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Abstract. We study systems that are monotone in a generalized sense
with respect to cones of rank 2. The main result of the paper is the
existence of a Poincaré-Bendixson property for some solutions of those
systems.

1. Introduction

Monotone dynamical systems refer to difference and differential equations
whose solutions respect an order structure. Though they have been stud-
ied for a long time, it was Hirsch in [5, 6, 7, 8, 9, 10] who started the full
description of their main dynamical properties in the setting of cooperative
and competitive systems. Later extensions to other classes of equations (as
periodic or delay equations) and the integration with some existing mono-
tonicity results for parabolic partial differential equations have built up an
extensive theory to which some monographs (as [11] and [20]) have been
devoted (see also [4] for applications in the setting of parabolic partial dif-
ferential equations). In these references one can appreciate the richness of
this subject in what concerns as much the amount of sharp theoretical results
as the wide range of applications to real models.

Let us make a brief description of that theory for continuous semiflows. A
convex cone K in phase space is considered, and hence the partial ordering
induced by it. A semiflow is monotone if ordered initial states remain ordered
as they evolve along the flow. From this it is shown that the dynamical
behavior of the semiflow is strongly determined by the properties of its set
of equilibrium points. In fact the most outstanding result is the convergence
of almost every positive semiorbit to equilibrium points (see [11]).

A geometrical insight of the theory of monotone semiflows will help to
motivate the present paper. Basically the long-term behavior of solutions is
conveniently projected either over straight lines contained in K∪−K or over
hyperplanes outside K ∪ −K. In the first case we get a one-dimensional,
and hence trivial, dynamics. In the second case complicated behavior may
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appear, but the point is that it is highly unstable. Of course it is the further
usage of the order structure what leads to the extremely precise description
of the dynamics achieved in this theory. However it is conceivable that
weaker structures which induce similar well-behaved projections would allow
to establish dynamical properties for other classes of semiflows. Actually by
projecting over linear subspaces of dimension greater than 1 it is expectable
to capture less stringent dynamical phenomena.

In this paper we try to carry out this task by employing the so-called
cones of rank k. These sets were already considered in [13] in connection
with generalization of Krein-Rutman theory, and they are defined as closed
sets that consist of straight lines and which contain a linear subspace of
dimension k and no linear subspace of higher dimension. A usual convex
cone K for example defines the generalized cone K ∪ −K that is of rank
1. By introducing then a new notion of monotone semiflows with respect
to these cones we are able to prove the existence of good projections for
them as just a convex cone does. Concretely by using cones of rank 2 we are
able to project part of the dynamics into planes. From this we deduce the
Poincaré-Bendixson property for some orbits, that is, we prove that some
compact omega-limits sets without equilibrium points consist just of one
closed orbit.

Some preceding works have already exploited similar ideas. The classical
theory of monotone systems itself produces a Poincaré-Bendixson theorem
for competitive three-dimensional systems. We shall reinterpret it in our
setting by noticing that competitiveness can be seen as a generalized mono-
tonicity with respect to the cone of rank 2 complementary to K ∪−K. The
class of monotone cyclic feedback systems (in the finite dimensional case [14]
and in the infinite-dimensional one [15]) were also shown to verify a similar
property. In that case the very particular structure of the systems implies
another kind of monotonicity with respect to a sequence of nested cones.
Finally R. A. Smith succeeded in providing a Poincaré-Bendixson theorem
for systems having a sort of Lyapunov function. Again we shall show that
his theory is strongly related to our work. Actually our main aim in this
paper is to single out perhaps the essential ingredient in order to achieve
multidimensional versions of the Poincaré-Bendixson theorem and give in
this way a unified view of the preceding works.

We now describe how the paper is organized. We first introduce all the
basic definitions about cones of rank k and the corresponding generalized
monotonicity notion for semiflows. We define also a class of systems that
extend the classical cooperative systems. They enjoy several monotonic-
ity properties in this generalized sense and this fact enables us to state a
Poincaré-Bendixson theorem for them. This theorem will be proved along
sections 3 and 4.

In section 3 a location theorem on the omega-limit sets of our generalized
cooperative systems is given. The main tool is a perturbation argument
based in the well-known closing lemma (see [1, 18]). From this we shall
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deduce that some omega-limit sets of monotone flows with respect to cones
of rank k are in some sense k-dimensional.

In section 4 we employ the extension of Krein-Rutman theory carried out
in [2] and [13] in order to estimate the dimension of the local invariant man-
ifolds associated to closed orbits. In particular for monotone flows with re-
spect to cones of rank 2 some closed orbits are shown to have center-unstable
manifolds of dimension at most 2. Finally the theory of conjugations around
partially hyperbolic fixed points of [12] provides a sharp description of the
local behavior around those closed orbits that leads to the proof of the
Poincaré-Bendixson property.

The last section is devoted to discuss our extension of the cooperativeness
conditions and to relate it with previous works.

2. Basic definitions and Main Theorem

Many of the definitions of this section are taken from [13]. We begin with
a generalization of the concept of classical convex cone.

Definition 1. A set C ⊂ Rn is a cone of rank k if:
(1) C is closed.
(2) x ∈ C, α ∈ R ⇒ αx ∈ C.
(3) max{dim W : C ⊃ W linear subspace} = k

The closure of the set Rn −C is also a cone. We shall call it the comple-
mentary cone of C, and it will be denoted by Cc. In order to avoid trivial
situations we always suppose that C and Cc are nonempty.

As a first example consider a usual convex cone K, that is, K is a convex
closed subset consisting of rays starting at the zero vector and satisfying
K ∩ −K = {0}. It is easy to prove that the set CK = K ∪ −K is a cone
of order 1 (see [2]). These cones will be important in this paper since they
will act as a bridge between classical monotone systems and our extended
monotone systems.

If K is the convex cone of vectors with nonnegative coordinates then CK

is the cone of rank 1 of vectors with no sign changes in their coordinates.
In order to generalize this define, for a vector (x1, . . . , xn) with nonzero
coordinates, the function N(x) as the number of sign changes in the sequence
{x1, . . . , xn}. Then the sets

T (k, Rn) = {x ∈ Rn : N(x) ≤ k − 1}
are cones of rank k (see page 71 in [13]). These cones play a big role in the
theory of oscillatory matrices and are related to the integer-valued Lyapunov
functionals used in [14, 15].

As a final example we show what we call quadratic cones. Let P be a
symmetric inversible matrix of order n having k negative eigenvalues and
n− k positive eigenvalues. Then the sets

C−(P ) = {x ∈ Rn : 〈x, Px〉 ≤ 0}
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and

C+(P ) = {x ∈ Rn : 〈x, Px〉 ≥ 0}
are easily shown to be cones of order k and n− k respectively. In fact they
are complementary cones.

Definition 2. The cone C of order k is solid if
◦
C 6= ∅. C is k-solid if there

is a linear subspace W of dimension k such that W − {0} ⊂
◦
C.

It is not difficult to see that the quadratic cones C−(P ), C+(P ) are re-
spectively k-solid and n− k-solid. CK is 1-solid as long as K has nonempty
interior. In [13] it is proved that cones T (k, Rn) are k-solid too.

Fix a cone C of rank k. We want now to extend several concepts based
on the order induced by convex cones to our general setting.

First recall that, given the convex cone K, the order in Rn is defined in
the form

x ≤ y ⇔ x− y ∈ K

for any x, y ∈ Rn. The fact that this definition provides an order comes
from the convexity of K and the property K ∩ −K = {0}. Since these
two properties are not fulfilled by general cones of rank k no natural order
relation can be induced. Nevertheless the idea of points x, y to be ordered
(or related), meaning this that either x ≤ y or y ≤ x, can be written just as
x− y ∈ CK . This justifies next definition.

Definition 3. Two points x and y are said to be ordered if x−y ∈ C. They

are said to be strongly ordered if x− y ∈
◦
C.

From now on by x ∼ y we denote that x and y are ordered, and by x ≈ y
that x and y are strongly ordered.

In the theory of monotone systems an important role is played by two
types of sets: ordered and balanced sets (see [11] for definitions). These
notions are extended as follows:

Definition 4. A set S ⊂ Rn is ordered if p ∼ q for any p, q ∈ S. It is
strongly ordered if p ≈ q for any p, q ∈ S with p 6= q. The set S is balanced
if there are no points p, q ∈ C such that p ≈ q, and it is strongly balanced if
there are no p, q ∈ C with p 6= q such that p ∼ q.

Consider now M : Rn → Rn any map.

Definition 5. (1) M is positive if M(C) ⊂ C.

(2) M is strongly positive if M(C − {0}) ⊂
◦
C.

(3) M is monotone if x ∼ y implies M(x) ∼ M(y).
(4) M is strongly monotone if x ∼ y, x 6= y implies M(x) ≈ M(y).

Finally consider an autonomous equation
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(1) ẋ = F (x), x ∈ Rn,

where F is C1. We suppose that equation (1) induces a semiflow Φ(t, x)
defined for all t ≥ 0.

The monotonicity of the semiflow Φ(t, x) is understood with respect to
the x-variable and for positive t. To be precise, Φ(t, x) is monotone if

x ∼ y ⇒ Φ(t, x) ∼ Φ(t, y) for t > 0,

and strongly monotone if

x ∼ y, x 6= y ⇒ Φ(t, x) ≈ Φ(t, y) for t > 0.

We also say that Φ(t, x) is (strongly) infinitesimally monotone if the spa-
tial derivative DΦ(t, x) is a (strongly) positive operator.

It is easy to prove that the monotonicity implies the infinitesimal mono-
tonicity, but the strong monotonicity does not have to imply the strong
infinitesimal monotonicity. More interesting would be to know if the con-
verse implications hold true. Dealing with the monotonicity induced by
convex cones these implications are deduced from the integral mean value
theorem and the convexity of the cone (see section 3.1 in [11]). Since cones
of rank k (k > 1) are not convex in general we cannot assert that these two
notions are not independent.

We now give a condition over the vector field F which will imply the
two preceding notions of monotonicity. To do that we introduce, for any
p, q ∈ Rn, the matrices

Apq(t) =
∫ 1

0
DF (sΦ(t, p) + (1− s)Φ(t, q))ds

and Upq(t) the solution of

U̇ = Apq(t)U, U(0) = I.

Definition 6. We say that system (1) is C-cooperative if for every p, q ∈ Rn,
the matrix Upq(t) is strongly positive for t > 0.

Proposition 1. If system (2) is C-cooperative then the semiflow Φ(t, x) is
strongly monotone and strongly infinitesimally monotone.

Proof Given p, q ∈ Rn we have that

Φ(t, p)− Φ(t, q) = Upq(t)(p− q)

if p 6= q, and
DΦ(t, p) = Upp(t).

From this and definition 6 our assertion follows.
We are now ready to state our Poincaré-Bendixson theorem.

Theorem 1. Let C ⊂ Rn be a cone of rank 2 such that C is 2-solid and Cc

is (n− 2)-solid. Let us assume that equation (2) is C-cooperative. Let Ω be
the compact omega-limit set of a solution x(t) and suppose that:
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i) Ω has no equilibrium point.
ii) ẋ(t0) ∈ C for some t0 ∈ R.

Then Ω is a closed orbit.

We delay a discussion about C-cooperative systems and theorem 1 until
the last section. Nevertheless we make now a couple of remarks in order
to grasp what theorem 1 says. Firstly the C-cooperativeness will be im-
plied by pointwise conditions over DF (x) and it will not depend on any ex-
plicit knowledge of solutions of system (1). Secondly the Poincaré-Bendixson
property will hold only for certain solutions, and so we cannot preclude that
other solutions behave in a more complicated manner. However we give some
indication in the direction that such orbits are non-stable (see proposition
4).

3. Omega-limit sets of monotone semiflows

Along this section we assume that system (1) is C-cooperative with re-
spect to a cone C of rank k. Let x(t) be any nonconstant solution. If there

exists t0 such that ẋ(t0) ∈ C then ẋ(t) ∈
◦
C for every t > t0. This follows

from the identity ẋ(t) = Ux(t0)x(t0)(t)(ẋ(t0)). Hence we can classify every
nonconstant solution into two types:

Type I: ẋ(t) ∈
◦
C for t sufficiently large.

Type II: ẋ(t) /∈ C for any t.

Remark 1. This classification only depend on the corresponding semiorbit,
so we shall use it for both solutions and semiorbits.

In case x(t) is periodic the preceding distinction is expressed as ẋ(t) ∈
◦
C

or ẋ(t) /∈ C for all t ∈ R. This can be read as that any closed orbit is either
locally ordered or locally balanced. Next proposition gives a global version
of this fact.

Proposition 2. Let γ be a closed orbit associated to a T -periodic solution
p(t). If p(t) is of type I then γ is strongly ordered. Similarly if p(t) is of
type II then γ is strongly balanced.

Proof: We only consider the case that p(t) is of type I, the other case

being similar. Let us assume that there are p, q ∈ γ with p − q /∈
◦
C and

let us reach a contradiction. First of all being p(t) of type I ensures that

p − r ∈
◦
C for r near enough to p. This and our momentary assumption

shows that we can take in fact p and q (p 6= q) such that p − q ∈ ∂C. We
write p = p(0) and q = p(t1) with t1 > 0. Applying the strong monotonicity

and the T -periodicity of p(t) we obtain that p(0+T )−p(t1+T ) = p−q ∈
◦
C,

a contradiction.
The next natural step is to prove a similar dichotomy for compact omega-

limit sets. To do that we are going to approximate these omega-limit sets
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by closed orbits by means of the closing lemma. This enforces us first to
study how the C-cooperativeness is preserved under small perturbations of
F .

Consider a sequence Fn of C1 vector field converging on compact sets to
F in the C1 topology and let

(2) ẋ = Fn(x).

We call Φn(t, p) to the corresponding induced semiflow.

Lemma 1. Let K ⊂ Rn convex and compact and τ > 0. There is m ∈ N
such that for all n > m it holds that, given p, q ∈ K with Φn(t, p),Φn(t, q) ∈
K for all t > 0, the operator Upq

n (t) is strongly positive for t ≥ τ .

Proof: We first prove the positiveness of Upq
n (t) in the interval I = [τ, 2τ ].

We do that by reduction to the absurd and so suppose that there exist
pn, qn ∈ K, vn ∈ C with ‖vn‖ = 1, and τn ∈ I such that Upnqn

n (τn)vn ∈ ∂C.
By extracting a subsequence we can assume that pn and qn converge to p0

and q0, vn converges to v0 ∈ C and that τn tends to τ0 ∈ I. Obviously
Φn(t, pn) and Φn(t, qn) converge uniformly in [τ, 2τ ] to Φ(t, p0) and Φ(t, q0)
respectively. From this Apnqn

n (t) tends uniformly in I to Ap0,q0(t), and so
the same convergence occurs of Upnqn

n (t) to Up0q0(t). This would imply that
Up0q0(t)v0 ∈ ∂C, contradicting the strong positiveness of this operator.

To prove now that this is valid for any t ≥ τ let us write t = t0 + kτ with
t0 ∈ [τ, 2τ ] and k ∈ N. Let us call tj = t0 + jτ , and pj and qj to Φ(tj , p) and
Φ(tj , q) respectively. It is not difficult to see that

Upq
n (t) = U

pk−1qk−1
n (t0) . . . Up1q1

n (τ)Upq
n (τ).

From the preceding proof each individual factor on the right is strongly
positive, and so Upq

n (t) also is.

Remark 2. In the preceding setting let n > m and take any T -periodic
solution p(t) of system (2) whose orbit lies in the compact set K. We assert
that p(t) verifies proposition 2. To see that observe that Φn(t, x) is now
strongly monotone and strongly infinitesimal monotone for t > τ . Thus in
the proof of the proposition we reach the contradiction p(0+jT )−p(t1+jT ) =

p− q ∈
◦
C by taking j ∈ N with jT > τ .

Let us state now our desired result on omega-limit sets.

Theorem 2. Let Ω be the omega-limit set of a solution x(t) and let y(t) a
nonconstant solution whose orbit γ is contained in Ω. If x(t) is of type I
then γ is ordered. Similarly if x(t) is of type II then γ is balanced.

Proof:
Again we only prove the theorem in case that x(t) is of type I. Let us fix

p, q ∈ γ, p 6= q. We suppose that p = y(0) and q = y(t1) with t1 > 0. Notice
that y(t) is also of type I. Using the version of the closing lemma stated in
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chapter II of [1] we can find a sequence Fn of C1 vector fields verifying the
following properties:

(1) Fn = F excepting in a small of radius 1/n centered at a fixed omega-
limit point of γ.

(2) ‖Fn − F‖+ ‖DFn −DF‖ → 0 as n → +∞.
(3) System (2) has a closed orbit γn through pn ∈ B(p, 1/n).
(4) γn is 1/n-close to a segment of the semiorbit S = {x(t) : t ≥ 0}.

Thus we can fix a large radius R > such the the compact ball K = B(0, R)
contains γn for all n.

Let us call pn(t) the periodic solution generating the closed orbit γn with
pn(0) = pn. It is immediate that for n large pn(t) is of type I. Therefore
lemma 1 and remark 2 imply that r ≈ s for any pair of different points r, s

in γn. In particular pn(0) − pn(t1) ∈
◦
C. Since pn(0) and pn(t1) tend to p

and q respectively as n → +∞, we deduce that p− q ∈ C, that is, p ∼ q as
desired.

Remark 3. The C-cooperativeness is used in the proof of theorem 2 only
because of the perturbation lemma 1. We do not know whether a similar
property is satisfied by the monotonicity of Φ(t, x) (the infinitesimal mono-
tonicity does verify it). If this were so the C-cooperativeness will remain
solely as a condition to be checked in applications.

We are not able to prove this property for any two points in Ω. However
in case that C is of order 2, we shall reach a much stronger result. This is
the aim of next section.

4. The Poincaré-Bendixson property for C-cooperative systems

We assume henceforth that we are in the setting described in theorem 1.
Observe that hypothesis iii) in that theorem means that x(t) is a solution
of type I.

Let y(t) be a nonconstant solution whose orbit is contained in the omega-
limit set Ω of x(t), and call Ω1 ⊂ Ω to the closure of that orbit. Since the
orbit of y(t) is ordered Ω1 is ordered too.

Proposition 3. The dynamics on Ω1 is topologically conjugate to the dy-
namics of a compact invariant set of a Lipschitz-continuous vector field in
R2.

Proof: The argument is exactly the same as the one in theorem 3.17 of
[11]. The starting point is to choose H and Hc subspaces of dimension 2

and n − 2 respectively satisfying H − {0} ⊂
◦
C and Hc − {0} ⊂

◦
Cc. This

can be done since C and Cc are 2-solid and (n− 2)-solid respectively. Now
take Π : Rn → H the linear projection onto H parallel to Hc. Since Ω1 is
ordered the restriction of Π to Ω1 is one-to-one. Now the proof of theorem
3.17 of [11] directly applies.
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Corollary 1. If Ω1 has no equilibrium point, then it consists of closed orbits
and orbits connecting two of such closed orbits.

Proof: This is deduced from the Poincaré-Bendixson theory for planar
autonomous systems and proposition 3.

We see in particular that Ω has a closed orbit provided that it does not
have equilibrium points. In fact we shall go further by using the extension
of Krein-Rutman theory developed in [2] and [13]. We just state the main
theorem in [2].

Theorem 3. Let M : Rn → Rn be a strongly positive linear map with respect
to the 2-solid cone C. Let the spectrum of M be Sp(M) = {λ1, . . . λn}
ordered such that |λi| ≥ |λj | for i > j. Then

(3) |λi| > |λj | for i = 1, 2, j = 3, . . . n.

Moreover there are two unique subspaces V and W verifying:

(1) V − {0} ⊂
◦
C, W ∩ C = {0}.

(2) M(V ) ⊂ V, M(W ) ⊂ W .
(3) The spectrum of M restricted to V is {λ1, λ2} and the spectrum of

M restricted to W is {λ3, . . . , λn}.

Consider now a closed orbit γ associated to a T -periodic solution p(t) of
system (1) (T is the minimal period of p(t)). Let M be the monodromy
operator associated to p(t), that is, M = DΦ(T, p). We write its spectrum

Sp(M) = {λ1, . . . , λn}
(repeating each eigenvalue as many times as its multiplicity) as in the pre-
ceding theorem. It is well known that there is α ∈ {1, . . . , n} such that
λα = 1. Moreover ṗ(0) is an eigenvector associated to λα.

By hypothesis M is strongly positive with respect to C, and so theorem
3 applies. We keep on calling V and W to the eigenspaces associated to
{λ1, λ2} and {λ3, . . . , λn} respectively.

If p(t) is of type II then ṗ(0) /∈ C. Therefore, in view of properties
(1),(2),(3) in theorem 3, λα = 1 for some α = 3 . . . , n. So we can assert:

Proposition 4. If p(t) is T -periodic of type II then

(4) |λi| > 1 for i = 1, 2.

In particular p(t) is unstable.

Let us suppose now that p(t) is of type I. We have that ṗ(0) ∈
◦
C, and

a similar reasoning to the preceding one shows that, for example, λ1 = 1.
From this we state:

Proposition 5. If p(t) is T -periodic of type I then

(5) 1 > |λj | for j = 3, . . . , n.
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To get further into the local behavior around the type I periodic solution
p(t) we shall recall the theory of invariant manifolds for closed orbits. The
proofs can be found in [3] and [16].

We take a Poincaré section (Π, P ) for p(t). Here Π is an hyperplane
through a point p in the orbit of p(t) which is transversal to F (p). P is the
first return map defined in a neighborhood of p in Π. It is well-known that
P is a C1-diffeomorphism, and that the spectrum of DP (p) is

Sp(DP (p)) = {λ2, λ3, . . . , λn}.
Actually we choose Π containing the eigenspace W . This can be done

because ṗ(0) ∈
◦
C (see theorem 3). We can proceed in a similar way than

in [16] and consider a system of coordinates with respect to a basis whose
elements are a basis of W , a vector in the complementary of W in Π and
vector F (p). In these coordinates M = DΦ(T, p) is written as

(6)
(

DP (p) 0
v 1

)
Here v is a row vector of n−1 components and 0 stands for the zero column
vector of dimension n−1. From this it is immediate that W is also invariant
for DP (p) and the spectrum of DP (p) restricted to W is just {λ3, . . . , λn}.

We call W s the local C1 invariant manifold of P at p associated to those
eigenvalues of DP (p). This manifold is tangent at p to the linear subspace
W and Pn(q) tends to p as n tends to +∞ for every q ∈ W s.

Remark 4. We know that W ∩ C = {0} by (1) in theorem 3. So for every
q ∈ W s it holds that Pn(q) and p are not ordered for n large enough.

We are now ready to prove our main theorem.
Proof of theorem 1:
Proof: Consider an ordered set Ω1 as constructed at the beginning of

this section. This set should contain at least one closed orbit γ (that is of
type I). We suppose that Ω1 6= γ and let us reach a contradiction.

Firstly from corollary 1 we can assume that either
(C1) γ is the omega-limit set of an orbit γ̄ in Ω1,
or
(C2) γ is the limit of a sequence of closed orbits γn in Ω1. In addition the

(smaller) periods of γn tend to the (smaller) period of γ.
Notice that the additional assertion in (C2) is a consequence of proposition

3 and the theory of transversal segments for planar autonomous systems.
We construct the Poincaré section (Π, P ) for γ and the manifold W s

described above. We claim that |λ2| = 1. If this were not so, then either
|λ2| < 1 or |λ2| > 1. In the first case γ would be orbitally asymptotically
stable, what contradicts Ω1 6= γ. In the second case W s would be the local
stable manifold associated to p and in addition there is an unstable manifold
W u of P at p that have dimension 1. Notice that γ̄ ∩ π in case (C1) would
define a sequence of points qn ∈ Π, qn = Pn(q0) tending to p. Consequently
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qn ∈ W s. This contradicts remark 4 and that Ω1 is ordered. On the other
hand the sequence γn in (C2) would define a sequence of fixed points qn

for P converging to p. The fact that they are fixed points and not periodic
points of increasing period is deduced from the closeness of the periods of γ
and γn remarked in (C2). This is impossible by the hyperbolicity of p.

We thus have |λ2| = 1. Let us consider first the case λ2 = 1.
There are coordinates (u, v) in a neighborhood O of p ≡ (0, 0) ∈ Π where

P has the form

P (u, v) = (u + U(u, v), Lv + V (u, v)), u ∈ R, v ∈ Rn−2

where U, V are C1 functions verifying U(0, 0) = V (0, 0) = 0 and DU(0, 0) =
DV (0, 0) = 0, and L is a square matrix whose spectrum is lesser than 1.
Now W s is tangent at p to the linear space u = 0.

We resort to the linearization theorem of Kirchgraber and Palmer (see
page 46 in [12]) to suppose that actually P can be written in new coordinates
as

P 1(u1, v1) = (u1 + φ(u1), Lv1)
in a certain neighborhood O1 of (0, 0). In these coordinates the stable man-
ifold W s has become the (n − 2)-dimensional v1-axis. On the other hand
the u1-axis is a center manifold for S1, and the map

u1 → u1 + φ(u1)

is a local increasing Lipschitz homeomorphism around zero. In addition it
is immediate that

H+ = {(u1, v1) ∈ O1 : u1 > 0}
and

H− = {(u1, v1) ∈ O1 : u1 < 0}
are (locally) invariant sets for P 1.

Let us reformulate cases (C1) and (C2) in terms of the map P 1. In the
first case the intersection of γ̄ with the hyperplane Π provides a semiorbit for
P tending to (0, 0). This semiorbit cannot lie in the v1-axis since γ̄ was not
in the stable manifold of γ. In addition u1

n is monotone since u1 → u1+φ(u1)
is increasing around (0, 0). In consequence (C1) changes into:

(C1’) There is an orbit (u1
n+1, v

1
n+1) = P 1(u1

n, v1
n) ∈ O1 tending to (0, 0)

with (for example) u1
n > u1

n+1 > 0.
Concerning (C2) the closed orbits γn define a sequence of fixed points for

P 1 tending to (0, 0). The monotonicity in u1
n can be assumed, and this case

turns into:
(C2’) There is a sequence (u1

n, v1
n) = (u1

n, 0) ∈ O1 of fixed points of P 1

with u1
n > u1

n+1 > 0.
The rest of the proof is common for both cases (C1’) and (C2’). Consider

the set
R = {(u1, v1) ∈ R× Rn−2 : 0 < u1 < u1

n, ‖v‖ < r}
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where n is large and r is small so that R ⊂ O1. It is immediate that R is
positively invariant and that any semiorbit in R tends to a fixed point. Now
consider the intersections of the orbit of the solution x(t) with R. This set is
nonempty since either the orbit γ̄ or the sequence of closed orbits γn belong
to the omega limit set Ω of x(t). The positive invariance of R implies that
this intersections form a positive semiorbit for the map P 1, and therefore
it must converge to a fixed point. Then x(t) has a omega-limit set just a
closed orbit, in contradiction with (C1) and (C2).

The case λ2 = −1 possibly cannot hold because of proposition 3. Instead
of proving that we can consider the mapping P̄ = P ◦ P defined again in
a neighborhood of p ∈ Π. It is immediate that P̄ falls under the previous
case, and the contradiction is reached in the same manner.

In consequence neither (C1) nor (C2) can occur and thus Ω1 just consists
of the closed orbit γ. The same reasoning applied to every set Ω1 ⊂ Ω
shows that Ω has only closed orbits. If there were more than one and since
Ω is connected, γ should be an accumulation orbit of a sequence γn of other
closed orbits in Ω. Again no γn can lie in the stable manifold of γ, and
the proof carried out above also yields to a contradiction. Therefore the
theorem is proved.

Remark 5. A similar result can be stated for alpha-limit sets. Any noncon-
stant solution p(t) bounded in ]−∞, 0] can be classified according to ẋ(t) /∈ C

for t in a certain interval ] −∞, t0[ or ẋ(t) ∈
◦
C for all t. Thus in the sec-

ond case the alpha-limit set of x(t) is projected into a plane and the same
reasoning as above shows that also a Poincaré-Bendixson property holds.

5. Discussion and related results

In remark 3 we have given a theoretical justification of our definition of
C-cooperativeness in order to get the Poincaré-Bendixson theorem. We
want in this section to show that, despite its technical appearance, the
C-cooperativeness is easy to check for concrete systems and is a straight
extension of the classical monotonicity assumptions.

To do that we first compare it with classical cooperative systems. Let

K = {(x1, . . . , xn) ∈ Rn : xi ≥ 0}
and CK = K ∪ −K.

Proposition 6. System (1) is CK-cooperative provided that it is cooperative
and irreducible with respect to K.

Proof: By hypothesis DF (x) has nonnegative off-diagonal coefficients
and is irreducible for all x ∈ Rn. Hence for every pair p, q ∈ Rn the matrix
Apq(t) =

∫ 1
0 DF (sΦ(t, p) + (1− s)Φ(t, q))ds has the same property for all t.

The same proof of theorem 1.1 in [20] shows that the corresponding matrix
solution Upq(t) is strongly positive in the classical sense for t > 0. Now we
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just notice that Upq(t)(CK −{0}) ⊂
◦

CK as long as Upq(t)(K −{0}) ⊂
◦
K to

finish the proof.
We can now interpret the Poincaré-Bendixson theorem for classical com-

petitive systems in R3 under a new perspective. Concretely in [11] it is
proved that, given an irreducible competitive systems in R3, every bounded
solution whose omega-limit set has no equilibrium point tends to a closed
orbit. To make our interpretation just notice that, if K ⊂ R3 is a convex
cone with nonempty interior, then C = R3 − CK is a cone of rank 2 such
that C and Cc = CK are 2-solid and 1-solid respectively. A similar argument
to the one employed in the proof of 6 shows that system (1) is C-cooperative
as long it is competitive and irreducible with respect to CK . Then we can
assert that any solution of type I whose omega-limit set has no equilibrium
points tends to a closed orbit. On the other hand the omega-limit set of
any solution of type II consists of equilibrium points. To prove that take
x(t) solution of type II and suppose that its omega-limit set has nontrivial
orbits. The proof of theorem 2 would imply (for n large) the existence of
closed orbits of type II for the perturbed systems (2). From the the ana-
logue of proposition 3 and since CK is of rank 1, these closed orbits should
be injectively projected into a one-dimensional linear subspace. This is not
possible and so a contradiction is reached.

As the second example we study the case C = C−(P ) is a quadratic cone
as described in section 2. Again we show that the C−(P )-cooperativeness
is rather computable since it is stated as a pointwise condition over DF (x).

Proposition 7. Assume that

(7) < PDF (x)ξ, ξ >< 0 for < Pξ, ξ >= 0, ξ 6= 0 and all x ∈ Rn.

Then equation (2) is C−(P )-cooperative.

Proof: Let p, q ∈ Rn and Apq(t), Upq(t) as above. Take u0 ∈ C−(P ) and
define

a(t) = 〈PUpq(t)u0, U
pq(t)u0〉 t ≥ 0.

Then ȧ(t) = 2〈PApq(t)Upq(t)u0, U
pq(t)u0〉. Using the definition of Apq(t)

we get that

ȧ(t) = 2〈P
∫ 1

0
DF (sΦ(t, p) + (1− s)Φ(t, q))dsUpq(t)u0, U

pq(t)u0〉.

Now applying the linearity of the integral we obtain

ȧ(t) = 2
∫ 1

0
〈PDF (sΦ(t, p) + (1− s)Φ(t, q))Upq(t)u0, U

pq(t)u0〉ds.

This formula and (7) says that ȧ(t) < 0 when a(t) = 0. Since u0 ∈ C−(P )
and so a(0) ≤ 0, we deduce that a(t) < 0 for all t > 0. This just means

that Upq(t)u0 ∈
◦
C. Since u0 ∈ C−(P ) is arbitrary we get that Upq(t) is a

strongly positive operator.



14 LUIS A. SANCHEZ

Let us establish an interesting link with the Poincaré-Bendxson theory
developed by R. A. Smith in [21, 22]. By applying lemma 1 of [17] in the
same manner that therein one can show that condition (7) is equivalent to
the existence of a (continuous) function

λ : Rn → R

such that

(8) DF (x)∗P + PDF (x) + λ(x)P < 0 for all x ∈ Rn.

Here DF (x)∗ stands for the transpose of DF (x) and < refers to the usual
order in the space of symmetric matrices. On the other hand R. A. Smith
studied the class of systems satisfying

(9) DF (x)∗P + PDF (x) + λP < 0 for all x ∈ Rn.

where now λ > 0 is a real constant, and proved that these systems verify
the Poincaré-Bendixson property for all solutions. The reason for that is
the existence of a Lipschitz-continuous 2-dimensional manifold that attracts
all the orbits and which is, in our language, strongly ordered. Therefore we
can say that the class of R. A. Smith consists of certain C−(P )-cooperative
systems for which solutions of type II have trivial dynamics.

We finally show a trivial example of a C-cooperative system displaying
chaotic solutions. In fact let

(10) ẏ = F (y), y ∈ Rk

be any smooth dissipative chaotic system such that DF (y) is bounded (for
example the variation of Lorenz systems considered in [19]). It is immediate
that DF (y)∗+DF (y)+λIk is negative definite for λ near −∞ (Ik will stand
for the identity matrix of order k). Let α > −λ and consider the system

(11)
{

ẋ = αx, x ∈ R2

ẏ = F (y), y ∈ Rk.

Let

P =
(
−I2 02×k

0k×2 Ik.

)
It is immediate to check that system (11) is C−(P )-cooperative. The dy-
namics of system (10) is embedded in the invariant balanced subspace x = 0.
Any other solution is unbounded.
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