in the set Ω and indexR2(F, p) (resp.
indexR2

+
(F, p)) denotes the usual index (resp. the usual index on the convex set

R2
+) of F at the point p. See [10] for the definitions and elementary properties of

these notions. In this reference,

degR2(F,Ω) := degR2(F, 0,Ω),

indexR2(F, p) := indexR2(id− F, p),

indexR2
+
(F, p) := indexR2

+
(id− F, p).

It is important to note that the fixed point index considered in this paper is
a particular case of the index in ENR’s considered by Dold [12], see also [18].
Finally, Int(U), ∂U , U are used to denote the interior, boundary and closure of U
respectively. {e1, e2} refers to the usual basis of R2 and ∥ · ∥ denotes the Euclidean
norm.
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2 Embeddings and Topological Linear Graphs

In this section we present the main results of this paper together with some direct
consequences. First of all, we need to introduce some concepts. Given two different
points p, q ∈ R2, we can define the 1-simplex with vertices at p, q as

{tp+ (1− t)q : t ∈ [0, 1]}.

A point {p} will be a 0-simplex. A linear graph is a finite collection K of 0 or 1
simplices in R2 with the following properties:

• K contains all vertices of all 1 simplices of K.

• If σ, τ ∈ K are two different 1 simplices with σ ∩ τ ̸= ∅ then σ ∩ τ is a vertex
of both of them.

Given K a linear graph we will say that the dimension of K is 1 if K contains some
1-simplex and is 0 otherwise. A triplet (A,K, ϕ) is a topological linear graph
if A ⊂ R2, K is a linear graph and ϕ : A −→ |K| is a homeomorphism where |K|
denotes the union of the simplices of K. In such a case we define the topological 1
or 0 simplices of (A,K, ϕ) in a natural way.

A
ϕ

|K|

Figure 2: Example of topological linear graph.

The concept of topological linear graph allows us to introduce a natural notion
of invariance for these sets. Specifically, given g : Ξ ⊂ R2 −→ R2 a continuous
map, we will say that a topological linear graph (A,K, ϕ) is graph invariant
under g if A ⊂ Ξ and every topological simplex of (A,K, ϕ) is invariant under
g. Clearly, if (A,K, ϕ) is graph invariant then A is invariant. Next we give an
example to illustrate that the converse is false. Indeed, consider g : [0, 1] −→ [0, 1] a
continuous map satisfying that Fix(g) = {0, 1

2 , 1}, g(
1
4 ) =

3
4 and g( 34 ) =

1
4 . In this

case A = [0, 1] is invariant but (A,K, ϕ) with K = {[0, 1
2 ], [

1
2 , 1], {0}, {1}, {

1
2}} and

ϕ(x) = x is not graph invariant since the topological 1-simplices are not invariant.
In the following result we study the notion of graph invariance when g is one-to-one.
Notice that this last property does not hold in the previous example.
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Lemma 2.1 Assume that g : Ξ ⊂ R2 −→ R2 is continuous, one-to-one and
(A,K, ϕ) is a topological linear graph with A ⊂ Ξ. Then (A,K, ϕ) is graph in-
variant if and only if the set of vertices of (A,K, ϕ) are fixed points of g and A is
invariant.

Proof. Firstly we observe that by definition of topological linear graph, (A,K, ϕ)
does not have two different 1-simplices with the same vertices. This fact enables us
to conclude that if A is invariant and V ⊂ Fix(g) then the connected components
of A\V are invariant under g where V denotes the set of vertices of (A,K, ϕ). The
proof follows from these comments. �

Let M ⊂ R2 be a simply connected two dimensional manifold with boundary,
(see Pag. 224 in [24] for the precise definition of manifold with boundary). A map
H : M −→ M is an embedding if H is continuous and one-to-one. It is convenient
to stress that H is not necessarily onto. If we also assume that

degR2(H −H(p0), U) = 1 (2.4)

for all U bounded open set with p0 ∈ U and U ⊂ Int(M), we will say that H is
an orientation preserving embedding. Along the paper we use the notation
E(D) for the class of embeddings and E∗(D) for the class of orientation preserving
embeddings. Next we give our precise definitions of attractor in the system

pn+1 = H(pn). (2.5)

Indeed, an equilibrium p = (p1, p2) ∈ R2 of (2.5) is a global attractor in a set
D ⊂ R2 if limN→∞ HN (z) = p for all z ∈ D.
Now we give the main result of this paper.

Theorem 2.1 Let M ⊂ R2 be a simply connected two dimensional manifold with
boundary and consider H : M −→ M so that H ∈ E∗(M). Moreover we assume
that there exists a family of connected and disjoint topological linear graphs (A1,
K1, ϕ1),. . .,(An,Kn, ϕn) with A1, ...,An ⊂ M and satisfying the following proper-
ties:

• Int(M)\(A1∪...∪An) is connected and Fix(H)∩Int(M) ⊂ A1∪A2∪...∪An.

• For all i = 1, ..., n, Ai ∩ ∂M is a non empty subset of Fix(H).

• For all i = 1, ..., n, (Ai,Ki, ϕi) is graph invariant under H.

Then H has trivial dynamics.

Under the conditions of the previous theorem, clearly if the fixed point set is totally
disconnected then for each z ∈ M with {Hn(z) : n ∈ N} bounded,

ω(z,H) = {p} ⊂ Fix(H). (2.6)

Our following aim will be to guarantee (2.6) in a more general setting.
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Theorem 2.2 Let M,H and (A1,K1, ϕ1), ..., (An,Kn, ϕn) be as in Theorem 2.1.
Assume that H ∈ C1(M) and every non isolated fixed point p is partially hyperbolic
i.e. H ′(p) has an eigenvalue with modulus different from 1. Then for each z ∈ M ,
ω(z,H) is a unique fixed point of H, (depending on z).

There are some remarks to be made concerning the previous theorems. We say that
H is of class C1 if there is an open set U ⊃ M and an extension of H defined on
U , namely H̃, such that H̃ is of class C1 in U . The previous results are not true in
higher dimensions, (see Example 3 in [6]). The condition of manifold with boundary
is essential for the validity of the theorems. For instance, if we replace M , Int(M),
∂M in the previous theorems by Ω, Ω, ∂Ω with Ω an open and simply connected
set, the previous results are false. Indeed, consider any continuous flow in the plane
Ψ with the following dynamics, (Γ is a limit cycle and p is an equilibrium)

p

Γ

Figure 3: Dynamics of Ψ.

Define Ω = Int(D̃)\({Ψ(t; q) : t ∈ R} ∪ {p}) where D̃ is the topological disk

limited by Γ and q is any point in Int(D̃)\{p}. Observe that ∂Ω = {Ψ(t; q) : t ∈
R} ∪ {p} ∪ Γ and Ω = D̃. Next take two points r, s such that

• r ∈ Ω,

• s ∈ Γ,

• Ψ(σ(n), r) −→ s for some strictly increasing sequence {σ(n)}N ⊂ N,

• Ψ( 1
n0

, s) ̸= s for some n0 ∈ N.



Topological Criteria of Global Attraction with Applications in Population Dynamics 9

Finally, we consider H = Ψ( 1
n0

, ·) and the topological graph A1 = ({p}, {p}, id).
Clearly, the conditions of Theorem 2.1 hold, and ω(r,H) ̸⊂ Fix(H).
After this example we study the condition used in Theorem 2.1. As mentioned in
the introduction, a possible setting where we can apply the previous theorem is
illustrated in Figure 1. Another interesting situation appears when ∅ ≠ Fix(H) ⊂
∂D. In this case we pick p a fixed point on the boundary of D and apply our
results with the topological linear graph (A,K, ϕ) where A = K = {p} and ϕ = id.
It is important to see that if Fix(H) = ∅ then we can directly deduce that there
is trivial dynamics since in this case, all the orbits are unbounded (and so for all
z ∈ M , ω(z,H) = ∅). This fact for homeomorphisms can be found in [3] and for
embeddings in [26, 27]. Next we collect these comments in the next result.

Corollary 2.1 Let M ⊂ R2 be a simply connected two dimensional manifold with
boundary and consider H : M −→ M with H ∈ E∗(M) and Fix(H) ⊂ ∂M . Under
these conditions, H has trivial dynamics.

The previous result for homeomorphisms and M a topological disk (i.e. a simply
connected and compact two dimensional manifold with boundary) was obtained in
[6]. Notice that in [6], these two conditions are used in the proofs.
To finish this section we present the following result of trivial dynamics.

Theorem 2.3 Suppose that H ∈ E∗(R2) and there exist disjoint sets γ1, ..., γn ⊂ R2

with the following properties:

• for all i = 1, ..., n, H(γi) ⊂ γi,

• for all i = 1, ..., n, γi = Φi([0,+∞[) where Φi : [0,+∞[−→ Φi([0,+∞[) ⊂ R2

is a homeomorphism with Φi(0) ∈ Fix(H) and limt→∞ |Φi(t)| = ∞.

Then, H has trivial dynamics.

3 Applications in discrete models

Throughout this section we apply the previous results to discrete equations. Specifi-
cally we study a trichotomy result for the class of orientation preserving embeddings
and the notion of partially competitive maps. With this last concept, we refer to
maps enjoying properties of monotony in a concrete region.

3.1 Trichotomy for orientation preserving embeddings

As a direct consequence of Theorem 2.1 we can obtain a version of Theorem 5.2 in
[37] for the class of orientation-preserving embeddings. Specifically, we have.

Theorem 3.1 Let J = [0, a] × [0, b] ⊂ R2 with 0 < a, b or J = R2
+ be and let

P : J −→ J be a continuous map with the following properties:

A1 P (0) = 0 and 0 is a repeller, that is, there is δ > 0 such that for all ξ ∈ J\{0},
there exists N := N(ξ) > 0 so that ∥Pn(ξ)∥ > δ for all n > N(ξ).
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A2 Fix(P ) ∩ ∂J = {0, ûe1, v̂e2} with 0 < û < a, 0 < v̂ < b.

A3 P ∈ E∗(J) and for all z ∈ J , {Pn(z) : n ∈ N} is bounded.

Then given z0 ∈ Int(J), one of the following holds:

1. There exists a fixed point E∗ of P in Int(J).

2. Pn(z0) −→ ûe1.

3. Pn(z0) −→ v̂e2.

Proof. Assume that Fix(P ) ∩ Int(J) = ∅, otherwise the proof is complete. After
that apply Corollary 2.1 with M = J and H = P in order to deduce that P has
trivial dynamics. Observe that, by A3, the notion of trivial dynamics says that the
omega limit set of any orbit is a connected set of Fix(P ). �
The previous theorem for competitive systems in the framework of Banach spaces
can be deduced using [38] (also see [11] and [14]). The advantage of our result is
that we do not need any property of monotony. However it must be noted that our
proof only works in the Euclidean plane.

3.2 Partially competitive maps

Consider the system of difference equations{
xn+1 = xng1(xn, yn)
yn+1 = yng2(yn, xn)

(3.7)

where g1, g2 are strictly positive functions and the map G : R2
+ −→ R2

+ defined by
the right-hand side of (3.7) is of class C1.
The aim of this section will be to derive a criterion of global attraction for a fixed
point lying in Int(R2

+). In this direction we can find interesting results developed
by Smith in [37]. Namely if we assume that

i) detG′(x, y) > 0 for all (x, y) ∈ R2
+,

ii) G′(x, y) is a competitive matrix for all (x, y) ∈ Int(R2
+), ( by a competitive

matrix we understand a matrix

A =

(
a11 a12
a21 a22

)
with a11, a22 > 0 and a12, a21 < 0),

iii) for all z ∈ R2
+, {GN (z) : N ∈ N} is bounded,

then system (3.7) has trivial dynamics, (see Proposition 2.1, Theorem 4.2 and
Lemma 4.3 in [37]). Next we prove that the condition ii) can be refined. Specifically,
it is enough to impose ii) in a smaller set.
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Theorem 3.2 Assume that G satisfies i), iii), and the following conditions:

• Fix(G) ∩ Int(R2
+) = p,

• G′(x, y) is a competitive matrix for all (x, y) ∈ C = {(z1, z2) : z1 ≤ p1, z2 ≤
p2} ∩ Int(R2

+), ( p = (p1, p2) ).

Then p is a global attractor in Int(R2
+) if and only if W s(q) ∩ Int(R2

+) = ∅ for all
q ∈ Fix(G) ∩ ∂R2

+.

In the previous result W s(q) is defined as

W s(q) = {z ∈ R2
+ : lim

N−→∞
Gσ(N)(z) = q with {σ(N)}N∈N ⊂ N}.

Proof. Firstly we notice that G is one-to-one in R2
+. For it, we use that G

−1({0}) =
{0} together with the following elementary result.

Lemma 3.1 ( Lemma 2.3.4 in [8] ) Assume that K ⊂ Rn is a compact set and

f : K −→ f(K)

is a local homeomorphism. Then for all y ∈ f(K), the cardinal of f−1(y) is finite. If
f(K) is also connected then there exists a constant r so that the cardinal of f−1(y)
is exactly r for all y ∈ f(K).

At this moment, using i) we know that G ∈ E∗(R2
+).

After that, we prove that C ⊂ G(C). By using that G′(x, y) is a competitive
matrix in C, we deduce that

G1(p1, t) ≥ p1 = G1(p1, p2) 0 ≤ t ≤ p2

G2(t, p2) ≥ p2 = G2(p1, p2) 0 ≤ t ≤ p1.

These inequalities and G1(0, p2) = 0 = G2(p1, 0) imply that C ⊂ G(C). Conse-
quently

G(R2
+\C) ⊂ R2

+\C

and

Fix(G) ∩ Int(R2
+\C) = ∅.

Now we apply Corollary 2.1 to G, R2
+\C, in order to obtain that for all z ∈ R2

+\C,
ω(z,G) is a connected set contained in Fix(G). Notice that this behavior also

holds if z ∈ C and for some j ∈ N, Gj(z) ∈ R2
+\C. Finally we take z ∈ C so that

Gj(z) ∈ C for all j ∈ N. In such a case, ω(z,G) is a fixed point by applying
Proposition 2.1, Theorem 4.2, Lemma 4.3 in [37]. The proof follows from the
previous comments. �
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4 Applications in Continuous Models

The evolution of two species sharing the same environment can be modelled by a
system of differential equations of the type{

x′
1 = x1f1(t, x1, x2)

x′
2 = x2f2(t, x1, x2),

(4.8)

where fi : R × R2
+ −→ R is of class C1 and T -periodic in time. In our model,

x(t; ξ) = (x1(t; ξ), x2(t; ξ)) denotes the maximal solution of (4.8) with x(0; ξ) = ξ
and represents the size of both populations at the instant t. As mentioned in the
introduction, due to the limitations of the environment, the solutions of (4.8) are
bounded in the future in an uniform way. More precisely, we assume that system
(4.8) is dissipative, i.e. there exists a constant R > 0 so that for all z0 = (x0, y0) ∈
R2

+, the solution with this initial condition is defined for all t > 0 and

lim sup
t→∞

∥x(t; z0))∥ < R.

To link the dynamics of (4.8) with our abstract results, we will use the Poincaré
map,

P : R2
+ −→ P (R2

+) ⊂ R2
+

P (ξ) = x(T ; ξ).

It is well known that P is an orientation preserving embedding, the fixed points of
P correspond to the periodic solutions of (4.8), and from the expression of system
(4.8) and a straightforward computation, P satisfies that

P (ξ1, ξ2) = (ξ1e
∫ T
0

f1(t,x(t;ξ))dt, ξ2e
∫ T
0

f2(t,x(t;ξ))dt). (4.9)

Notice that if P enjoys the conditions of Theorem 2.2 then every solution of (4.8)
is asymptotic T -periodic, i.e., for all ξ ∈ Int(R2

+), there is a T -periodic solution
ϕ(t) such that x(t; ξ) − ϕ(t) −→ 0 as t −→ ∞. Moreover, observe that if x(t, ξ) =
(x1(t, ξ), x2(t, ξ)) is a T -periodic solution of (4.8) and xi(t, ξ) ̸= 0 then∫ T

0

fi(t, x(t, ξ))dt = 0. (4.10)

4.1 Global attraction for semi-coexistence states

The aim of this subsection is to give the minima conditions ensuring the extinction
of a concrete species in (4.8) for all initial condition lying in the interior of R2

+. For
it, we assume the following properties for our system:

P1 System (4.8) is dissipative.

P2 There are no T -periodic solutions in Int(R2
+).
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P3 Logistic growth on the axes. For all i ∈ {1, 2}, the scalar equation

ẋi = xifi(t, xiei), (4.11)

has a unique positive T-periodic solution Vi(t) and

lim
t→∞

[xi(t)− Vi(t)] = 0

for xi(t) > 0 any positive solution of (4.11).

P4 The origin is a repeller, (see A1 in Theorem 3.1).

By Theorem 3.1, we can deduce that if system (4.8) satisfies P1-P4 then for all
ξ ∈ Int(R2

+) either
lim
t→∞

∥x(t, ξ),−V1(t)e1∥ = 0 or

lim
t→∞

∥x(t, ξ)− V2(t)e2∥ = 0.

In view of this fact, it arises the following question: under the conditions P1-P4, is
there an index i ∈ {1, 2} so that for all ξ ∈ Int(R2

+), we have that limt→∞ ∥x(t, ξ)−
Vi(t)ei∥ = 0? If we only assume P1-P4, the answer is negative. For instance, it is
not hard to construct an autonomous system of type (4.8) with the following phase
portrait.

Figure 4: System without a global attractor.

However, the previous example is very pathological. In fact, if we assume that
there is intra-species competition, i.e.

∂f1
∂x1

(t, x1, 0) < 0,
∂f2
∂x2

(t, 0, x2) < 0, (4.12)

then we will prove that our system has a global attractor in Int(R2
+). Notice that

this condition together with P3 imply P4. This is a direct consequence of

exp(

∫ T

0

f1(t, 0)dt), exp(

∫ T

0

f2(t, 0)dt) > 1, (4.13)
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(see (4.10) and P3).

Theorem 4.1 Assume that system (4.8) satisfies the properties P1-P3 and (4.12).
Then there is a global attractor in Int(R2

+). Moreover, Vi(t)ei is a global attractor
(resp. global repeller) in Int(R2

+) if and only if indexR2
+
(P, p∗i ei) = 1 (resp. 0),

where p∗i = Vi(0).

Proof. From expression (4.9), it is easy to prove that the Floquet multipliers at
p∗1e1 (resp. p∗2e2) are

e
∫ T
0

f2(t,V1(t)e1)dt (resp. e
∫ T
0

f1(t,V2(t)e2)dt)

e
∫ T
0

∂f1
∂x1

(t,V1(t)e1)dt (resp. e
∫ T
0

∂f2
∂x2

(t,V2(t)e2)dt).

Using (4.12), we have that the second Floquet multiplier is positive and strictly
less than 1. In this situation, by Theorem 3.1 in [31], we can characterize the local
stability via the index on R2

+. Namely, we know that

indexR2
+
(P, p∗i ei) ∈ {0, 1}

and in addition, either indexR2
+
(P, p∗i ei) = 0 if p∗i ei is a local repeller in Int(R2

+) or

indexR2
+
(P, p∗i ei) = 1 if p∗i ei is a local attractor in Int(R2

+). Next we introduce an

auxiliar map P̂ defined as

P̂ (ξ1, ξ2) = (ξ1e
∫ T
0

f1(t,x(t,|ξ|))dt, ξ2e
∫ T
0

f2(t,x(t,|ξ|))dt) (4.14)

where |ξ| = (|ξ1|, |ξ2|). Observe that P̂ corresponds with the Poincaré map of the
system

ẋi = xi fi(t, |x1|, |x2|) i = 1, 2. (4.15)

As a consequence of Remark 3.1 in [31] we have that, in this situation,

indexR2
+
(P, p∗i ei) = 0 ⇐⇒ indexR2(P̂ , p∗i ei) = −1

and
indexR2

+
(P, p∗1e1) = 1 ⇐⇒ indexR2(P̂ , p∗i ei) = 1.

Moreover, it is clear that P̂ commutes with symmetries with respect to the axes.
More precisely

P̂ ◦ si = si ◦ P̂ (4.16)

where s1(ξ1, ξ2) = (−ξ1, ξ2) and s2(ξ1, ξ2) = (ξ1,−ξ2). At this moment it is impor-
tant to collect all the information. Specifically, we have that

indexR2(P̂ , p∗i ei) ∈ {−1, 1}

and in addition, either indexR2(P̂ , p∗i ei) = 1 if p∗i ei is a local attractor in Int(R2
+)

for P̂ (and so, a local attractor for P in Int(R2
+)) or indexR2(P̂ , p∗i ei) = −1 if p∗i ei

is a local repeller for P̂ .
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Once these properties have been shown, we continue with the proof. By Theorem
3.1, it is enough to prove that

indexR2(P̂ , p∗1e1) ̸= indexR2(P̂ , p∗2e2). (4.17)

Now we focus our attention on (4.17). Indeed, firstly we notice that, by (4.15) the

fixed points of P̂ are ±p∗1e1, ±p∗2e2, 0 and they satisfy

indexR2(P̂ , p∗1e1) = indexR2(P̂ ,−p∗1e1)

indexR2(P̂ , p∗2e2) = indexR2(P̂ ,−p∗2e2).

This last property is a consequence of (4.16). After that, using that system (4.8) is
dissipative and Browder’s theorem ( see [2]), we can prove that there exists S > 0

large enough such that every fixed point of P̂ is contained in B(0, S), the ball with
center at the origin and radius S, and

degR2(id− P̂ , B(0, S)) = 1

(see step 1 in the proof of the main theorem in [30]). Moreover, using (4.13), we
can check that

indexR2(P̂ , (0, 0)) = 1

(this argument can be found in step 2 of the main theorem in [30]). Finally, an
excision argument enables us to conclude that

degR2(id− P̂ , B(0, S)) = indexR2(P̂ , 0) + 2indexR2(P̂ , p∗1e1) + 2indexR2(P̂ , p∗2e2)

This equality clearly implies (4.17). �

Remark 4.1 Notice that in the previous theorem solutions V1(t)e1 or V2(t)e2 can
be partially hyperbolic.

4.2 Attraction of invariant curves

Linking fixed points through invariant arcs is a typical behavior of the Poincaré map
associated with (4.8) in the competitive case. This phenomenon can be deduced
by applying the notion of carrying simplex in two dimensions, see [19], [20], [29],
[32]. The aim of this section will be to give some dynamical consequences in (4.8)
when the Poincaré map has an invariant curve joining all its fixed points. For it, we
introduce the following definition. A curve γ is a CS for system (4.8) if it satisfies
the next properties:

CS1 γ : [0, 1] −→ γ([0, 1]) ⊂ R2
+\{0} is a homeomorphism with γ(]0, 1[) ⊂ Int(R2

+),

CS2 γ([0, 1]) is invariant under P ,

CS3 Fix(P ) ∩ Int(R2
+) ⊂ γ([0, 1]),
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CS4 Fix(P ) ∩ {(x1, 0) : x1 > 0} = γ(0) and Fix(P ) ∩ {(0, x2) : x2 > 0} = γ(1).

Theorem 4.2 Assume that system (4.8) is dissipative and every non trivial fixed
point of P is partially hyperbolic. If there exists a CS for system (4.8) then for all
z ∈ R2

+, ω(z, P ) is a fixed point of P .

Remark 4.2 Notice that if

∂f1
∂x1

(t, x1, x2) +
∂f2
∂x2

(t, x1, x2) < 0

then every fixed point of P is partially hyperbolic. On the other hand, if we assume

that ∂fi
∂xj

(t, x1, x2) < 0,
∫ T

0
fi(t, 0)dt > 0 for all i, j = 1, 2, and system (4.8) is

dissipative then (4.8) has a CS, (see [29]).

Proof. For the proof we distinguish two cases:

• Case 1: For all t ∈ [0, 1], γ(t) is a fixed point of P .
In this case we can prove that P (D1) = D1 where D1 is the bounded connected
component of Int(R2

+)\γ([0, 1]). For it, we notice that the boundary of D1

is invariant under P . Now it is also clear that P (Int(R2
+)\(D1 ∪ γ([0, 1]))) ⊂

Int(R2
+)\(D1 ∪ γ([0, 1])).

D1

D2 = Int(R2
+)\D1 ∪ γ([0, 1])

Figure 5: CS in case 1.

Finally we separately apply Theorem 2.2 to D1 and D2 with topological linear
graph any fixed point, for instance, (γ( 12 ), γ(

1
2 ), id).

• Case 2: There exists ]s0, s1[⊂ [0, 1] such that P (γ(t)) ̸= γ(t) for all t ∈]s0, s1[.
In this case we consider the topological linear graphs (A1,K1, γ) and (A2,K2, γ)
with A1 = γ([0, s0]) and K1 = {{s0}, {s1}, [s0, s1]}, A2 = γ([s1, 1]) and
K2 = {{s1}, {1}, [s1, 1]}.
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A1

A2

Figure 6: CS in case 2

Finally we apply Theorem 2.2.

�

4.3 Predator Prey Systems

The aim of this subsection is to characterize the presence of a T -periodic solution
in Int(R2

+) via permanence in predator prey systems. In fact, for this interaction,
we are going to prove that if our system is not permanent then there is a global
attractor on the boundary of R2

+. Next we fix the pertinent definitions.

Definition 4.1 System (4.8) is said to be permanent if it is possible to find two
constants 0 < σ < σ such that given initial conditions x0 > 0, y0 > 0 there exists
T ∗ = T ∗(x0, y0) with

σ > x1(t, (x0, y0)) > σ

σ > x2(t, (x0, y0)) > σ

for all t > T ∗. Notice that the numbers σ and σ are independent of the initial
conditions.

Observe that with the previous notion we guarantee that both species survive in
the future.

In order to model the predator prey interaction we impose the following condi-
tions in (4.8) (in our case, x1 is predator and x2 is prey).

1) f1(t, ·, x2) and f2(t, x1, ·) are strictly decreasing.

2) f1(t, x1, ·) is strictly increasing.

3) f2(t, ·, x2) is strictly decreasing.
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4) For i = 1, 2, the scalar equation

x′
i = xifi(t, xiei) (4.18)

has a strictly positive T periodic solution Vi(t) > 0 and attracts all positive
solutions of (4.18).

5) For all M > 0,
x′
1 = x1f1(t, x1,M) (4.19)

has a nonnegative T periodic solution attracting all positive solutions of (4.19).

The next result collects the main aim of this section.

Theorem 4.3 Assume that system (4.8) satisfies 1)-5). Then

i) if
∫ T

0
f2(t, V1(t), 0)dt > 0, the system is permanent,

ii) if
∫ T

0
f2(t, V1(t), 0)dt ≤ 0, the solution V1(t)e1 is a global attractor in Int(R2

+).

Proof. Firstly, we prove that system (4.8) is dissipative. Indeed, consider (ξ1, ξ2) ∈
Int(R2

+). Using 3) we deduce that

x′
2(t; (ξ1, ξ2)) ≤ x2(t; (ξ1, ξ2))f2(t, 0, x2(t; (ξ1, ξ2))).

By this inequality and 4), there exists T1 > 0 large enough, so that for t > T1,

x2(t, (ξ1, ξ2)) ≤ V2(t) + 1 < M̃ . After that, by 2),

x′
1(t; (ξ1, ξ2)) ≤ x1(t; (ξ1, ξ2))f1(t, x1(t; (ξ1, ξ2)), M̃)

for all t > T1. Finally, we use 5) to obtain that there exists T2 > 0 such that
x1(t, (ξ1, ξ2)) ≤ V

1 M̃
(t) + 1 for all t > T2, where V

1 M̃
(t) is the solution considered

in 5) with constant M̃ . Now it is clear that our system is dissipative.

Proof of i). Clearly, using that Vi(t)ei is a T -periodic solution of (4.8),∫ T

0

fi(t, Vi(t)ei)dt = 0 for i = 1, 2.

These equalities and 1) allow us to conclude that∫ T

0

fi(t, 0, 0)dt > 0 for i = 1, 2. (4.20)

Now, by (4.20) and 2) we have that∫ T

0

f1(t, 0, V2(t))dt > 0. (4.21)

At this point we know that the Poincaré map associated with system (4.8) has an
expression of the type

P (x, y) = (xg1(x, y), yg2(x, y))



Topological Criteria of Global Attraction with Applications in Population Dynamics 19

with gi > 0, ( see ( 4.9). On the boundary of R2
+, P has exactly three fixed points,

namely (0, 0), (V1(0), 0) and (0, V2(0)), and these fixed points satisfy that

g1(0, 0), g2(0, 0) > 1, (see (4.20))

g1(0, V2(0)) > 1, (see (4.21))

Also, by assumption,
g2(V1(0), 0) > 1.

Moreover by 4), we have that V1(0)e1 and V2(0)e2 attract all positive solutions on
the axes. On the other hand, as our system is dissipative, there exists a constant
R > 0 such that

lim sup
n

∥Pn(ξ)∥ ≤ R

for all ξ ∈ R2
+. Putting all the information together and using a standard argument

we conclude that our system is permanent. This can be done by applying results
in [17] with Lyapunov functions π1(x, y) = x and π2(x, y) = y or see [31].
Proof of ii). First of all we prove that system (4.8) has no T -periodic solutions in
Int(R2

+). Assume by contradiction that (W1(t),W2(t)) is a T -periodic solution of
(4.8) in Int(R2

+). In this case, by 2),

W ′
1(t) = W1(t)f1(t,W1(t),W2(t)) > W1(t)f1(t,W1(t), 0)

and so W1(t) > V1(t). Next we apply condition 3) and obtain that

0 =

∫ T

0

f2(t,W1(t),W2(t))dt <

∫ T

0

f2(t, V1(t), 0)dt ≤ 0.

(In the first equality we use that (W1(t),W2(t)) is T -periodic solution and in the
second inequality we use ii)). This contradiction implies that there are no T -periodic
solutions in Int(R2

+). In the previous statement we have already proved that∫ T

0

f1(t, 0, V2(t))dt > 0.

Thus, the solution V2(t)e2 is always a local repeller. Observe that the inequalities
(4.20) also hold and so the origin is a local repeller. Finally, by Theorem 3.1 we
conclude that V1(t)e1 is a global attractor in Int(R2

+). �

As a consequence of the previous theorem we obtain the following result.

Corollary 4.1 Under conditions 1)-5) for system (4.8) the following statements
are equivalent:

• The system has a T -periodic solution in Int(R2
+).

• The system is permanent.

The previous results extend some of those in [5],[9],[13],[28].
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5 Proofs

This section is devoted to prove the theorems of Section 2. Firstly we recall some
known results.
Given h ∈ E(Ω) for Ω ⊂ R2 a simply connected and open set in the plane, we will
say that an arc α with end points at p and q is a translation arc if

• h(p) = q.

• h(α\{q}) ∩ (α\{q}) = ∅.

This notion is important in dynamical systems by the following result.

Lemma 5.1 Assume that h ∈ E∗(Ω) and there exists a translation arc α with
hn(α) ∩ α ̸= ∅ for some n ≥ 2. Then there exists a Jordan curve Γ ⊂ Ω such that

degR2(id− h,DΓ) = 1

where DΓ is the interior of the domain limited by Γ.

In the proof of our results we will use the following criterion on construction of
translation arcs.

Lemma 5.2 Assume that h ∈ E(Ω) and ∆ is a topological disk in the plane such
that ∆ and h(∆) lie in the same component of Ω\Fix(h). In addition, assume that
h(∆)∩∆ = ∅. Then, given ξ1, ..., ξn ∈ ∆, there exists a translation arc α contained
in Ω and passing through these points.

The previous results can be found in [27] and [4]. Next we proceed with the proofs.
Proof of Theorem 2.1. Take z ∈ M so that {Hn(z) : n ∈ N} is bounded.
Firstly we prove that ω(z,H) is contained in Fix(H). We distinguish three different
situations:

• z ∈ Int(M)\(A1 ∪ ... ∪ An). Assume, by contradiction, that there is p ∈
ω(z,H) such that p ̸∈ Fix(H). Under this condition we can take a topological
disk D1 satisfying that

– p ∈ Int(D1),

– D1 ∩H(D1 ∩M) = ∅,
– D1 ∩ (M\A1 ∪ ... ∪ An) has a finite number of connected components.

This fact is clear if p ∈ ∂M by using the notion of manifold with boundary.
In the case p ∈ Int(M)\A1 ∪ ...∪An, the existence of D1 is clear. Finally for
the case p ∈ A1 ∪ ... ∪ An, firstly we observe that p belongs to the interior of
a 1-simplex since the vertices of (A1,Ki, ϕi) are fixed points of H. Next we
apply Theorem 8 in [25] in order to obtain a homeomorphism Ψ : R2 −→ R2

so that Ψ(Ai) = |Ki|. After that we define Ψ−1(B1) = D1 where B1 is a
ball centered at Ψ(p) satisfying that B1\Ψ(Ai) has exactly two connected
components. We illustrate the previous argument with the next figure.
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Ψ−1(B1) = D1 Ψ

B1

Figure 7: Illustration of Theorem 8 in [25].

Notice that this argument is genuinely two dimensional since in three dimen-
sions we can have wild arcs, (see Section 4 in [25]).
After this discussion, by using that p ∈ ω(z,H), z ∈ Int(M)\(A1 ∪ ... ∪ An)
and Int(M)\(A1 ∪ ... ∪ An) is positively invariant, we can take a connected
component K1 of D1\(A1 ∪ ... ∪ An) so that Hn1(z),Hn2(z) ∈ Int(K1)
with n2 > n1. Here we have used that the number of connected com-
ponents is finite. At this moment we consider a closed topological disk
D̃1 ⊂ K1 such that Hn1(z),Hn2(z) ∈ D̃1. The construction of D̃1 is as
follows. Using that Int(K1) is arcwise connected we can take an arc β joining
Hn1(z),Hn2(z) such that β ⊂ Int(K1). Finally we inflate β without getting
out from Int(K1). Once this reasoning has been done, we apply Lemma 5.2

to D̃1, Int(M)\(A1 ∪ ... ∪ An) and H, in order to conclude that there ex-
ists α ⊂ Int(M)\(A1 ∪ ... ∪ An) a translation arc passing through Hn1(z)
and Hn2(z), (it is important to realize that, by standard topological argu-
ments, Int(M)\(A1 ∪ ... ∪ An) is simply connected). This fact is a contra-
diction. Indeed we know in advance that H does not have any fixed point
in Int(M)\(A1 ∪ ... ∪ An). On the other hand, Hn2−n1(α) ∩ α ̸= ∅ and by
Lemma 5.1, H has a fixed point in Int(M)\(A1∪ ...∪An). This contradiction
implies that for all z ∈ Int(M)\(A1 ∪ ... ∪ An), ω(z,H) ⊂ Fix(H).

• z ∈ ∂M . Assume by contradiction that ω(z,H) ̸⊂ Fix(H). Under this
condition, we see that z ̸∈ Fix(H) and so z ̸∈ A1 ∪ ... ∪ An, (see second
condition of the theorem). Consequently we realize that HN (z) ̸∈ A1∪...∪An

since A1∪ ...∪An is invariant. After this discussion, clearly, if for some n ∈ N,
Hn(z) ∈ Int(M), the conclusion is clear by the previous reasoning. Therefore
we have to study the case when Hn(z) ∈ ∂M for all n ∈ N. Indeed, take p ∈
ω(z,H) and assume that H(p) ̸= p. In this setting, we can take a topological
disk D1 such that D1 ∩ H(D1 ∩ M) = ∅, D1 ∩ Int(M) is simply connected
and p ∈ IntD1. Clearly, using that p ∈ ω(z,H), there exist q ∈ D1 ∩ Int(M)
and n0 with Hn0(q) ∈ D1 ∩ Int(M). We reason as above in order to obtain a
contradiction.

• Assume now that z ∈ Ai. In this case we have that ω(z,H) ⊂ Fix(H) by
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using the definition of graph invariant together with some elementary notions
of dynamics in R.

To finish the proof of this theorem we use Proposition 8 Chapter 3 in [27] ensuring
that the omega limit set is connected provided {Hn(z) : n ∈ N} is bounded. �
Proof of Theorem 2.2. The proof of this theorem is a direct consequence of the
previous proof together with Proposition 3 in [7]. �
Proof of Theorem 2.3. Again, take a point z ∈ R2 such that {Hn(z) : n ∈
N} is bounded. Assume by contradiction that there is q ∈ R2\Fix(H) so that
q ∈ ω(z,H). In this situation we can take a topological disk D satisfying that
q ∈ D and D\(γ1 ∪ ... ∪ γn) has at most two connected components. Indeed, if
q ̸∈ γ1 ∪ ... ∪ γn the construction is clear. Otherwise the construction of D is as
follows. Assume that q ∈ γj . Consequently there exists t0 > 0 with Φj(t0) = q. By
Theorem 8 in [25] we can take Ψ : R2 −→ R2 homeomorphism so that

Ψ({Φj(t) : t ∈ [0, 2t0]}) = {(x, 0) : x ∈ [0, T ]}.

It is clear that limt→∞ |Ψ ◦Φj(t)| = ∞ (Ψ is a homeomorphism) and therefore, we
can take δ > 0 such that

B = B(Ψ(q), δ) ̸∋ Ψ(Φj(t)) for all t ≥ 2t0

and B(Ψ(q), δ)\Ψ({Φj(t) : t ∈ [0, 2t0]}) has two connected components. Finally
consider D = Ψ−1(B). The remainder of the proof is the same as the proof of
Theorem 2.1. �
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[20] J. Jiang, J. Mierczyński, Y. Wang, Smoothness of the carrying simplex for
discrete-time competitive dynamical systems: a characterization of neat em-
bedding, J. Differential Equations 246 (2009), 1623-1672.

[21] M. R. S. Kulenovic, O. Merino, A global attractivity result for maps with
invariant boxes, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), 97-110.

[22] X. Liang, J. Jiang, On the finite-dimensional dynamical systems with limited
competition, Trans. Amer. Math. Soc. 354 (2002), 3535-3554.
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