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Abstract

In this paper twist maps (θ1, r1) = f(θ, r) are considered with no assumption on the periodic-
ity of the map in θ. Under appropriate assumptions the existence of infinitely many bounded
(in r) complete orbits is proven. In particular our results apply to the class of maps

θ1 = θ + r, r1 = r + λ(sinω1(θ + r) + sinω2(θ + r)),

where λ > 0 and no arithmetic condition has to be imposed on ω1/ω2.

1 Introduction

By now the mathematical investigation of twist maps has a long tradition. Originating in the work
of Poincaré, a major relevance of these maps lies in their relation to continuous time dynamical
systems models. From the very beginning of the theory the main focus has been in maps f =
f(θ, r) : R × [a, b] → R2 that are periodic in the θ-variable. In this case f should be properly
viewed as the lift of the actual map to the universal covering of the cylinder. The topic of periodic
twist maps turned out to be very fruitful, leading in particular to the development of KAM theory
and Aubry-Mather theory for Hamiltonian systems; see [4, 2] for an overview and many relevant
references. There are also some papers dealing with twist maps which are quasi-periodic in the
angle (see in particular [5, 11, 7]). In the present paper we consider general twist maps f = f(θ, r)
on the plane without imposing any assumption of periodicity or almost periodicity in the θ-variable.
To illustrate the type of results which we obtain, we remain for a moment in the quasi-periodic
context and consider the family of maps

θ1 = θ + r, r1 = r + λ(sin ω1(θ + r) + sin ω2(θ + r)), (1.1)

where λ, ω1, ω2 > 0. The KAM method is applicable when λ is small and ω1/ω2 satisfies a dio-
phantine condition. It leads to the existence of invariant curves and, as a consequence, to the
boundedness of all orbits. In contrast our results apply to arbitrary parameters λ, ω1, and ω2, and
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they lead to a more modest conclusion: The existence of infinitely many complete orbits (θn, rn)n∈Z
which are bounded and which have finite upper and lower rotation numbers,

sup
n∈Z

|rn| < ∞, −∞ < lim inf
|n|→∞

θn

n
≤ lim sup

|n|→∞

θn

n
< ∞.

Our original motivation to study aperiodic twist maps was due to the so-called Littlewood problem
for oscillatory differential equations. The basic question there is to decide on the boundedness or
unboundedness of the solutions to

ẍ + F (x) = p(t), (1.2)

where F is a nonlinear function satisfying F (x) → ±∞ as x → ±∞ and the forcing p is bounded.
Since the first definitive answer by Morris [8] for F (x) = 2x3 and periodic p (in which case all
solutions are bounded), the method of proof has been to describe the dynamics of the differential
equation by means of a certain twist map f . This is followed by the application of a suitable
invariant curve theorem. After Morris’ result there were many others for the periodic case and
also some in the quasi-periodic case with diophantine frequencies [5]. If the forcing p is only
bounded, Littlewood himself already noticed in [6] that unbounded motions could appear even for
the nonlinearity F (x) = 2x3. However for such p bounded and unbounded motions must coexist,
as was recently shown in [10, 9]. In the aperiodic case it is still possible to associate a twist map
to equation (1.2). Assume that we are given a solution satisfying x(τ) = 0 and ẋ(τ) = v with
v > 0 large enough. Then we compute the next positive zero τ1 > τ such that x(τ1) = 0 and
ẋ(τ1) = v1 > 0 and consider the map (τ, v) 7→ (τ1, v1). The role of the angle θ is played by the
variable τ and, if the forcing p is not periodic, then also τ will not be periodic. Therefore it seems
reasonable to expect that the study of general twist maps should be helpful in understanding the
dynamics of the non-autonomous equation (1.2). The results of this paper are not directly useful
for (1.2), and we preferred to consider the quasi-periodic map (1.1) as a first application. We plan
to give some further applications, including ones the Littlewood problem, in a follow-up to this
paper.

We finish this introduction with an outline of the main contents. In Section 2 we consider
a Lagrangian formulation and work only with the sequence of angles (θn)n∈Z. They satisfy the
equations

∂2h(θn−1, θn) + ∂1h(θn, θn+1) = 0, n ∈ Z,

where h is a generating function. Assuming that h grows quadratically we prove the existence of
solutions with bounded upper and lower rotation numbers. This is reminiscent of Aubry-Mather
theory but the map h does not have any periodicity property, which leads to some complications.
The rest of the paper is devoted to maps of the form

θ1 = θ + r + F (θ, r), r1 = r + G(θ, r). (1.3)

In Section 3 the theorem for quadratic generating functions is applied to (1.3), in the case where
(1.3) leaves invariant the boundary of the strip where it is defined. In Section 4 the latter hypothesis
is dropped. Then it is not enough to assume that f is exact symplectic, in the sense that r1dθ1 −
rdθ = dĥ for some C2-function ĥ = ĥ(θ, r): Even if f is periodic in θ, in order that f be exact
on the cylinder one additionally needs that ĥ is periodic in θ. Having this observation in mind,
we introduce a natural generalized notion of ‘exact symplectic’ in Definition 4.1. Under the sole
(technical) restriction that |∂rF | ≤ 1

43
, it is then shown in Theorem 4.3 that (1.3) admits infinitely

many complete orbits. In addition, the r-component of these orbits can be controlled, as is the case
for the upper and lower rotation numbers of the orbits. Section 4 also contains an easy application
of Theorem 4.3 to (1.1), leading to the results mentioned at the beginning of this introduction.
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2 Complete orbits for quadratic generating functions

The main result of this section is about the existence of a complete orbit under the assumption
that the generating function h = h(θ, θ′) on the plane grows quadratically. Although no periodicity
condition is imposed on h, we will use θ and θ′ to denote the variables.

Theorem 2.1 Let ∆ > δ > 0. Suppose that h : Ω = {(θ, θ′) ∈ R2 : δ ≤ θ′ − θ ≤ ∆} → R is C1

and such that
α(θ′ − θ)2 ≤ h(θ, θ′) ≤ α(θ′ − θ)2, (θ, θ′) ∈ Ω, (2.1)

for some constants α ≥ α > 0 so that α < 3
2
α. Then there is a constant σ∗∗ ≥ 1 (depending only

on α/α ∈ [1, 3
2
[) with the following property. If

σ∗∗δ < σ−1
∗∗ ∆, (2.2)

then there exists (θ∗n)n∈Z such that |θ∗0| ≤ ∆, δ ≤ θ∗n+1 − θ∗n ≤ ∆ for n ∈ Z, and

∂2h(θ∗n−1, θ
∗
n) + ∂1h(θ∗n, θ

∗
n+1) = 0, n ∈ Z.

Moreover,

δ ≤ lim inf
n→∞

θ∗n
n
≤ lim sup

n→∞

θ∗n
n
≤ ∆, δ ≤ lim inf

n→−∞
θ∗n
n
≤ lim sup

n→−∞

θ∗n
n
≤ ∆. (2.3)

Before we go on to the proof of Theorem 2.1, we include an example.

Example 2.2 Consider

h(θ, θ′) =
1

2
(θ − θ′)2 − V (θ)

for some potential V ∈ C1(R) ∩ L∞(R) such that ‖V ‖∞ ≤ 1
42

. Defining α = 1
2

+ ‖V ‖∞ and
α = 1

2
− ‖V ‖∞, then α/α ∈ [1, 11

10
]. Therefore Corollary 2.8 below shows that σ∗∗ = 10 can be

taken in (2.2). Thus, for instance choosing δ = 1 and ∆ = 101, it is found that the difference
equation (discretization of a Newtonian equation)

θn+1 − 2θn + θn−1 = −V ′(θn), n ∈ Z,

has a solution (θ∗n)n∈Z ⊂ R such that (2.3) is satisfied for δ = 1 and ∆ = 101, |θ∗0| ≤ 101, and
1 ≤ θ∗n+1 − θ∗n ≤ 101 for n ∈ Z.

Returning to the proof of Theorem 2.1, it is split into several parts. First we need to construct
(θ∗n)n∈Z on finite segments −N ≤ n ≤ N . To do this, for fixed A > 0, N ∈ N, and ∆ > δ > 0, put

Σ(N) =
{

Θ = (θn)−N≤n≤N : θ±N = ±A, δ ≤ θn+1 − θn ≤ ∆ for n = −N, . . . , N − 1
}

.

Since later A = AN will be chosen to depend on N , the dependence of Σ(N) on A is suppressed in
our notation.

Lemma 2.3 If δ ≤ A
N
≤ ∆, then Σ(N) 6= ∅, and Σ(N) ⊂ R2N+1 is compact.
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Proof : Defining Θ̂ by θ̂n = −A+ A
N

(n+N), we see that Θ̂ ∈ Σ(N), due to θ̂n+1− θ̂n = A
N
∈ [δ, ∆],

and in particular, Σ(N) 6= ∅. Also Σ(N) ⊂ R2N+1 is closed and bounded. For the latter, we have

(N + n)δ − A ≤ θn ≤ (N + n)∆− A for −N ≤ n ≤ N,

as follows from θ−N = −A and δ ≤ θn+1 − θn ≤ ∆. Hence Σ(N) ⊂ [−A, 2N∆− A]2N+1. 2

If Θ = (θn)−N≤n≤N ∈ Σ(N), then by the assumptions of Theorem 2.1, h(θn, θn+1) is defined for
−N ≤ n ≤ N − 1. Put

S(Θ) =
N−1∑

n=−N

h(θn, θn+1), Θ = (θn)−N≤n≤N ∈ Σ(N). (2.4)

Since S : Σ(N) → R is continuous, there exists a minimizer, i.e.,

S(Θ(N)) = min
Θ∈Σ(N)

S(Θ) (2.5)

for a suitable Θ(N) = (θ
(N)
n )−N≤n≤N ∈ Σ(N), which henceforth we consider to be fixed.

First we need to derive some N -independent estimates for the minimizers, along the lines of [9,
Lemmas 6.1.& 6.2].

Lemma 2.4 Suppose that α < 3
2
α. There exists a constant σ∗ = σ∗(α/α) ≥ 1 such that for all

N ∈ N,

σ−1
∗ (θ(N)

n − θ
(N)
n−1) ≤ θ

(N)
n+1 − θ(N)

n ≤ σ∗(θ(N)
n − θ

(N)
n−1), −N + 1 ≤ n ≤ N − 1.

Proof : First we derive the upper bound. Write θ
(N)
n −θ

(N)
n−1 = L and θ

(N)
n+1−θ

(N)
n = σL for L, σ > 0.

We consider
Θ̃ = (θ̃k)−N≤k≤N =

(
θ

(N)
−N , . . . , θ

(N)
n−1, s, θ

(N)
n+1, . . . , θ

(N)
N

)
,

where s = 1
2
(θ

(N)
n+1+θ

(N)
n−1). Then θ̃±N = θ

(N)
±N = ±A and s−θ

(N)
n−1 = θ

(N)
n+1−s = 1

2
(θ

(N)
n+1−θ

(N)
n−1) ∈ [δ, ∆],

due to θ
(N)
n+1 − θ

(N)
n , θ

(N)
n − θ

(N)
n−1 ∈ [δ, ∆]. Therefore Θ̃ ∈ Σ(N) in conjunction with (2.5) leads to

S(Θ(N)) ≤ S(Θ̃). Using the definition of S from (2.4), this can be rewritten as

h(θ
(N)
n−1, θ

(N)
n ) + h(θ(N)

n , θ
(N)
n+1) ≤ h(θ

(N)
n−1, s) + h(s, θ

(N)
n+1),

since all the other terms cancel. Therefore assumption (2.1) leads to

α(1 + σ2)L2 = α(θ(N)
n − θ

(N)
n−1)

2 + α(θ
(N)
n+1 − θ(N)

n )2 ≤ α(s− θ
(N)
n−1)

2 + α(θ
(N)
n+1 − s)2

=
1

2
α(θ

(N)
n+1 − θ

(N)
n−1)

2 =
1

2
α(1 + σ)2L2. (2.6)

The function ϕ(σ) = 2(1+σ2)
(1+σ)2

: [1,∞[→ [1, 2[ is strictly increasing. As q = α/α ∈ [1, 3
2
[, there is a

unique σ∗ ∈ [1,∞[ so that ϕ(σ∗) = q; explicitly, we have

σ∗ = (2− q)−1(q + 2
√

q − 1), q = α/α. (2.7)

Since (2.6) says that ϕ(σ) ≤ q, we must have σ ≤ σ∗, proving the upper bound.
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For the lower bound, we consider the function

h0(θ, θ
′) = h(−θ′,−θ), (θ, θ′) ∈ Ω.

Since δ ≤ θ′ − θ ≤ ∆ iff δ ≤ −θ − (−θ′) ≤ ∆, h0 is well-defined and satisfies (2.1). Put

S0(Φ) =
N−1∑

n=−N

h0(ϕn, ϕn+1), Φ = (ϕn)−N≤n≤N ∈ Σ(N).

Then S0 has a minimizer, i.e., S0(Φ
(N)) = minΦ∈Σ(N) S0(Φ) for some Φ(N) = (ϕ

(N)
n )−N≤n≤N ∈ Σ(N).

According to the upper bound, for every such minimizer we have

ϕ
(N)
n+1 − ϕ(N)

n ≤ σ∗(ϕ(N)
n − ϕ

(N)
n−1), −N + 1 ≤ n ≤ N − 1. (2.8)

By definition of h0, a minimizer is obtained by taking ϕ
(N)
n = −θ

(N)
−n for −N ≤ n ≤ N . Using this

minimizer in (2.8) and replacing −n by n, the lower bound is obtained. 2

For N ∈ N, define

δ(N) = min
−N≤n≤N−1

(θ
(N)
n+1 − θ(N)

n ) and ∆(N) = max
−N≤n≤N−1

(θ
(N)
n+1 − θ(N)

n ). (2.9)

Then δ ≤ δ(N) ≤ ∆(N) ≤ ∆ holds, since Θ(N) = (θ
(N)
n )−N≤n≤N ∈ Σ(N).

Lemma 2.5 Suppose that α < 3
2
α. There exists a constant σ∗∗ = σ∗∗(α/α) ≥ 1 such that for all

N ∈ N,
∆(N) ≤ σ∗∗δ(N).

Proof : Put
σ∗∗ = 5σ∗. (2.10)

If δ(N) ≥ 1
2σ∗

∆, then ∆ ≥ ∆(N) yields δ(N) ≥ 1
2σ∗

∆(N) ≥ 1
σ∗∗

∆(N). Therefore we can assume that

δ(N) ≤ 1
2σ∗

∆. Similarly, if ∆(N) ≤ 2δ, then ∆(N) ≤ 2δ(N) ≤ σ∗∗δ(N), recalling σ∗ ≥ 1. Thus we only
have to consider the cases where

δ(N) ≤ 1

2σ∗
∆ and ∆(N) ≥ 2δ. (2.11)

Let −N ≤ m,n ≤ N − 1 be such that

δ(N) = θ
(N)
m+1 − θ(N)

m and ∆(N) = θ
(N)
n+1 − θ(N)

n .

Without loss of generality, we can suppose that m ≤ n, since the argument is similar for m ≥ n.
We may further restrict ourselves to m+2 ≤ n. In fact, if m = n, then ∆(N) = δ(N). If m+1 = n,
then by Lemma 2.4, ∆(N) = θ

(N)
n+1 − θ

(N)
n ≤ σ∗(θ

(N)
n − θ

(N)
n−1) = σ∗δ(N) ≤ σ∗∗δ(N). Hence m + 2 ≤ n

can be assumed. Now we put

Θ̃ = (θ̃k)−N≤k≤N =
(
θ

(N)
−N , . . . , θ(N)

m , θ
(N)
m+2, . . . , θ

(N)
n , s, θ

(N)
n+1, . . . , θ

(N)
N

)
,

where s = 1
2
(θ

(N)
n+1 +θ

(N)
n ). That is, we remove θ

(N)
m+1 from Θ(N), then shift the block (θ

(N)
m+2, . . . , θ

(N)
n )

one place to the left, and finally insert s for θ
(N)
n .
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First we check that Θ̃ ∈ Σ(N). To begin with, θ̃N = θ
(N)
N = A. Also, since m + 1 ≥ −N + 1,

θ
(N)
−N is not removed, which means that θ̃−N = θ

(N)
−N = −A. Furthermore,

θ
(N)
m+2 − θ(N)

m = (θ
(N)
m+2 − θ

(N)
m+1) + (θ

(N)
m+1 − θ(N)

m ),

so that θ
(N)
m+2 − θ

(N)
m ≥ 2δ > δ. In addition, by Lemma 2.4 and by (2.11), recalling σ∗ ≥ 1,

θ
(N)
m+2 − θ(N)

m ≤ (σ∗ + 1)(θ
(N)
m+1 − θ(N)

m ) ≤ 2σ∗δ(N) ≤ ∆. (2.12)

The next observation is that γ := s − θ
(N)
n = θ

(N)
n+1 − s = 1

2
(θ

(N)
n+1 − θ

(N)
n ) = 1

2
∆(N). In particular,

γ = 1
2
∆(N) ≤ 1

2
∆ < ∆, and also γ = 1

2
∆(N) ≥ δ by (2.11). To summarize the preceding arguments,

we have shown that Θ̃ ∈ Σ(N). Hence (2.5) yields S(Θ(N)) ≤ S(Θ̃), so that by definition of S, see
(2.4),

h(θ(N)
m , θ

(N)
m+1) + h(θ

(N)
m+1, θ

(N)
m+2) + h(θ(N)

n , θ
(N)
n+1)

≤ h(θ(N)
m , θ

(N)
m+2) + h(θ(N)

n , s) + h(s, θ
(N)
n+1).

Since h ≥ 0, we can drop two terms on the left-hand side and only keep h(θ
(N)
n , θ

(N)
n+1). Using (2.1),

(2.12), and α < 3
2
α, we get

α(∆(N))2 = α(θ
(N)
n+1 − θ(N)

n )2 ≤ h(θ(N)
n , θ

(N)
n+1)

≤ h(θ(N)
m , θ

(N)
m+2) + h(θ(N)

n , s) + h(s, θ
(N)
n+1)

≤ α(θ
(N)
m+2 − θ(N)

m )2 + 2αγ2 ≤ 4ασ2
∗(δ

(N))2 +
1

2
α(∆(N))2

≤ 4ασ2
∗(δ

(N))2 +
3

4
α(∆(N))2.

Consequently,

(∆(N))2 ≤ 16
(α

α

)
σ2
∗(δ

(N))2 ≤ 24 σ2
∗(δ

(N))2,

which yields the claim. 2

Corollary 2.6 Suppose that the assumptions of Lemma 2.5 are satisfied. If

σ∗∗δ <
A

N
< σ−1

∗∗ ∆, (2.13)

then for all N ∈ N and −N ≤ n ≤ N − 1,

δ < δ(N) ≤ θ
(N)
n+1 − θ(N)

n ≤ ∆(N) < ∆.

Proof : If ∆(N) = ∆, then by (2.9) and by Lemma 2.5,

2A = θ
(N)
N − θ

(N)
−N =

N−1∑
n=−N

(θ
(N)
n+1 − θ(N)

n ) ≥ 2Nδ(N) ≥ 2N∆(N)

σ∗∗
=

2N∆

σ∗∗
,
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contradicting (2.13). Similarly, if δ(N) = δ, then also

2A =
N−1∑

n=−N

(θ
(N)
n+1 − θ(N)

n ) ≤ 2N∆(N) ≤ 2σ∗∗Nδ(N) = 2σ∗∗Nδ

contradicts (2.13). 2

Now we are ready for the

Proof of Theorem 2.1 : We define σ∗∗ ≥ 1 as in Lemma 2.5, and we suppose that σ∗∗δ < σ−1
∗∗ ∆

is satisfied. For N ∈ N, we take A = AN = 1
2
(σ−1
∗∗ ∆ + σ∗∗δ)N . Then σ∗∗δ < AN

N
< σ−1

∗∗ ∆ holds

for every N ∈ N. In particular, δ ≤ σ∗∗δ < AN

N
< σ−1

∗∗ ∆ ≤ ∆. Therefore all the preceding results
apply, and we obtain from Corollary 2.6 that

δ < θ
(N)
n+1 − θ(N)

n < ∆

for N ∈ N and −N ≤ n ≤ N − 1. Fix −N + 1 ≤ n ≤ N − 1. Then Θ(ε) = (θk(ε))−N≤k≤N ∈ Σ(N)

for all ε ∈ R with 0 ≤ |ε| sufficiently small, where

Θ(ε) =
(
θ

(N)
−N , . . . , θ

(N)
n−1, θ

(N)
n + ε, θ

(N)
n+1, . . . , θ

(N)
N

)
.

Recalling
S(Θ(0)) = S(Θ(N)) = min

Θ∈Σ(N)
S(Θ) ≤ S(Θ(ε)),

see (2.5), it follows from differentiating S(Θ(ε)) w.r. to ε that

0 =
d

dε
S(Θ(ε))

∣∣∣
ε=0

= ∂2h(θ
(N)
n−1, θ

(N)
n ) + ∂1h(θ(N)

n , θ
(N)
n+1), −N + 1 ≤ n ≤ N − 1.

Next we intend to pass to the limit N → ∞, but before doing so, we have to normalize the
Θ(N) = (θ

(N)
n )−N≤n≤N appropriately. Denoting n0(N) the last index for which θ

(N)
n0(N) ≤ 0, we get

−N ≤ n0(N) ≤ N − 1, since θ
(N)
±N = ±AN , and also θ

(N)
n0(N)+1 > 0. As δ ≤ θ

(N)
n0(N)+1 − θ

(N)
n0(N) ≤ ∆,

this yields |θ(N)
n0(N)| = −θ

(N)
n0(N) ≤ ∆. In addition,

AN −∆ ≤ θ
(N)
N − θ

(N)
n0(N) =

N−1∑

n=n0(N)

(θ
(N)
n+1 − θ(N)

n ) ≤ (N − n0(N))∆,

proves that

N − n0(N) ≥ AN −∆

∆
→∞ as N →∞, (2.14)

and we also have −N − n0(N) → −∞ as N →∞. Defining

Φ(N) = (ϕ
(N)
k )−N−n0(N)≤k≤N−n0(N), ϕ

(N)
k = θ

(N)
n0(N)+k,

we find |ϕ(N)
0 | ≤ ∆ as well as

δ < ϕ
(N)
k+1 − ϕ

(N)
k < ∆ (2.15)

for N ∈ N and −N − n0(N) ≤ k ≤ N − n0(N)− 1. As above, this allows us to deduce that

0 = ∂2h(ϕ
(N)
k−1, ϕ

(N)
k ) + ∂1h(ϕ

(N)
k , ϕ

(N)
k+1), −N − n0(N) + 1 ≤ k ≤ N − n0(N)− 1, (2.16)
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since Φ(N) is a minimizer of the appropriately index-shifted functional S in the appropriately
index-shifted set Σ(N). Also |ϕ(N)

0 | ≤ ∆ in conjunction with (2.15) yields

|ϕ(N)
k | ≤ k∆ (0 ≤ k ≤ N − n0(N)) and |ϕ(N)

k | ≤ |k|∆ (−N − n0(N) ≤ k ≤ 0). (2.17)

Furthermore, we extend Φ(N) to all indices k ∈ Z by defining ϕ
(N)
k = 0 for k < −N − n0(N) and

for k > N − n0(N). Hence if we fix k ∈ Z, then the sequence (ϕ
(N)
k )N∈N is bounded, by (2.17).

Therefore we may employ a diagonal sequence argument to find a subsequence of N ∈ N, indexed
by N ′ →∞, such that for all k ∈ Z the limit

θ∗k = lim
N ′→∞

ϕ
(N ′)
k (2.18)

does exist. If k ∈ Z is fixed, then by (2.14) there is Mk ∈ N such that N ′ ≥ Mk implies that
−N ′ − n0(N

′) + 1 ≤ k ≤ N ′ − n0(N
′)− 1. Thus (2.16) yields

∂2h(ϕ
(N ′)
k−1 , ϕ

(N ′)
k ) + ∂1h(ϕ

(N ′)
k , ϕ

(N ′)
k+1 ) = 0, N ′ ≥ Mk,

so that
∂2h(θ∗k−1, θ

∗
k) + ∂1h(θ∗k, θ

∗
k+1) = 0

is obtained in the limit N ′ →∞. In addition, since |ϕ(N)
0 | ≤ ∆, also |θ∗0| ≤ ∆ by (2.18). Concerning

(2.3), we first note that
δ ≤ θ∗k+1 − θ∗k ≤ ∆, k ∈ Z,

follows from (2.15) and (2.18). Hence if n ≥ 1, then θ∗n − θ∗0 =
∑n−1

k=0(θ
∗
k+1 − θ∗k) shows that

nδ + θ∗0 ≤ θ∗n ≤ n∆ + θ∗0, implying the first part of (2.3). Similarly, if n ≤ −1, then we write
θ∗0 − θ∗n =

∑−1
k=n(θ∗k+1 − θ∗k) and get (−n)δ ≤ θ∗0 − θ∗n ≤ (−n)∆. This gives the second part of (2.3)

and completes the proof of Theorem 2.1. 2

Remark 2.7 Readers familiar with Aubry-Mather theory will notice that the above proof is in-
spired by it. In Aubry-Mather theory, the generating function h satisfies the additional condition

h(θ + 1, θ′ + 1) = h(θ, θ′).

As a consequence, global minimals are invariant under shifts of the indices and under integer
translations. That is, if (θ∗n)n∈Z is minimal, so are (θ∗n+1)n∈Z and (θ∗n + 1)n∈Z. The second invariance
fails if the periodicity is lost. This fact prevents from a straightforward extension of Aubry-Mather
theory to our present situation.

Corollary 2.8 Under the assumptions of Theorem 2.1, an explicit expression for σ∗∗ is

σ∗∗ = 5(2− q)−1(q + 2
√

q − 1), q = α/α.

In particular, one can take σ∗∗ = 10 in (2.2), if α/α ∈ [1, 11
10

].

Proof : The form of σ∗∗ is due to (2.10) and (2.7). The last statement follows from the fact that
σ∗∗ = σ∗∗(q) is increasing as a function of q ∈ [1, 2[, and σ∗∗(11

10
) ≤ 10. Hence if 10δ < 1

10
∆ holds

and q = α/α ∈ [1, 11
10

], then σ∗∗(q)δ ≤ 10δ < 1
10

∆ ≤ 1
σ∗∗(q)

∆ is obtained and (2.2) is satisfied. 2

Remark 2.9 Concerning the form of σ∗∗ = σ∗∗(q) as obtained in Corollary 2.8, it is not completely
satisfactory that limq↘1 σ∗∗(q) = 5, but not limq↘1 σ∗∗(q) = 1, as would be expected from (2.1).
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3 Nonperiodic twist maps: A special case

In this section we are going to apply Theorem 2.1 to twist maps which leave invariant the boundary
of the strip where they are defined. This additional assumption will be removed in Section 4.

Definition 3.1 Let f = f(θ, r) : R× [a, b] → R2 be a C1-map.

(a) We say that f is symplectic, if there exists a C2-function ĥ : R× [a, b] → R such that

r1dθ1 − rdθ = dĥ, where (θ1, r1) = f(θ, r).

(b) A sequence (θn, rn)n∈Z ⊂ R× [a, b] is called a complete orbit for f , if (θn+1, rn+1) = f(θn, rn)
for n ∈ Z.

Remark 3.2 In the following Theorem 3.3 we need to impose three kinds of assumptions:

(a) The map f : (θ, r) 7→ (θ1, r1) = (θ + r + F (θ, r), r + G(θ, r)) is close to the integrable map
(θ, r) 7→ (θ + r, r), where ‘close’ only requires that |∂rF | ≤ 1

22
.

(b) The boundaries R×{a} and R×{b} of the strip R× [a, b] enjoy some invariance properties,
as is expressed by (3.1) below.

(c) The strip R× [a, b] is sufficiently large in the sense that b/a > 100 is sufficiently large. Note
that in the present context the size of the strip should be measured in terms of b/a rather
than b− a, since (as opposed to periodic twist maps) both r and θ can be scaled. Putting

Θ = λθ and R = λr

for some λ > 0, the map f becomes

Θ1 = Θ + R + F(Θ, R), R1 = R + G(Θ, R)

on the strip (Θ, R) ∈ R× [λa, λb], where

F(Θ, R) = λF (Θ/λ,R/λ), G(Θ, R) = λG(Θ/λ, R/λ).

Both conditions |∂rF | ≤ 1
22

and b/a > 100 are invariant under this scaling.

Theorem 3.3 Let b > a > 0 be such that

10a <
1

10
b.

Suppose that f : R× [a, b] → R2 is a symplectic C1-map given by

θ1 = θ + r + F (θ, r), r1 = r + G(θ, r),

where (θ1, r1) = f(θ, r). For F,G : R× [a, b] → R we assume that F, G ∈ C1,

F (θ, a) = F (θ, b) = G(θ, a) = G(θ, b) = 0, θ ∈ R, (3.1)

9



as well as

|∂rF (θ, r)| ≤ 1

22
, θ ∈ R, r ∈ [a, b]. (3.2)

Then there exists a complete orbit (θn, rn)n∈Z for f such that |θ0| < b and a < infn∈N(θn+1− θn) ≤
supn∈N(θn+1 − θn) < b for n ∈ Z. In addition,

a < lim inf
n→±∞

θn

n
≤ lim sup

n→±∞

θn

n
< b. (3.3)

Proof : First we need to construct the generating function h for f and discuss its properties.
Although this is standard, see [1, 3], we include some details adapted to the present setup. For any
fixed θ ∈ R, the function [a, b] 3 r 7→ θ1(θ, r) = θ + r + F (θ, r) ∈ R satisfies ∂rθ1 = 1 + ∂rF ≥ 21

22

by (3.2). Hence the inverse function

[θ + a, θ + b] 3 θ1 7→ r(θ, θ1) ∈ [a, b] (3.4)

is well-defined, strictly increasing, and onto; note that θ1(θ, a) = θ+a and θ1(θ, b) = θ+ b by (3.1).
With ĥ as in Definition 3.1, let

h(θ, θ1) = ĥ(θ, r(θ, θ1)) + C, (θ, θ1) ∈ Ω0 :=
{

(θ, θ1) ∈ R2 : θ ∈ R, θ + a ≤ θ1 ≤ θ + b
}

,

where C = a2/2− ĥ(0, a) is a normalizing constant. Now, the fact that r1dθ1 − rdθ = dĥ may be
seen to be equivalent to

∂θĥ = r1 ∂θθ1 − r and ∂rĥ = r1 ∂rθ1. (3.5)

Since ∂θr = −(1 + ∂θF )(1 + ∂rF )−1 = −(∂θθ1)(∂rθ1)
−1 and ∂θ1r = (∂rθ1)

−1, this results in

∂θh = ∂θĥ + (∂rĥ)(∂θr) = r1 ∂θθ1 − r − r1(∂rθ1)(∂θθ1)(∂rθ1)
−1 = −r (3.6)

and
∂θ1h = (∂rĥ)(∂θ1r) = r1(∂rθ1)(∂rθ1)

−1 = r1, (3.7)

i.e., the usual relations for the generating function h. We also observe that by (3.6) and (3.2),

|∂2
θθ1

h(θ, θ1) + 1| = |1− ∂θ1r(θ, θ1)| = |1− (∂rθ1)
−1(θ, θ1)| = |1− (1 + ∂rF (θ, r))−1|

= (1 + ∂rF (θ, r))−1|∂rF (θ, r)| ≤ 1

21
, (θ, θ1) ∈ Ω0. (3.8)

Put

V (θ, θ1) = h(θ, θ1)− 1

2
(θ1 − θ)2, (θ, θ1) ∈ Ω0. (3.9)

Then the relations

∂θV = −r + θ1 − θ = F and ∂θ1V = r1 − θ1 + θ = G− F (3.10)

are obtained. In addition, r(0, a) = a yields

V (0, a) = h(0, a)− a2

2
= ĥ(0, a) + C − a2

2
= 0

by the definition of C. Moreover, (3.10) and (3.1) lead to

∂θV (θ, θ + a) = F (θ, r(θ, θ + a)) = F (θ, a) = 0, θ ∈ R, (3.11)
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and in the same way,

∂θ1V (θ, θ + a) = G(θ, a)− F (θ, a) = 0, θ ∈ R. (3.12)

Noting that

V (θ, θ1) = V (0, a) +

∫

γ

dV =

∫

γ

F dθ + (G− F ) dθ1

for any path γ in the simply connected Ω0 which connects (0, a) ∈ Ω0 to (θ, θ1) ∈ Ω0, it follows
from (3.11) and (3.12) that

V (θ, θ + a) = 0, θ ∈ R, (3.13)

since γ may be chosen to be part of the lower boundary {θ1 = θ + a : θ ∈ R} of Ω0. By (3.8),

|∂2
θθ1

V (θ, θ1)| = |∂2
θθ1

h(θ, θ1) + 1| ≤ 1

21
, (θ, θ1) ∈ Ω0. (3.14)

Due to (3.13), (3.12), and (3.14), Lemma 3.5 below shows that

|V (θ, θ1)| ≤ 1

42
(θ1 − θ)2, (θ, θ1) ∈ Ω0.

Thus by (3.9),
10

21
(θ1 − θ)2 ≤ h(θ, θ1) ≤ 11

21
(θ1 − θ)2, (θ, θ1) ∈ Ω0. (3.15)

Fix ε∗ > 0 so small that

10(a + ε∗) <
1

10
(b− ε∗), (3.16)

and put

δ = a + ε∗, ∆ = b− ε∗, α =
10

21
, and α =

11

21
.

Then ∆ > δ > 0 by (3.16) and

Ω = {(θ, θ1) ∈ R2 : δ ≤ θ1 − θ ≤ ∆} ⊂ Ω0.

Also α/α = 11
10

. Thus (3.15) and (3.16) in conjunction with Corollary 2.8 shows that Theorem 2.1
applies. Hence there exists (θn)n∈Z such that |θ0| ≤ ∆, δ ≤ θn+1 − θn ≤ ∆ for n ∈ Z, and

∂θ1h(θn−1, θn) + ∂θh(θn, θn+1) = 0, n ∈ Z. (3.17)

In addition,

δ ≤ lim inf
n→±∞

θn

n
≤ lim sup

n→±∞

θn

n
≤ ∆

implies that (3.3) is satisfied. Putting rn = −∂θh(θn, θn+1) in accordance with (3.6), it follows that
(θn, rn)n∈Z is a complete orbit for f . In fact, by (3.17) and (3.7),

rn+1 = −∂θh(θn+1, θn+2) = ∂θ1h(θn, θn+1) = rn + G(θn, rn).

Moreover, rn = −∂θh(θn, θn+1) = r(θn, θn+1) by (3.6) is equivalent to

θn + rn + F (θn, rn) = θ1(θn, rn) = θn+1.

Hence f(θn, rn) = (θn + rn + F (θn, rn), rn + G(θn, rn)) = (θn+1, rn+1) is obtained. Thus it remains
to verify that rn ∈ [a, b] for n ∈ Z. However, due to θn + a ≤ θn+1 ≤ θn + b it is a consequence of
(3.4) that rn = r(θn, θn+1) ∈ [a, b]. 2

11



Remark 3.4 Observe that due to the conclusion

a < inf
n∈N

(θn+1 − θn) ≤ sup
n∈N

(θn+1 − θn) < b

in Theorem 3.3 the bounded orbit lies in the interior of the strip R× [a, b] an does not accumulate
on its boundary.

The following technical lemma has been used in the preceding proof.

Lemma 3.5 Let ∆ > δ > 0. Suppose that V : Ω = {(θ, θ1) ∈ R2 : δ ≤ θ1 − θ ≤ ∆} → R is C2

and such that
V (θ, θ + δ) = ∂θ1V (θ, θ + δ) = 0, |∂2

θθ1
V (θ, θ1)| ≤ ε,

for θ ∈ R and (θ, θ1) ∈ Ω, respectively. Then

|V (θ, θ1)| ≤ ε

2
(θ1 − θ)2, (θ, θ1) ∈ Ω. (3.18)

Proof : Note that this is a consequence of d’Alembert’s formula. Since

−
∫ θ1

θ+δ

dη

∫ η−δ

θ

dξ ∂2
θθ1

V (ξ, η) = −
∫ θ1

θ+δ

dη
(
∂θ1V (η − δ, η)− ∂θ1V (θ, η)

)
=

∫ θ1

θ+δ

dη ∂θ1V (θ, η)

= V (θ, θ1)− V (θ, θ + δ) = V (θ, θ1),

it follows that |V (θ, θ1)| ≤ ε
∫ θ1

θ+δ
dη

∫ η−δ

θ
dξ = ε

2
(θ1 − θ − δ)2 ≤ ε

2
(θ1 − θ)2, which is (3.18). 2

4 Existence of infinitely many complete orbits

In this section we drop the assumption (3.1) on the invariance of the boundaries. This has to be
compensated by a stronger and more qualitative hypothesis on the generating function ĥ.

Definition 4.1 Let f = f(θ, r) : R× [a,∞[→ R2 be a C1-map and suppose that c : [a,∞[→ R is
a function. We say that f is c-exact symplectic, if there exists a C2-function ĥ : R × [a,∞[→ R
such that

r1dθ1 − rdθ = dĥ, where (θ1, r1) = f(θ, r),

and
sup
θ0∈R

sup
r∈[a,∞[

min
θ∈[θ0, θ0+T ]

|ĥ(θ, r)− c(r)| < ∞

for some T > 0.

Before we turn to our next theorem we give some motivation for Definition 4.1, which may be
viewed as a proper extension of the notion of exact symplectic maps from the periodic case. This
is illustrated by the following

Lemma 4.2 Let f = f(θ, r) : (R/TZ) × [a,∞[→ R2 be a symplectic C1-map. Then f is exact
symplectic on the cylinder if and only if the condition from Definition 4.1 holds.

12



Proof : First suppose that f is exact symplectic on the cylinder. Then r1dθ1 − rdθ = dĥ for a
C2-function ĥ which is T -periodic in θ. Defining c(r) = 1

T

∫ T

0
ĥ(θ, r) dθ as the average, it follows

that
ĥ(θ, r) = c(r) + V̂ (θ, r),

where
∫ T

0
V̂ (θ, r) dθ = 0 for r ∈ [a,∞[. Fix θ0 ∈ R and r ∈ [a,∞[. Since V̂ (·, r) is T -periodic, also∫ θ0+T

θ0
V̂ (θ, r) dθ = 0. Therefore V̂ (θ∗, r) = 0 for some θ∗ ∈ [θ0, θ0 + T ] yields

min
θ∈[θ0, θ0+T ]

|ĥ(θ, r)− c(r)| = min
θ∈[θ0, θ0+T ]

|V̂ (θ, r)| = 0

for every θ0 ∈ R and r ∈ [a,∞[. Conversely, suppose that

M = sup
θ0∈R

sup
r∈[a,∞[

min
θ∈[θ0, θ0+T ]

|ĥ(θ, r)− c(r)| < ∞.

We need to show that ĥ(·, r) is T -periodic for r ∈ [a,∞[. Writing (θ1, r1) = f(θ, r), the functions
θ 7→ θ1(θ, r)− θ and θ 7→ r1(θ, r) are T -periodic by assumption for every r ∈ [a,∞[. The relation
dĥ = r1dθ1 − rdθ implies that ∂θĥ = r1∂θθ1 − r and ∂rĥ = r1∂rθ1. In particular, every ∂θĥ(·, r) is
T -periodic. From M < ∞ it then follows that ĥ(·, r) is bounded. In fact, if θ0 ∈ R is fixed, then
there is θ∗ ∈ [θ0, θ0 + T ] such that |ĥ(θ∗, r)− c(r)| ≤ M . Thus

|ĥ(θ0, r)| =
∣∣∣ĥ(θ∗, r)−

∫ θ∗

θ0

∂θĥ(θ, r) dθ
∣∣∣ ≤ M + c(r) + ‖∂θĥ(·, r)‖∞ T, θ0 ∈ R.

Since ĥ(·, r) is bounded and ∂θĥ(·, r) is T -periodic, also ĥ(·, r) is T -periodic. 2

In [11] the author uses a notion of exact symplectic for some quasiperiodic maps. In general, if
we assume that the map and its derivatives of first order are almost periodic, uniformly in r, then
the natural definition of exact symplectic would be to require that ĥ and its first derivatives are
also almost periodic, uniformly in r. With some more effort one can then prove a result similar
to Lemma 4.2, showing that also in this case this notion is equivalent to the one introduced by
Definition 4.1.

The main result of this section is

Theorem 4.3 Suppose that f : R × [a,∞[→ R2 is c-exact symplectic with c(r) = 1
2
r2. Let f be

given by
θ1 = θ + r + F (θ, r), r1 = r + G(θ, r),

where (θ1, r1) = f(θ, r). For F,G : R× [a,∞[→ R we assume that F,G ∈ C1 and

‖F‖∞ < ∞, ‖G‖∞ < ∞, and |∂rF (θ, r)| ≤ 1

43
(4.1)

for θ ∈ R and r ∈ [a,∞[. Then f has infinitely many complete orbits (θj
n, rj

n)n∈Z such that
Rj ≤ rj

n ≤ Rj+1 for n ∈ N, where Rj < Rj+1 →∞ as j →∞. Moreover,

Rj ≤ lim inf
n→±∞

θj
n

n
≤ lim sup

n→±∞

θj
n

n
≤ Rj+1.
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Proof : Define

M = sup
θ0∈R

sup
r∈[a,∞[

min
θ∈[θ0, θ0+T ]

∣∣∣ĥ(θ, r)− 1

2
r2

∣∣∣ < ∞ (4.2)

and
m = max{‖F‖∞, ‖G‖∞} < ∞.

Next fix b > a such that b ≥ 1 and

b ≥ 205(a + m), b ≥ 235300800 · (M + m + Tm), (4.3)

hold. For f : R× [a, b] → R2 we are going to argue similar to the proof of Theorem 3.3. However,
since f does not preserve the boundaries, the technicalities are more involved. As before, we
consider the strictly increasing maps [a, b] 3 r 7→ θ1(θ, r) = θ + r + F (θ, r) ∈ R and their inverses

[θ1(θ, a), θ1(θ, b)] 3 θ1 7→ r(θ, θ1) ∈ [a, b].

Taking ĥ from Definition 4.1, let

h(θ, θ1) = ĥ(θ, r(θ, θ1)) and V (θ, θ1) = h(θ, θ1)− 1

2
(θ1 − θ)2, (θ, θ1) ∈ Ω0,

where
Ω0 =

{
(θ, θ1) ∈ R2 : θ ∈ R, θ1(θ, a) ≤ θ1 ≤ θ1(θ, b)

}
.

Then
∂θh = −r, ∂θ1h = r1, ∂θV = F, ∂θ1V = G− F. (4.4)

Also

|∂2
θθ1

V (θ, θ1)| = |∂2
θθ1

h(θ, θ1) + 1| ≤
1
43

1− 1
43

=
1

42
, (θ, θ1) ∈ Ω0, (4.5)

cf. (3.8) and (4.1). Put

Ω1 =
{

(θ, θ1) ∈ R2 : θ ∈ R, θ + a1 ≤ θ1 ≤ θ + b1

}

for a1 = a + m and b1 = b − m. Then θ1(θ, a) = θ + a + F (θ, a) ≤ θ + a1 and θ1(θ, b) =
θ + b + F (θ, b) ≥ θ + b1 implies that Ω1 ⊂ Ω0. The qualitative assumption (4.2) on ĥ results in the
following estimate, see Lemma 4.4 below:

|V (θ, θ1)| ≤ M +
22

43
(a1 + b1 + 4m)m +

3

2

(
b1 − a1 + 2T

)
m, (θ, θ1) ∈ Ω1. (4.6)

Now put

a2 = a1 + η and b2 = b1 − η, where η =
1

200
b.

Then a2 < b2. Next we fix a cut-off function χ ∈ C∞(R) such that χ(s) = 1 for s ∈ [a2, b2],
χ(s) = 0 for s ≤ a1, χ(s) = 0 for s ≥ b1, as well as

|χ(s)| ≤ 1, |χ′(s)| ≤ 4

η
, and |χ′′(s)| ≤ 20

η2
, s ∈ R,
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are satisfied. Let Ṽ (θ, θ1) = χ(θ1 − θ)V (θ, θ1) for (θ, θ1) ∈ Ω1. Then Ṽ (θ, θ + a1) = 0 for θ ∈ R.
Moreover,

∂θ1Ṽ (θ, θ1) = χ′(θ1 − θ)V (θ, θ1) + χ(θ1 − θ)∂θ1V (θ, θ1),

∂2
θθ1

Ṽ (θ, θ1) = −χ′′(θ1 − θ)V (θ, θ1) + χ′(θ1 − θ)
[
∂θV (θ, θ1)− ∂θ1V (θ, θ1)

]

+ χ(θ1 − θ)∂2
θθ1

V (θ, θ1).

In particular, ∂θ1Ṽ (θ, θ + a1) = 0 as well as

|∂2
θθ1

Ṽ (θ, θ1)| ≤ 20 η−2
(
M +

22

43
(a + b + 4m)m +

3

2

(
b− a− 2m + 2T

)
m

)

+ 12 η−1m +
1

42
=: ε1, (θ, θ1) ∈ Ω1,

by (4.6), (4.4), and (4.5). Hence Lemma 3.5 applies to yield

|Ṽ (θ, θ1)| ≤ ε1

2
(θ1 − θ)2, (θ, θ1) ∈ Ω1.

Thus defining h̃(θ, θ1) = 1
2
(θ1 − θ)2 + Ṽ (θ, θ1) for (θ, θ1) ∈ Ω1, it follows that

α(θ1 − θ)2 ≤ h̃(θ, θ1) ≤ α(θ1 − θ)2, (θ, θ1) ∈ Ω1, (4.7)

where α = 1
2
(1 − ε1) and α = 1

2
(1 + ε1). Due to (4.3), ε1 ≤ 1

21
is satisfied. In fact, a + b + 4m ≤

4(a + m) + b ≤ 209
205

b and b ≥ 1 yield

ε1 ≤ 20 η−2
(
M +

3

5
bm + 3(2b + T )m

)
+ 12 η−1m +

1

42

≤ 140 η−2(M + (b + T )m) + 12 η−1m +
1

42

≤ 28000 η−1(M + Tm) + 28000 η−1m + 12 η−1m +
1

42

≤ 28012 η−1(M + m + Tm) +
1

42
≤ 1

21

by (4.3). Since ε1 ≤ 1
21

, the bound α/α = (1 + ε1)/(1 − ε1) ≤ 11
10

is obtained. In particular, on

Ω2 = {(θ, θ1) ∈ R2 : a2 ≤ θ1 − θ ≤ b2} ⊂ Ω1 the estimate (4.7) holds for h, since h̃ = h on Ω2 by
definition of χ. Next note that

100a2 = 100(a + m) +
1

2
b <

199

200
b−m = b−m− η = b2

by (4.3). Consequently we can use Corollary 2.8 and Theorem 2.1 for h on Ω2 to get a sequence
(θn)n∈Z such that |θ0| ≤ b2, a2 ≤ θn+1 − θn ≤ b2 for n ∈ Z, and

∂2h(θn−1, θn) + ∂1h(θn, θn+1) = 0, n ∈ Z.

In addition, a2 ≤ lim infn→±∞ θn

n
≤ lim supn→±∞

θn

n
≤ b2. If we put rn = −∂θh(θn, θn+1), then the

argument from the proof to Theorem 3.3 shows that (θn, rn)n∈Z ⊂ R× [a, b] is a complete orbit for
the map f .
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Hence there is a first complete orbit for f . In the next step we replace R1 = a by R2 = b+ 1 in
the preceding argument and select a new R3 which satisfies R3 ≥ 205(R2 + m). As the conditions
(4.3) hold for R3, a further complete orbit for f : R× [R2, R3] → R2 is obtained. Continuing this
way, we get infinitely many complete orbits for f which have the desired properties. 2

We add one more technical result that has been used before.

Lemma 4.4 Using the notation from the proof to Theorem 4.3,

|V (θ, θ1)| ≤ M +
22

43
(a1 + b1 + 4m)m +

3

2

(
b1 − a1 + 2T

)
m, (θ, θ1) ∈ Ω1.

Proof : Consider a fixed (θ̃, θ̃1) ∈ Ω1, i.e., a1 ≤ θ̃1 − θ̃ ≤ b1 holds. As a consequence of (4.2), for
θ̃ ∈ R and c1 = (a1 + b1)/2 ≥ a there is θ ∈ [θ̃, θ̃ + T ] such that |ĥ(θ, c1) − c2

1/2| ≤ M . Next,
θ + c1 = θ + r + F (θ, r) for r = r(θ, θ + c1) yields |r(θ, θ + c1)− c1| ≤ ‖F‖∞ ≤ m. Since by (3.5),

|∂rĥ(θ, r)| = |r1 ∂rθ1| = (r + G)(1 + ∂rF ) ≤ 44
43

(c1 + 2m) for |r − c1| ≤ m, it follows that

|V (θ, θ + c1)| = |ĥ(θ, r(θ, θ + c1))− c2
1/2| ≤ |ĥ(θ, r(θ, θ + c1))− ĥ(θ, c1)|+ |ĥ(θ, c1)− c2

1/2|

≤
∣∣∣
∫ r(θ, θ+c1)

c1

∂rĥ(θ, r) dr
∣∣∣ + M ≤ 44

43
(c1 + 2m)m + M.

According to (4.4),

V (θ̃, θ̃1) = V (θ, θ + c1) +

∫

γ

dV = V (θ, θ + c1) +

∫

γ

F dθ + (G− F ) dθ1

for the path γ connecting first (θ̃, θ̃1) along the vertical line {θ = θ̃} to the point (θ̃, θ̃ + c1), and
thereafter connecting (θ̃, θ̃ + c1) to (θ, θ + c1) along the straight line {θ1 − θ = c1}. In particular,
γ has length |γ| ≤ |θ̃1 − θ̃ − c1|+ T ≤ 1

2
(b1 − a1) + T . Thus the preceding estimates imply

|V (θ̃, θ̃1)| ≤ 44

43
(c1 + 2m)m + M + 3

(1

2
(b1 − a1) + T

)
m,

as claimed. 2

Finally we consider an application of Theorem 4.3.

Theorem 4.5 Let φ ∈ C2(R) be such that φ and φ′ are bounded. Then the map

θ1 = θ + r, r1 = r + φ′(θ + r),

has infinitely many complete orbits enjoying the properties described in Theorem 4.3.
In particular, this applies to the case of the maps

θ1 = θ + r, r1 = r + λ(sin ω1(θ + r) + sin ω2(θ + r))

for all λ, ω1, ω2 > 0.

Proof : Put ĥ(θ, r) = 1
2
r2 + φ(θ + r), F = 0, and G(θ, r) = φ′(θ + r). Then r1∂θθ1 − r =

(r + φ′(θ, r))− r = φ′(θ + r) = ∂θĥ and r1∂rθ1 = r + φ′(θ + r) = ∂rĥ shows that r1dθ1 − rdθ = dĥ
holds. Since |ĥ(θ, r)− 1

2
r2| = |φ(θ, r)| ≤ ‖φ‖∞, f is c-exact symplectic with c(r) = 1

2
r2. Concerning

(4.1), we only have to note that ‖G‖∞ = ‖φ′‖∞ < ∞ by assumption. Hence the first claim follows
from Theorem 4.3. For the special case, φ(θ) = −λ(ω−1

1 cos ω1θ + ω−1
2 cos ω2θ) satisfies ‖φ‖∞ < ∞

and ‖φ′‖∞ < ∞. 2
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