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1 Introduction

In Ecology, the evolution of the species size is modelled by systems of dif-
ferential equations of the type

ẋi = xi fi(t, x1, . . . , xn) 1 ≤ i ≤ n (1)

where xi = xi(t) ≥ 0 is the size of the species i in the instant t. Depending
on the properties of the functions fi, the system can represent several kinds
of interactions between the species. Due to seasonal fluctuations of the
environment, it is usual to assume that the functions fi : R × Rn

+ −→ R
are T -periodic where Rn

+ = [0, +∞[×...×(n ...× [0, +∞[. A relevant class of
solutions of these systems are the T -periodic solutions which remain in the
interior of RN

+ , we will refer to these solutions as the coexistence states
of (1).
For n = 3, we can introduce the following cyclic behavior. The system (1)
is τ-cyclic (resp. σ-cyclic) if the species xi (resp. xi+1) becomes extinct
and the species xi+1 survives in the subsystem obtained from (1) by letting
xi−1 = 0, for i = 1, 2, 3. (We always use the mod 3 notation.) Notice that
we can pass from τ -cyclic to σ-cyclic systems by means of a permutation.
There are many models of the type (1) which present a cyclic structure, for
example May-Leonard’s model [8]





ẋ1 = x1(1− x1 − α1x2 − β1x3)
ẋ2 = x2(1− β2x1 − x2 − α2x3)
ẋ3 = x3(1− α3x1 − β3x2 − x3)

(2)
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where 0 < αi < 1 < βi for i = 1, 2, 3. We observe that this system is
σ-cyclic, competitive and admits a coexistence state that can be stable or
unstable. The global behavior of this system is studied in [5] . Motivated by
this example, Tineo proved in [11] the presence of a coexistence states for
3-dimensional competitive systems which are dissipative and have a cyclic
behavior. The proof in [11] is based on the ideas of Hirsch [6] together with a
result due to Campos, Ortega and Tineo in [4]. This problem for competitive
systems has been also studied in [1] and [12]. The purpose of this paper is
to show that in the result in [11] it is not essential that the system be
competitive. This extension results interesting since apart from competitive
systems, the cyclic structure can appear in many other interactions as it
will be seen in the section 4. Our tools are the Brouwer’s degree and the
application of the Browder’s results [2] for dissipative systems.
I would like to thank to my advisor, professor R. Ortega, for his help and
suggestions in this paper.

2 Definitions and statement of the main result

Consider the system in R3
+





ẋ1 = x1f1(t, x1, x2, x3)
ẋ2 = x2f2(t, x1, x2, x3)
ẋ3 = x3f3(t, x1, x2, x3).

(3)

We will assume, without further mention that the system (3) is T -periodic
and has uniqueness of solution for the Cauchy problem.
It is usual to take to account the limitations of the environment, this is
translated to our models in the following way.
We say that the system (3) is dissipative if there exists a constant M such
that every solution of (3) verifies that

lim sup
t→∞

‖x(t)‖ ≤ M

where ‖ ·‖ denote some norm in RN . Notice that we are implicitly assuming
that all solutions can be continued in the future.
After these considerations, we need to introduce some definitions with clear
biological meaning.

Definition 1 A coexistence state for (3) is a T-periodic solution x(t) =
(x1(t), x2(t), x3(t)) such that x(t) ∈ Int(R3

+) for all t.
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Definition 2 The species i becomes extinct in the system (3) if

lim
t→∞xi(t) = 0

for every solution x(t) = (x1(t), x2(t), x3(t)) lying in Int(R3
+).

Given J ⊂ {1, 2, 3}, we define the subsystem EJ as the system which is
obtained when xi = 0 for i 6∈ J . In particular, if J = {i} we obtain the
scalar equation

ẋi = xifi(t, xiei), (4)

where e1, e2, e3 denote the canonical basis of R3. It will be always assumed
that these equations are of logistic growth type. By this we mean that
they have an unique positive T-periodic solution Vi(t) attracting all positive
solutions; that is

lim
t→∞[xi(t)− Vi(t)] = 0

where xi(t) > 0 is a positive solution of (4).
Now we are going to present the main result of this paper.

Theorem 3 Assume that the system (3) is dissipative and verifies:

i) The subsystems E{1,2}, E{2,3}, E{1,3} do not have coexistence states,

ii) For each i ∈ {1, 2, 3}, the equation ẋi = xifi(t, xiei) has logistic growth
with periodic solution Vi(t),

iii)
∫ T
0 fi(t, 0)dt > 0 for i = 1, 2, 3,

iv)
∫ T
0 fi+1(t, Vi(t)ei)dt > 0 for i = 1, 2, 3.

Then, (3) admits a coexistence state.

Remark 4 First, we observe that every cyclic system verifies i). The con-
dition iv) is considered in [11] for the case of τ -cyclic systems. In the
section 4, we will interpret this condition and convince ourselves that it is
verified for almost every τ -cyclic system. Moreover, we will notice that the
hypotheses of the theorem 3 imply that the system is τ−cyclic.

We can obtain the same conclusion as the Theorem 3 if we replace iv) by
iv)∗ where iv)∗ is ∫ T

0
fi−1(t, Vi(t)ei)dt > 0.

3



In many concrete examples it is not easy to find an explicit formula for Vi(t).
This can make difficult the verification of iv) (or iv)∗). Next we introduce
some explicit conditions implying i) and iv)∗.





f1(t, x1, x2, 0) > f2(t, x1, x2, 0) if (x1, x2) 6= (0, 0)
f2(t, 0, x2, x3) > f3(t, 0, x2, x3) if (x2, x3) 6= (0, 0)
f3(t, x1, 0, x3) > f1(t, x1, 0, x3) if (x1, x3) 6= (0, 0).

(5)

These can be interpreted in terms of dominance. For instance, the first
condition says that in absence of species 3, 1 dominates 2.

Corollary 5 Assume that the system (3) is dissipative and verifies ii), iii)
and (5). Then the system (3) has a coexistence state.

3 Proof of the main Theorem

The main tools for the proof of the Theorem 3 are the Brouwer’s degree and
the following result due to Browder which can be found in [14] pag. 725.
Indeed, we state the result only in finite dimension.

Theorem 6 Let T : RN −→ RN be a continuous map. Suppose that U is
an open ball so that there exists K0 such that AK(U) ⊂ U for K ≥ K0.
Then degRN (id− T,U) = 1.

We will employ the notation degRN (f, U) for Brouwer’s degree of f in U
where U ⊂ RN is an open set and f : U −→ RN is a continuous map with
f(x) 6= 0 for x ∈ ∂U . If p ∈ U is an isolated fixed point for f then we
define indRN (f, p) = degRN (id − f, Bδ(p)) for δ > 0 sufficiently small. (We
are denoting by Bδ(p) the open ball centered at p and radius δ.) The reader
who wishes a more precise definitions and its properties can consult [7].

Given ξ = (ξ1, ξ2, ξ3) ∈ R3
+, we denote by x(t, ξ) the maximal solution

of (3) such that x(0) = ξ.
The Poincaré map associated to (3) is defined as:

P : R3
+ −→ R3

+

P (ξ) = x(T, ξ).

We notice that the fixed points of P correspond with the periodic solutions
of (3). Namely, the fixed points of P in Int(R3

+) are associated with the
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coexistence states. From the expression of the system (3) and a straightfor-
ward computation it is clear that P admits the following expression:

P (ξ1, ξ2, ξ3) = (ξ1e
∫ T
0 f1(t,x(t,ξ))dt, ξ2e

∫ T
0 f2(t,x(t,ξ))dt, ξ3e

∫ T
0 f3(t,x(t,ξ))dt).

We are going to denote by ξ∗i the initial condition for the solution Vi, that
is ξ∗i = Vi(0). The Poincaré map associated to (3) is defined in R3

+ but it
admits a natural extension to the whole space R3 in the following way

P̂ (ξ1, ξ2, ξ3) = (ξ1e
∫ T
0 f1(t,x(t,|ξ|))dt, ξ2e

∫ T
0 f2(t,x(t,|ξ|))dt, ξ3e

∫ T
0 f3(t,x(t,|ξ|))dt) (6)

where |ξ| = (|ξ1|, |ξ2|, |ξ3|). We observe that the formula above corresponds
with the Poincaré map of the system

ẋi = xi fi(t, |x1|, |x2|, |x3|) i = 1, 2, 3. (7)

This extension commutes with symmetries with respect to the axes. More
precisely

P̂ ◦ si = si ◦ P̂ (8)

where s1(ξ1, ξ2, ξ3) = (−ξ1, ξ2, ξ3) and so on. Other important property is
that P̂ (EJ) ⊂ EJ where J ⊂ {1, 2, 3} and EJ = {(x1, x2, x3) : xi = 0 if i 6∈
J}. We denote by P̂ |EJ

the restriction of P̂ to EJ .
Now, let us begin the proof whose structure is the following. First, we com-
pute the degree of id−P̂ in large balls. After that we compute the indexes of
the fixed points of the axes. Finally, we deduce the result with an argument
of additivity. We are going to proceed by steps.

Step1: Computation of degR3(id− P̂ , BR(0)) for R > 0 sufficiently large.
Using that the system (3) is dissipative we deduce there exists M > 0 such
that for all x it verifies that

lim sup
N→∞

‖ P̂N (x) ‖< M.

Therefore, for each x ∈ R3, there exists Nx such that P̂Nx(x) ∈ BM (0). It
is easy to check that

K =
∞⋃

n=1

P̂n(BM (0))

is a compact set and positively invariant, i.e. P̂ (K) ⊂ K. Then we can take
R > 0 so that K ⊂ BR(0). Now, we deduce that there exists N0 > 0 such
that

P̂N (BR(0)) ⊂ K ⊂ BR(0)
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for all N > N0. This reasoning is standard for dissipative systems, for more
details, see [7]. Finally, we apply the Theorem 6 and deduce that

degR3(id− P̂ , BR(0)) = 1.

Since every subsystem EJ is also dissipative, we can obtain with the same
arguments that

degR2(id− P̂ |{1,2}, BR(0)) = 1,
degR2(id− P̂ |{1,3}, BR(0)) = 1,
degR2(id− P̂ |{2,3}, BR(0)) = 1.

(9)

Step 2: Indexes in two dimensions.
In this step we are going to compute the indexes of the fixed points of P̂ |{1,2},
analogously one might reason with the other restrictions. We notice that
from the hypotheses i) of the Theorem 5 the unique fixed points of P̂ |{1,2}
are (0, 0), (±ξ∗1 , 0), (0,±ξ∗2).

• indR2(P̂ |{1,2}, (0, 0)) = 1.
By continuous dependence we can find δ > 0, ε > 1 so that if |ξ1|,
|ξ2| < δ then

e
∫ T
0 f1(t,x(t,(|ξ1|,|ξ2|,0))dt > ε,

e
∫ T
0 f2(t,x(t,(|ξ1|,|ξ2|,0))dt > ε.

Here we are using iii).
Now consider the following homotopy

H : [0, 1]× [−δ, δ]× [−δ, δ] −→ R2

H(λ, (ξ1, ξ2)) = (ξ1α1(λ, ξ1, ξ2), ξ2α2(λ, ξ1, ξ2))

where αi(λ, ξ1, ξ2) = (1− λ)ε + λe
∫ T
0 fi(t,x(t,(|ξ1|,|ξ2|,0))dt.

Hλ does not have fixed points in the boundary of [−δ, δ]× [−δ, δ]. This
is deduced from

(1− λ)ε + λe
∫ T
0 fi(t,x(t,(|ξ1|,|ξ2|,0))dt ≥ ε > 1.

For λ = 0, we obtain that H(0, (ξ1, ξ2)) = ε(ξ1, ξ2) and so

degR2(id− P̂ |{1,2}, ]− δ, δ[×]− δ, δ[) = 1.
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• indR2(P̂ |{1,2}, (ξ∗1 , 0)) = indR2(P̂ |{1,2}, (−ξ∗1 , 0)) = −1.
From the invariance of the index by conjugation and the property (8),
we deduce the first equality. Therefore we have just to prove that

indR2(P̂ |{1,2}, (ξ∗1 , 0)) = −1.

By continuous dependence, we deduce that there exists δ > 0, ε > 1
such that if | ξ1 − ξ∗1 |< δ and | ξ2 |< δ then

e
∫ T
0 f2(t,x(t,(|ξ1|,|ξ2|,0)dt > ε.

Here we have used iv).
Then we can consider the following homotopy

H : [0, 1]× [ξ∗1 − δ, ξ∗1 + δ]× [−δ, δ] −→ R2

H(λ, (ξ1, ξ2)) = (ξ1α1(λ, ξ1, ξ2), ξ2α2(λ, ξ1, ξ2))

where
α1(λ, ξ1, ξ2) = e

∫ T
0 f1(t,x(t,(|ξ1|,λ|ξ2|,0))dt

α2(λ, ξ1, ξ2) = (1− λ)ε + λe
∫ T
0 f2(t,x(t,(|ξ1|,|ξ2|,0)dt.

H is an admissible homotopy (in the same sense as the previous apart)
due to

(1− λ)ε + λe
∫ T
0 f2(t,x(t,(|ξ1|,|ξ2|,0))dt ≥ ε > 1

together with ii). For λ = 0, we obtain

H(0, (ξ1, ξ2)) = (ξ1e
∫ T
0 f1(t,x(t,(|ξ1|,0,0)dt, ξ2ε).

From the product formula for the index and the logistic growth of the
equation ẋ1 = x1f1(t, x1e1) we conclude that

indR2(P̂ |{1,2}, (ξ∗1 , 0)) = −1.

• indR2(P̂ |{1,2}, (0, ξ∗2)) = indR2(P̂ |{1,2}, (0, ξ∗2)) = 1.
Using the previous step we deduce that there exists BR(0) ⊂ R2 such
that (0, 0), (±ξ∗1 , 0), (0,±ξ∗2) ∈ BR(0) and

degR2(id− P̂ |{1,2}, BR(0)) = 1.

From the additivity for the degree and the previous statements we
deduce that

indR2(P̂ |{1,2}, (0, ξ∗2)) = indR2(P̂ |{1,2}, (0,−ξ∗2)) = 1.

Here we have used that the unique fixed points for P̂ |{1,2} are (0, 0),
(±ξ∗1 , 0), (0,±ξ∗2).
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Step 3: Indexes in three dimensions.
Firstly we check that the fixed points (0, 0, 0),(±ξ∗1 , 0, 0), (0,±ξ∗2 , 0), (0, 0,±ξ∗3)
are isolated. We concentrate on (ξ∗1 , 0, 0). By continuous dependence and
iv), there exists ε > 1, δ > 0 such that if |ξ1− ξ∗1 | < δ, |ξ2| < δ, |ξ3| < δ then

e
∫ T
0 f2(t,x(t,|ξ|)dt > ε.

From the formula (6), we deduce that there are no fixed points with | ξ2 |> 0
if |ξ1− ξ∗1 | < δ, |ξ2| < δ, |ξ3| < δ . Now using the hypotheses i) we conclude
that (ξ∗1 , 0, 0) is an isolated fixed point. Analogously, we can deduce the same
for the other fixed points. We remark indR3(P̂ , (0, 0, 0)) = −1 reasoning in
the same way as the previous step in the beginning. Now we compute
indR3(P̂ , (0, ξ∗2 , 0)). Using that the fixed point (0, ξ∗2 , 0) is isolated we can
perfectly define the index in this point. By continuous dependence, there
exists ε > 1, δ > 0 such that if |ξ1| < δ, |ξ2 − ξ∗2 | < δ, |ξ3| < δ then

e
∫ T
0 f3(t,x(t,|ξ|)dt > ε.

Again iv) has been employed. Therefore, we can consider the following
homotopy

H : [0, 1]× [−δ, δ]× [ξ∗2 − δ, ξ∗2 + δ]× [−δ, δ] −→ R3

H(λ, ξ1, ξ2, ξ3) = (ξ1α1(λ, ξ1, ξ2, ξ3), ξ2α2(λ, ξ1, ξ2, ξ3), ξ3α3(λ, ξ1, ξ2, ξ3))

αi(λ, ξ1, ξ2, ξ3) = e
∫ T
0 fi(t,x(t,(|ξ1|,|ξ2|,λ|ξ3|))dt for i = 1, 2

α3(λ, ξ1, ξ2, ξ3) = (1− λ)ε + λe
∫ T
0 f3(t,x(t,|ξ|)dt

H is an admissible homotopy since as

(1− λ)ε + λe
∫ T
0 f3(t,x(t,(|ξ1|,|ξ2|,|ξ3|))dt ≥ ε > 1

then Hλ does not have fixed point for ξ3 6= 0 in the boundary of [−δ, δ] ×
[ξ∗2−δ, ξ∗2 +δ]× [−δ, δ] and when ξ3 = 0 we obtain the same conclusion using
the hypotheses i). For λ = 0 we have

H0 = P̂ |{1,2} × ε idR.

Using the product formula for the index and the previous step, we conclude
that indR3(P̂ , (0, ξ∗2 , 0)) = −1. Reasoning analogously we can deduce the
same conclusion for the other fixed points.
Conclusion:
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We have seven fixed points, namely (0, 0, 0), (±ξ∗1 , 0, 0), (0,±ξ∗2 , 0), (0, 0,±ξ∗3)
with index equal to -1. We know that there exists BR(0) ⊂ R3 which verifies
that (0, 0, 0),(±ξ∗1 , 0, 0),(0,±ξ∗2 , 0),(0, 0,±ξ∗3) ∈ BR(0) and

degR3(id− P̂ , BR(0)) = 1.

Using the additivity of the degree and i), we conclude that P̂ must a fixed
point in some octant but from the expression of P̂ it is deduced that there
exists a fixed point in Int(R3

+).

4 Examples and some remarks

Now we are going to apply our results to concrete examples. In all cases it is
assumed that the coefficient αi(t) and βi(t) are continuous and T -periodic.
Competitive systems of May-Leonard type





ẋ1 = x1(1− x1 − α1(t)x2 − β1(t)x3)
ẋ2 = x2(1− β2(t)x1 − x2 − α2(t)x3)
ẋ3 = x3(1− α3(t)x1 − β3(t)x2 − x3)

(10)

with 0 < αi(t) < 1 < βi(t) for i = 1, 2, 3. From the inequalities

ẋi 6 xi(1− xi) if i = 1, 2, 3

we easily deduce that the system (10) is dissipative. Applying the corollary
5, we deduce that (10) admits a coexistence state. This conclusion can be
also obtained applying the result in [11].
Predator-prey with a common competitor





ẋ1 = x1(1− x1 − α1(t)x2 − β1(t)x3)
ẋ2 = x2(1− β2(t)x1 − x2 + α2(t)x3)
ẋ3 = x3(1− α3(t)x1 − β3(t)x2 − x3)

(11)

with 0 < α1(t), α3(t) < 1 and α2(t) > 0; βi(t) > 1 for i=1,2,3. In the system
(11), there is a predator-prey relationship between the species 2 and 3 and
the species 1 is a competitor for both of them. From the inequalities

ẋ1 6 x1(1− x1)

ẋ3 6 x3(1− x3)

we deduce that for
lim sup

t→∞
x1(t) ≤ 1
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lim sup
t→∞

x3(t) ≤ 1.

Hence, for M > 1 and large values of t, we deduce that

ẋ2 ≤ x2(1− x2 + M ‖ α2 ‖∞)

we deduce that the system (11) is dissipative. Now, applying the corollary
5, we deduce that (11) admits a coexistence state.
Switching from cooperation to competition





ẋ1 = x1(1 + (1− x1)x1 + (α1(t)− x2)x2 + (β1(t)− x3)x3)
ẋ2 = x2(1 + (β2(t)− x1)x1 + (1− x2)x2 + (α2(t)− x3)x3)
ẋ3 = x3(1 + (α3(t)− x1)x1 + (β3(t)− x2)x2 + (1− x3)x3)

(12)

with 0 < αi(t) < 1 < βi(t) for i = 1, 2, 3. In this model there is cooperation
relationship for small populations and competition for large ones. We can
also apply the corollary 5 in this model and deduce that (12) admits a co-
existence state.

After these examples we are going to interpret the condition iv) of the
theorem 3. Consider the Poincaré map of the system (3)

P (ξ1, ξ2, ξ3) = (ξ1e
∫ T
0 f1(t,x(t,ξ))dt, ξ2e

∫ T
0 f2(t,x(t,ξ))dt, ξ3e

∫ T
0 f3(t,x(t,ξ))dt).

For example, if
∫ T
0 f2(t, x(t, ξ∗1e1))dt > 0 we deduce that in a neighborhood

of ξ∗1e1 the species 2 increases its size. In fact, when the functions fi are
differentiable, we observe that e

∫ T
0 fi+1(t,x(t,ξ∗i ei))dt and e

∫ T
0 fi−1(t,x(t,ξ∗i ))dt are

the Floquet multipliers associated to the eigenvectors ei+1, ei−1. Therefore,
if the system (3) is τ -cyclic we have that

∫ T
0 f2(t, x(t, ξ∗1e1))dt ≥ 0. In

addition the condition iv) is essential since in [11], it is given a competitive
system verifying i), ii), iii) and does not have a coexistence state.
Now, we are going to prove that the hypotheses of the theorem 3 imply
that the system is τ -cyclic. The proof of this fact is based on the theory of
translation arcs. The reader who wishes information about translation arcs
can consult [3], [9].
Assume that {

ẋ1 = x1f1(t, x1, x2)
ẋ2 = x2f2(t, x1, x2).

(13)

is T -periodic, all the solutions are bounded in the future and does not have
coexistence states. Then ω(x0) ⊂ Fix(P̂ ) and so it is connected. The
ω-limit is defined as

ω(x0) = {q ∈ R2 : ∃σ(n) →∞ such that P̂ σ(n)(x0) → q}.
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Arguing for contradiction. Assume that there exists x0 ∈ Int(R2
+) so that

y0 ∈ ω(x0) ∩
(
R2

+\Fix(P̂ )
)
, analogously one might reason with the other

quadrants. Using that y0 6∈ Fix(P̂ ) we deduce that there exists D a disk
centered at y0 so that D ∩ P̂ (D) = ∅. Now, as y0 ∈ ω(x0), we deduce that
there exists z0 ∈ Int(R2

+) ∩ D such that PN0(z0) ∈ Int(R2
+) ∩ D for some

N0 > 1. After these considerations, consider D1 a topological disk contained
in Int(R2

+) ∩ D so that z0, P̂N0(z0) ∈ D1. Therefore, we can construct a
translation arc γ ⊂ Int(R2

+) so that z0, P̂
N0(z0) ∈ γ. This is a contradiction

since γ ∪ P̂ (γ) ∪ ... ∪ P̂N0(γ) ⊂ Int(R2
+) and so it does not locate any fixed

point. We deduce that ω(x0) is connected using the proposition 9 of the
chapter 3 in [9].
From the hypotheses of the theorem 3 and the previous result, we deduce
that for P̂ |{1,2} the set ω(x0) is either (0, 0) or (±ξ∗1 , 0) or (0,±ξ∗2). If we
take x0 ∈ Int(R2

+), using the condition iii) we deduce that ω(x0) can not
be (0, 0), we obtain the same conclusion for (ξ∗1 , 0) using the condition iv).
For the other subsystems we can reason analogously.

Under the hypotheses of the theorem 3, we can not provide any information
on the stability of the coexistence state since in the May-Leonard system the
positive equilibrium can be stable or unstable. We will study the problem
of stability of the coexistence states in future works.
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