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Abstract. We study the existence of twist periodic solutions of second order
differential equations with an attractive-repulsive singularity. Such twist peri-

odic solutions are stable in the sense of Lyapunov. The proof is based on the
third order approximation method in combination with some location infor-

mation obtained by the averaging method and the method of upper and lower

solutions on the reversed order.

1. Introduction

Historically, differential equations with singularities arose naturally in the study
of the motion of particles under the influence of gravitational or electrostatic forces.
Nowadays, there is a wide range of nonlinear models involving singular terms, that
is, functions which become infinite at certain values of the state variable. If we
restrict our attention to periodic boundary conditions, the recent monograph [21]
presents a collection of singular models arising in different areas of the applied
sciences, as well as a suitable list of references.

Although there are some earlier references, a major landmark on the mathemati-
cal treatment of the periodic problem with singularities was the paper by Lazer and
Solimini [11], in which it was studied the existence of positive T -periodic solutions
for the problem

(1) ẍ =
l

xα
− h(t),

where α > 0, l ∈ R \ {0} and h is a continuous and T -periodic function. The case
of an attractive singularity l > 0 is easily handled by means of upper and lower
solutions, whereas the repulsive case l < 0 is more delicate and the so-called strong
force assumption α ≥ 1 is necessary in some way. After this seminal paper, the
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question of the existence of periodic solutions of singular differential equations has
been studied by many researchers. Usually, the proof is based on the method of
upper and lower solutions, degree theory and fixed point theorems. See [15, 19, 25]
and the references therein.

In this paper, we analyze the singular equation with a small parameter

(2) ẍ =
g(t)

xα
− εh(t)

xβ
,

and the equation without parameter

(3) ẍ =
g(t)

xα
− h(t)

xβ
,

where α, β > 0 and g, h are continuous and T -periodic functions.
There are several reasons that make equations (2)-(3) valuable to study. They

can be regarded in some sense as an extension of the original Lazer-Solimini equation
(1), that arises from (3) when g is constant and β = 0. Besides, equation (3) is
influenced by the action of two different singular terms. A full understanding of the
effects of each term in the dynamics of the equation is a highly non-trivial problem.
In Section 3, the weight h may in principle change sign. This fact is regarded in the
literature as a problem with indefinite weight, which is in general more difficult to
handle if compared with the case of coefficients with definite signs. This situation
appears for instance in the Gylden-Meshcherskii equation, which can be viewed as a
Kepler problem with variable mass and describe a variety of phenomena in Celestial
Mechanics and Astrophysics, including the evolution of binary stars, dynamics of
particles around pulsating stars, photogravitational effects, solar sails and many
others (see [1, 4, 8, 16]). The evolution of the radial component of the motion obeys
an equation like (3), where the first term of the right-hand side is the centrifugal
force (where g(t) ≡ L2 is the constant angular momentum) and the second term is
the gravitational force, that can be modulated by a variation of the luminosity or a
change of the cross section of the solar sail. A second potential range of applicability
is the pulse propagation in nonlinear optical fibers, as described in [21, Section 5.4]
(see in particular equation (5.28) therein).

In the literature, it is said that equations (2)-(3) present an attractive-repulsive
singularity. Up to now, there are few results about the existence of periodic solutions
of this kind of equations [2, 10, 13, 23].

Compared with the existence of periodic solutions, the study of the Lyapunov sta-
bility of periodic solutions for singular differential equations is more recent and there
are still few works in the literature up to now. Here we would like to give a short
brief. As far as we know, along this line, the first result was proved in [18], in which
the second author proves that for each p with p̄ = 0 and γ ∈ (0, 1/8)\{1/32, 1/18},
there exists a finite number of values F = {δ1, · · · , δn} such that equation

ẍ+ γ(1 + δp(t))x =
1

x

has a twist periodic solution for all δ ∈ [0, 1
8γ − 1]/F. Later, such a result was

improved in [22]. In [20], it is proved that for any p with p̄ large enough, equation

(4) ẍ+ a(t)x =
b(t)

xα
+ p(t)
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has a twist periodic solution if the linear equation ẍ+ a(t) = 0 is 4-elementary and
b(t) > 0 for every t. Finally, for the case p(t) ≡ 0, in [3, 5], it was proved that (4)
has a twist periodic solution if a, b > 0 and the L1-norm of a is small enough.

The stability results contained in the previous cited papers are devoted to differ-
ential equations with a repulsive singularity. However, to our knowledge there are
no results on the Lyapunov stability of periodic solutions of differential equations
which admits an attractive-repulsive singularity. The purpose of this paper is to
fill, at least partially, this gap.

After some preliminaries in Section 2, in Section 3 we apply the averaging method
to obtain a stability result (Theorem 3.2) for the equation (2) with a small parame-
ter. The result is valid for weight g with definite sign and h with indefinite sign and
uses heavily the asymptotic information provided by the averaging method. Thus,
it is a kind of perturbative result. To obtain a global stability result for equation
(3), Section 4 exploits the location information provided by the theory of upper and
lower solutions, at the cost of assuming a definite sign on h.

Throughout this paper, we always assume that α > β > 0. We remark that such
condition is natural in some sense if we want to find Lyapunov stable solutions. In
fact, if β > α > 0 the upper and lower solutions constructed in Section 4 are in
the right order, leading to an unstable solution (see [6]). This case has been also
considered in [13] by the averaging method, obtaining unstable solutions. In the
limiting case α = β, equations (2)-(3) are singular equations with indefinite weight,
with rather different properties. For instance, if g, h are positive periodic functions,
no periodic solutions of (2) exist for small values of ε.

2. Preliminaries

2.1. Notations. Throughout this paper, for a given T -periodic function e, we use
the notations

e∗ = inf
t∈[0,T ]

e(t), e∗ = sup
t∈[0,T ]

e(t), ẽ∗ = inf
t∈[0,T ]

|e(t)|,

and

ē =
1

T

∫ T

0

e(t)dt.

Finally, let

γ =
1

α− β
.

Since α > β > 0, we have γ ∈ (0,∞).

2.2. The twist coefficient. We summarize some basic facts about the method of
the third approximation and the twist coefficient. Consider the scalar equation

(5) ü+ f(t, u) = 0,

where f : R × R → R is T -periodic in t and has continuous derivatives in u up
to order 4. Let ψ(t) be a T -periodic solution of (5). By translating the periodic
solution ψ(t) of (5) to the origin, we obtain the third order approximation

(6) ü+ a(t)u+ b(t)u2 + c(t)u3 + o(u3) = 0,

where

a(t) = fu(t, ψ(t)), b(t) =
1

2
fuu(t, ψ(t)), c(t) =

1

6
fuuu(t, ψ(t)).
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The linearized equation of (6) is the Hill equation

(7) ü+ a(t)u = 0.

We say (7) is elliptic if its multipliers λ1, λ2 satisfy λ1 = λ2, |λ1| = 1, λ1 6= ±1.
The T -periodic solution ψ of (5) is called 4-elementary if the multipliers λ of (7)
satisfy λq 6= 1 for 1 ≤ q ≤ 4. The rotation number ρ is defined by the relation
λ = exp(±iρT), and for convenience we write θ = Tρ. The T -periodic solution ψ(t)
is said to be of twist type if the first twist coefficient

(8) µ =

∫∫
[0,T ]2

b(t)b(s)r3(t)r3(s)χθ(|ϕ(t)− ϕ(s)|)dtds− 3

8

∫ T

0

c(t)r4(t)dt

is non-zero, where Ψ(t) = r(t)(exp)(iϕ(t)) is the complex solution of (7) with initial
conditions Ψ(0) = 1,Ψ′(0) = i and the kernel χ is given by

χθ(ι) =
3 cos(ι− θ/2)

16 sin(θ/2)
+

cos 3(ι− θ/2)

16 sin(3θ/2)
, ι ∈ [0, θ].

It is worth to observe that an alternative way to compute the rotation number ρ is
given by the formula

ρ =
1

T

∫ T

0

ds

r2(s)
.

The presented formulation for the twist coefficient is a compact form, obtained
in [24] (see also [12]), of the original Ortega’s formula [14]. As a consequence of
Moser’s invariant curve theorem [17], a solution of twist type is Lyapunov stable
as a consequence of the presence of quasiperiodic solutions (invariant curves of the
Poincaré map) in an arbitrarily small neighbor of the solution. Moreover, near
a twist periodic solution the typical KAM scenario arises generically, including
stability islands, chaotic regions and the existence of infinitely many subharmonics
with minimal periods tending to infinity.

In order to determine the sign of the first twist coefficient, it is important to
obtain sharp upper and lower bounds for r(t) and the rotation number ρ ≡ ρ(a),
which in general is a difficult task. In [5], when a is nonnegative and has a positive
mean ā, the first author and Zhang obtained the following asymptotic behavior.

Lemma 2.1. Assume that a in (7) is nonnegative and has a positive mean ā. Then
r(t) =: r(t, a) and θ =: θ(a) in the formula (8) satisfies the asymptotic behavior

r(t) = ā−1/4(1 +O(ā)), θ(a) = ā1/2(1 +O(ā)), when ā→ 0+.

2.3. Averaging method. The averaging method is perhaps the most popular
method for the determination of periodic solutions on differential equations de-
pending on a small parameter. Here, we will just state the classical result for the
sake of completeness. For a complete proof and more information about the history
of this topic, we refer for instance to [9, Section V.3].

Let us define a continuous function f : R × Ω × [0,+∞) → Rn, where Ω is a
domain contained in Rn, such that f(t, x, ε) is T -periodic in t and of class C1 in
x, ε. The objective is to find T -periodic solutions of the system

(9) ẋ = εf(t, x, ε)

for small values of the parameter ε. To this aim, let us define the “averaged”
function

f0(x) =
1

T

∫ T

0

f(t, x, 0)dt.
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A zero x0 of f0, f0(x0) = 0, is said to be non-degenerate if the determinant of the
Jacobian matrix of f0 evaluated in x0 is different from zero.

Proposition 1. Assume that f0 has a non-degenerate zero x0 ∈ Ω. Then there
exists ε0 > 0 and a function x(t, ε), continuous for (t, ε) ∈ R × [0, ε0], such that
x(t, ε) is a T -periodic solution of (9) for any ε ∈ [0, ε0] and x(t, 0) = x0.

2.4. Upper and lower solutions. The basic theory of upper and lower solutions
is exposed in full detail in [7]. For a given second-order scalar equation

(10) ẍ+ f(t, x) = 0

with T -periodic dependence of t, a T -periodic function α(t) is said to be a lower
solution if

α̈+ f(t, α) ≥ 0

for all t, whereas a T -periodic function β(t) is said to be a upper solution if

β̈ + f(t, β) ≤ 0.

A couple of upper and lower solutions such that α(t) ≤ β(t) for all t provides a T -
periodic solution in between without further assumptions. On the reversed order,
however, it is required a suitable non-resonance condition.

Proposition 2. Assume that there exists upper and lower solutions of (10) such
that β(t) ≤ α(t) for all t. Under the assumption

fx(t, x) ≤ π2

T 2
, for any x ∈ [β(t), α(t)],

equation (10) has a T -periodic solution x such that β(t) ≤ x(t) ≤ α(t) for every t.

3. Twist periodic solutions of equation (2)

In this section, we will prove that (2) has a twist periodic solution if ε is small
enough, g is positive and h̄ is positive.

Lemma 3.1. Assume that ḡ · h̄ > 0. Then equation (2) has a T -periodic solution
x(t, ε) if ε is small enough. Moreover, the following asymptotic behavior holds

(11) lim
ε→0

εγx(t, ε) = σγ , uniformly in t,

where

σ =
ḡ

h̄
.

Proof. To this aim, we rewrite the equation as the planar system

(12)
ẋ = y,

ẏ =
g(t)

xα
− εh(t)

xβ
.

Using the following variables with a small parameter

x = uε−γ ,

y = vε
γ(α−1)

2 ,

ε = ε
γ(α+1)

2 ,

system (12) is equivalent to the system

(13)
u̇ = εv,

v̇ = ε

(
g(t)

uα
− h(t)

uβ

)
.
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The averaged system corresponding to system (13) is just

(14)
ξ̇ = εν,

ν̇ = ε

(
g

ξα
− h

ξβ

)
.

At this point is where we use the assumption ḡ · h̄ > 0. It is a matter of simple
computations to verify that the averaged system (14) has a unique constant solution

(ξ0, ν0) = (σγ , 0) ,

which is non-degenerate, that is, the determinant of the Jacobian matrix evaluated
on (ξ0, ν0) is different from zero. Then by Proposition 1, the equilibrium (ξ0, ν0)
is continuable for small ε, that is, there exists ε0 such that system (13) has a
T -periodic solution (u(t, ε), v(t, ε)) for 0 < ε < ε0, tending uniformly to (ξ0, ν0) as
ε→ 0+. Going back to the original variables, equation (2) has a T -periodic solution
x(t, ε) for ε small enough and we have the asymptotic behavior (2). �

Theorem 3.2. Assume that g and h̄ are positive. Then, the T -periodic solution
x(t, ε) obtained in Lemma 3.1 is of twist type if ε is small enough and the following
inequalities are satisfied

(15) 2α2 + 2β2 + 7αβ + α+ β − 1 6= 0,

(16)
αg∗
βh∗

≥ σ.

Proof. For simplicity, we use x(t) to denote the periodic solution x(t, ε). Let us fix

f(t, x) =
εh(t)

xβ
− g(t)

xα
.

Then the coefficients of the third-order approximation are

(17) a(t) = a(t, ε) =
αg(t)

xα+1
− εβh(t)

xβ+1
,

(18) b(t) = b(t, ε) =
1

2

[
εβ(β + 1)h(t)

xβ+2
− α(α+ 1)g(t)

xα+2

]
,

and

(19) c(t) = c(t, ε) =
1

6

[
α(α+ 1)(α+ 2)g(t)

xα+3
− εβ(β + 1)(β + 2)h(t)

xβ+3

]
.

By inserting the limit (11) into (17)-(19), we have

(20) lim
ε→0

a(t)

εγ(α+1)
=

αg(t)

σγ(α+1)
− βh(t)

σγ(β+1)
,

(21) lim
ε→0

b(t)

εγ(α+2)
=

1

2

[
β(β + 1)h(t)

σγ(β+2)
− α(α+ 1)g(t)

σγ(α+2)

]
,

and

(22) lim
ε→0

c(t)

εγ(α+3)
=

1

6

[
α(α+ 1)(α+ 2)g(t)

σγ(α+3)
− β(β + 1)(β + 2)h(t)

σγ(β+3)

]
.
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Using condition (16), we obtain

lim
ε→0

a(t)

εγ(α+1)
=

αg(t)

σγ(α+1)
− βh(t)

σγ(β+1)

≥ αg∗
σγ(α+1)

− βh∗

σγ(β+1)

≥ σβh∗

σγ(α+1)
− βh∗

σγ(β+1)
= 0,

which implies that a(t) is nonnegative if ε is small enough. This step requires the
hypothesis that g is positive (and not only its mean value).

Moreover,

lim
ε→0

ā

εγ(α+1)
= (α− β)

h̄γ(α+1)

ḡγ(β+1)
.

By Lemma 2.1 and straighforward computations, we obtain

(23) lim
ε→0

θ√
εγ(α+1)

= T
√
α− β

√
h̄γ(α+1)

ḡγ(β+1)
,

and

(24) lim
ε→0

ε
γ(α+1)

4 r(t) =
1

4
√
α− β

4

√
ḡγ(β+1)

h̄γ(α+1)
.

From [12, Lemma 3.6], it follows that (7) is elliptic and 4-elementary if ε is small
enough. Moreover, it is proved in [24] that χθ(ι) is symmetric with respect to the
line ι = θ/2, χθ(x) is strictly increasing on [0, θ/2] and strictly decreasing on [θ/2, θ].
Therefore,

min
ι∈[0,θ]

χθ(ι) = χθ(0) =
3 cos(θ/2)

16 sin(θ/2)
+

cos(3θ/2)

16 sin(3θ/2)
,(25)

and

max
ι∈[0,θ]

χθ(ι) = χθ(θ/2) =
3

16 sin(θ/2)
+

1

16 sin(3θ/2)
.(26)

It follows from (25)-(26) that when ε is small enough, we obtain

χθ(ι) =
5

12θ

(
1 +O(θ2)

)
=

5

12
(T
√
ā)−1 +O(ā),

in which we have used the fact θ = Tρ and the rotation number ρ =
√
ā + O(ā)

when ā→ 0+. Therefore,

lim
ε→0

[ε
1
2γ(α+1)χθ(|ϕ(t)− ϕ(s)|)] =

5

12T

1√
(α− β)

√
ḡγ(β+1)

h̄γ(α+1)
.

Define

µ1 =

∫∫
[0,T ]2

b(t)b(s)r3(t)r3(s)χθ(|ϕ(t)− ϕ(s)|)dtds,

and

µ2 =

∫ T

0

c(t)r4(t)dt.
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Using (20)-(22), (23), (24) and the above facts, we obtain

lim
ε→0

µ2

ε2γ
= lim

ε→0

∫ T

0

c(t)

εγ(α+3)
· εγ(α+1)r4(t)dt

=

∫ T

0

1

6

[
α(α+ 1)(α+ 2)g(t)

σγ(α+3)
− β(β + 1)(β + 2)h(t)

σγ(β+3)

]
· 1

α− β
ḡγ(β+1)

h̄γ(α+1)
dt

=
T

6(α− β)

ḡγ(β+1)

h̄γ(α+1)

[
α(α+ 1)(α+ 2)ḡ

σγ(α+3)
− β(β + 1)(β + 2)h̄

σγ(β+3)

]
=

T

6(α− β)

[
α(α+ 1)(α+ 2)

σ2γ
− β(β + 1)(β + 2)

σ2γ

]
=

T

6σ2γ
(α2 + αβ + β2 + 3α+ 3β + 2).

Note that

lim
ε→0

µ1

ε2γ
= lim

ε→0

∫∫
[0,T ]2

[
b(t)

εγ(α+2)

] [
b(s)

εγ(α+2)

] [
ε

3
4γ(α+1)r3(t)

]
×

[
ε

3
4γ(α+1)r3(s)

] [
ε

1
2γ(α+1)χθ(|ϕ(t)− ϕ(s)|)

]
dtds.

By the same procedure, we obtain

lim
ε→0

µ1

ε2γ
=

∫∫
[0,T ]2

1

4

[
β(β + 1)h(t)

σγ(β+2)
− α(α+ 1)g(t)

σγ(α+2)

] [
β(β + 1)h(s)

σγ(β+2)
− α(α+ 1)g(s)

σγ(α+2)

]

× 1

(α− β)3/2

[
ḡγ(β+1)

h̄γ(α+1)

]3/2
5

12T

1√
(α− β)

√
ḡγ(β+1)

h̄γ(α+1)
dtds

=
5

48T

1

(α− β)2
ḡ2γ(β+1)

h̄2γ(α+1)

∫∫
[0,T ]2

[
β(β + 1)h(t)

σγ(β+2)
− α(α+ 1)g(t)

σγ(α+2)

]
×

[
β(β + 1)h(s)

σγ(β+2)
− α(α+ 1)g(s)

σγ(α+2)

]
dtds

=
5

48T

1

(α− β)2
ḡ2γ(β+1)

h̄2γ(α+1)

[
β(β + 1)T h̄

σγ(β+2)
− α(α+ 1)T ḡ

σγ(α+2)

]2
=

5T

48σ2γ
(α+ β + 1)2.

Thus,

lim
ε→0

µ

ε2γ
= lim

ε→0

µ1 − 3
8µ2

ε2γ

=
T

σ2γ

[
5(α+ β + 1)2

48
− α2 + αβ + β2 + 3α+ 3β + 2

16

]
=

T

48σ2γ
(2α2 + 2β2 + 7αβ + α+ β − 1).

Under the condition (15), we know

lim
ε→0

µ

ε2γ
6= 0,

which means that the twist coefficient µ is non-zero when ε is small enough. Now
the proof is finished. �
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Remark 1. As a consequence of Theorem 3.2, we can obtain that the following
equation

(27) ẍ =
λg(t)

xα
− h(t)

xβ

has a twist T -periodic solution x(t, λ) if λ is large enough and α, β satisfy (15)-(16).
In fact, if we introduce the variable

x = λ
1

α+1 y,

then (27) is changed to the equation

ÿ =
g(t)

yα
− εh(t)

xβ
,

where

ε = λ−
β+1
α+1 .

Note that ε→ 0 if and only if λ→ +∞.

4. Twist periodic solutions of equation (3)

Although in the last section we have obtained a stability result for equation (2),
we do not know whether there exists a twist periodic solution for (3) in which no
small parameters are involved. In this section, we will show that (3) also may
admit stable periodic solutions. However, we have to assume that both g and h are
positive functions.

The following stability result for (5) was proved in [22]. The original result deals
with the equation with the period 2π, however, after checking the details of the
proof, we note that the following condition (iii) remains unchanged for any period
T .

Lemma 4.1. [22, Theorem 3.1] Assume that there exists a T -periodic solution ψ

of (5) such that (i) 0 < a∗ ≤ a∗ < ( π
2T )2; (ii) c∗ > 0; (iii) 10b̃2∗a

3/2
∗ > 9c∗(a∗)5/2.

Then the solution ψ(t) of (5) is of twist type.

Lemma 4.2. Assume that g, h are positive, T -periodic functions and the following
inequality holds

(28)
(g∗)γ(β+1)

h
γ(α+1)
∗

>

(
T

π

)2 (
α∆γ(α+1) − β

)
,

where

∆g =
g∗

g∗
, ∆h =

h∗

h∗
, ∆ = ∆g ·∆h.

Then equation (3) has at least one T -periodic solution such that

(29)
( g∗
h∗

)γ
< x(t) <

(
g∗

h∗

)γ
.

Proof. Note that

ψ1(t) =
( g∗
h∗

)γ
is a constant strict upper function and

ψ2(t) =

(
g∗

h∗

)γ
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is a constant strict lower function on the reserved order ψ2 > ψ1. Let us fix

(30) f(t, x) =
h(t)

xβ
− g(t)

xα
.

Note that

fx(t, x) =
αg(t)

xα+1
− βh(t)

xβ+1

≤ αg(t)

ψα+1
1

− βh(t)

ψβ+1
2

≤ αg∗(
g∗
h∗

)γ(α+1)
− βh∗(

g∗

h∗

)γ(β+1)
.

By Proposition 2, a sufficient condition for the existence of T -periodic solution of
(3) is

αg∗(
g∗
h∗

)γ(α+1)
− βh∗(

g∗

h∗

)γ(β+1)
<
( π
T

)2
,

which is equivalent to condition (28). �

Theorem 4.3. Let us assume that

(31)
(g∗)γ(β+1)

h
γ(α+1)
∗

>

(
2T

π

)2 (
α∆γ(α+1) − β

)
,

and

(32) ∆g <

(
5[α(α+ 1)− β(β + 1)]2

3(α− β)[α(α+ 1)(α+ 2)− β(β + 1)(β + 2)]

)2/7

.

Then there exists a constant ∆0 > 1 such that the T -periodic solution x(t) of (3)
obtained in Lemma 4.2 is of twist type if ∆ < ∆0.

Proof. We will apply Lemma 4.1. Let us fix f(t, x) as in (30). Then the coefficients
of the third-order approximation are

a(t) =
αg(t)

xα+1
− βh(t)

xβ+1
,

b(t) =
1

2

[
β(β + 1)h(t)

xβ+2
− α(α+ 1)g(t)

xα+2

]
,

c(t) =
1

6

[
α(α+ 1)(α+ 2)g(t)

xα+3
− β(β + 1)(β + 2)h(t)

xβ+3

]
.

Using the estimates (29), we have

a(t) >
αg

γ(α+1)
∗ h

γ(α+1)
∗ − β(g∗)γ(α+1)(h∗)γ(α+1)

g
γ(β+1)
∗ (g∗)γ(α+1)

,

and

(33) a(t) <
α(g∗)γ(α+1)(h∗)γ(α+1) − βgγ(α+1)

∗ h
γ(α+1)
∗

g
γ(α+1)
∗ (g∗)γ(β+1)

.

Note that if

∆ <

(
α

β

) 1
γ(α+1)

=: ∆1,
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then

a∗ >
αg

γ(α+1)
∗ h

γ(α+1)
∗ − β(g∗)γ(α+1)(h∗)γ(α+1)

g
γ(β+1)
∗ (g∗)γ(α+1)

=

(
α− β∆γ(α+1)

)
g∗h

γ(α+1)
∗

(g∗)γ(α+1)
> 0.

Using this estimate together with (31) in (33), it is easy to verify that (i) of Lemma
4.1 holds.

Since

c(t) >
α(α+ 1)(α+ 2)g

γ(α+3)
∗ h

γ(α+3)
∗ − β(β + 1)(β + 2)(g∗)γ(α+3)(h∗)γ(α+3)

6g
γ(α+3)
∗ (g∗)γ(β+3)

,

then (ii) of Lemma 4.1 is satisfied if

g
γ(α+3)
∗ h

γ(α+3)
∗

(g∗)γ(α+3)(h∗)γ(α+3)
>
β(β + 1)(β + 2)

α(α+ 1)(α+ 2)
,

which is equivalent to

∆γ(α+3) <
α(α+ 1)(α+ 2)

β(β + 1)(β + 2)
,

and it holds if

∆ <

(
α(α+ 1)(α+ 2)

β(β + 1)(β + 2)

)1/γ(α+3)

=: ∆2.

Note that

b(t) <
β(β + 1)(g∗)γ(α+2)(h∗)γ(α+2) − α(α+ 1)g

γ(α+2)
∗ h

γ(α+2)
∗

2g
γ(β+2)
∗ (g∗)γ(α+2)

=
[β(β + 1)∆γ(α+2) − α(α+ 1)]g∗h

γ(α+2)
∗

2(g∗)γ(α+2)

<
[β(β + 1)∆

γ(α+2)
3 − α(α+ 1)]g∗h

γ(α+2)
∗

2(g∗)γ(α+2)
.

Then b(t) < 0 for all t if

∆ <

(
α(α+ 1)

β(β + 1)

)1/γ(α+2)

=: ∆3,

and therefore,

b̃∗ >
α(α+ 1)g

γ(α+2)
∗ h

γ(α+2)
∗ − β(β + 1)(g∗)γ(α+2)(h∗)γ(α+2)

2g
γ(β+2)
∗ (g∗)γ(α+2)

> 0,

because

b(t) <
β(β + 1)(g∗)γ(α+2)(h∗)γ(α+2) − α(α+ 1)g

γ(α+2)
∗ h

γ(α+2)
∗

2g
γ(β+2)
∗ (g∗)γ(α+2)

.

Finally, we have

c(t) >
α(α+ 1)(α+ 2)g

γ(α+3)
∗ h

γ(α+3)
∗ − β(β + 1)(β + 2)(g∗)γ(α+3)(h∗)γ(α+3)

6g
γ(α+3)
∗ (g∗)γ(β+3)
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and

c(t) <
α(α+ 1)(α+ 2)(g∗)γ(α+3)(h∗)γ(α+3) − β(β + 1)(β + 2)g

γ(α+3)
∗ h

γ(α+3)
∗

6g
γ(α+3)
∗ (g∗)γ(β+3)

.

Using the above facts and by direct computations, we can get that (iii) of Lemma
4.1 holds if the following inequality holds

(34) P1(∆) > P2(∆),

where

P1(∆) = 5
1

∆
7/2
g

[α(α+ 1)− β(β + 1)∆γ(α+2)]2[α− β∆γ(α+1)]3/2,

and

P2(∆) = 3[α(α+ 1)(α+ 2)∆γ(α+3) − β(β + 1)(β + 2)][α∆γ(α+1) − β]5/2.

Under the condition (32), we know that P1(1) > P2(1). Therefore by continuity
there exists ∆4 such that (34) holds whenever ∆ < ∆4.

Define

∆0 = min{∆1,∆2,∆3,∆4}.
Then all conditions of Lemma 4.1 are satisfied if ∆ < ∆0. Finally ∆0 depends only
on the exponents α, β. �
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[15] I. Rachunková, M. Tvrdý and I. Vrkoc̆, Existence of nonnegative and nonpositive solutions

for second order periodic boundary value problems, J. Differential Equations, 176 (2001),

445-469.
[16] D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically chang-

ing equivalent gravitational parameter, Astron. Nachr. 313 (1993), 257-263.

[17] C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer-Verlag, Berlin, 1971.
[18] P. J. Torres, Twist solutions of a Hill’s equations with singular term, Adv. Nonlinear Stud. 2

(2002), 279-287.

[19] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equa-
tions via a Krasnoselskii fixed point theorem, J. Differential Equations, 190 (2003), 643-662.

[20] P. J. Torres, Existence and stability of periodic solutions for second order semilinear differen-
tial equations with a singular nonlinearity, Proc. Royal Soc. Edinburgh Sect. A. 137 (2007),

195-201.

[21] P.J. Torres, Mathematical Models with singularities - A Zoo of Singular Creatures, Atlantis
Press, 2015.

[22] P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations, Nonlinear

Anal. 56 (2004), 591-599.
[23] A.J. Urena, Periodic solutions of singular equations, Topol. Methods Nonlinear Anal., to

appear.

[24] M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian
equation, J. London Math. Soc. 67 (2003), 137-148.

[25] M. Zhang, Periodic solutions of equations of Ermakov-Pinney type, Adv. Nonlinear Stud. 6

(2006), 57-67.

E-mail address: jifengchu@126.com

E-mail address: ptorres@ugr.es

E-mail address: fengwang188@163.com


	1. Introduction
	2. Preliminaries
	2.1. Notations.
	2.2. The twist coefficient
	2.3. Averaging method
	2.4. Upper and lower solutions

	3. Twist periodic solutions of equation (2)
	4. Twist periodic solutions of equation (3)
	References

