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Abstract

In this paper we prove analytically that the seasonal effect can cause chaos in

predator prey systems. Our method of proof is based on some recent results on

topological horseshoes. Some applications in systems with impulsive effect are

given.
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1 Introduction

Chaos is one of the most important phenomena in dynamical systems. Intuitively,
a system is chaotic if there exists an invariant set Λ semi conjugated to Bernoulli
shift on two symbols with infinitely many period points, and sensitive dependence
on the initial conditions (see [8], [10], [17], [31], [32]). In the literature, there are
many tools to detect the presence of chaotic dynamics. Among them we can point
out Lyapunov exponents, Mel’nikov method, Sil’nikov method, the Conley-Ważewki
theory or some fixed point indices, just to mention a few approaches, see for instance
[20], [21], [22],[31], [32]. However, it is not an easy task to apply these tools in some
concrete examples.

∗This research is supported by the research project MTM 2008-02502, Ministerio de Educación
y Ciencia, Spain
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2 A. Ruiz-Herrera

In this paper we give sufficient conditions for the presence of chaotic dynamics in
the system {

x′ = x(a(t)− b(t)x + c(t)y)
y′ = y(d(t)− e(t)x− f(t)y) (1.1)

where all coefficients are T -periodic and b(t), c(t), e(t), f(t) > 0. This system cor-
responds with the classical Lotka-Volterra model and describes the evolution of
two species, one predator and one prey, sharing the same habitat. The depen-
dence on the time in (1.1) is introduced in order to model the seasonal effect of the
environment. This consideration is essential for the presence of chaos since in the
autonomous case, it is easy to check that every solution converges to an equilibrium.
Another key ingredient in our results is the type of interaction. To observe this fact,
we recall that de Mottoni and Schiaffino in [30] proved that, in the competitive case
(i.e. when the coefficients in (1.1) satisfies c(t) < 0 and b(t), e(t), f(t) > 0), every
solution converges to solution with period T . This shows that there is no chaos in
the competitive case even in the presence of seasonal effects.
Many ecological systems in the real life suffer abrupt changes caused by some hu-
man exploit activities such as planting, harvesting, etc. In this context, impulsive
differential equations can be considered as a natural framework. In the recent years,
impulsive effects have been introduced in many models of population dynamics, see
[23], [24], [29], and several aspects such as permanence, extinction or global stability
have been extensively studied, see [25], [27], [28], [29], [26]. However, to the best
of the author’s knowledge, there are few analytic criteria to detect chaos in this
scenario. Motivated by this fact, in this paper we derive a mechanism to generate
chaos in impulsive differential equations and as an application we prove the presence
of chaotic dynamics in the system considered by Wang, Chen and Nieto in [16].
Our method of proof combines the notion of Stretching Along Paths (see [8]) with
the notion of topological horseshoes (see [14]). With the term topological horse-
shoe we understand the adaptation of Smale’s theory to a topological setting. This
approach has the following advantages:

• we do not have to check any hyperbolicity condition,

• we do not work with asymptotic and small parameters,

• our results are robust under small perturbations.

The last property is very important from the biological point of view since all sys-
tems in Ecology are subject to small errors in modelling. Notice that this technique
has been already employed in different contexts, see for instance [7],[6],[4],[3],[9].
However in most situations, the authors study hamiltonian systems.

The structure of the paper is as follows. In section 2 we recall the results about
chaotic dynamics which we are going to use throughout the paper. In section 3
we prove the existence of chaos for the system (1.1) and compare our results with
those in the literature. In section 4, we expose a mechanism to generate chaos from
impulses.
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2 Topological Tools

The aim of this section is to give the definitions and tools that we use in this paper.
Firstly we fix what we understand by chaos or chaotic dynamics.

Definition 2.1. Let ψ : Dψ −→ R2 be a continuous map and let D ⊂ Dψ. We say
that ψ induces chaotic dynamics on two symbols on the set D if there exist two
disjoint compact sets

K0,K1 ⊂ D,

such that, for each two-sided sequence (si)i∈Z ∈ {0, 1}, there exists a corresponding
sequence (ωi)i∈Z ∈ DZ such that

ωi ∈ Ksi and ωi+1 = ψ(ωi) for all i ∈ Z (2.2)

and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si) for some k ≥ 1,
there exists a k-periodic sequence (ωi)i∈Z ∈ DZ satisfying (2.2). To put the emphasis
on the sets Kj’s, we may also say that φ induces chaotic dynamics on two symbols
on the set D relatively to K0 and K1.

In what follows, we will say that a continuous map ψ is chaotic if there exist
D,K0 and K1 as in the previous definition. In contrast with other definitions of
chaos, we can say that if a map is chaotic according Definition 2.1, then it is also
chaotic in the sense of Block-Coppel and also in the sense of “coin-tossing”, (see
[10]). The following result gives some important implications of our notion of chaos.

Theorem 2.1. ( [8, Theorem 2.2]) Let ψ be a continuous map that induces chaotic
dynamics on two symbols on a set D and is continuous on

K := K1 ∪ K2 ⊂ D

where K0,K1 and D are as in the definition 2.1. Defining the nonempty compact
set

I∞ =
∞⋂

n=0

ψ−n(K), (2.3)

then there exists a nonempty compact set

I ⊂ I∞ ⊂ K,

on which the following are fulfilled:

i) I is invariant for ψ, (i.e. ψ(I) = I).
ii) ψ|I is semi-conjugate to the Bernoulli shift on two symbols, that is there exists

a continuous map g of I onto Σ+
2 := {0, 1}N, endowed with the distance

d(s′, s′′) :=
∑

i∈N

d̃(s′i, s
′′
i )

2i+1
, for s′ = (s′i)i∈N, s′′ = (s′′i )i∈N ∈ Σ+

2
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(where d̃(·, ·) is the discrete distance on {0, 1} : d̃(s′i, s
′′
i ) = 0 for s′i = s′′i and

d̃(s′i, s
′′
i ) = 1 for s′i 6= s′′i ), such that the diagram

Λ Λ

Σ+
2 Σ+

2

-Φ

?

g

?

g

-
σ

commutes, where σ : Σ+
2 −→ Σ+

2 is the Bernoulli shift defined by σ((si)i) :=
(si+1)i for all i ∈ N.

iii) The set P of the periodic points of ψ |I∞ is dense in I and the pre-image
g−1(s) ⊂ I of every k-periodic sequence s = (si)i∈N ∈

∑+
2 contains at least

one k-periodic point.

Furthermore, from property ii) it follows that:

iv) htop(ψ) ≥ htop(ψ |I) ≥ htop(σ) ≥ log(2), where htop is the topological entropy.

v) There exists a compact invariant set Λ ⊂ I such that ψ |Λ is semi-conjugate to
the Bernoulli shift on two symbols, topologically transitive and has sensitive
dependence on initial conditions.

After that, the following step is to give criteria ensuring that a concrete map
induces chaotic dynamics on two symbols. To this end we need the next concepts.

Definition 2.2. Let R = [a1, b1] × [a2, b2] be a rectangle in R2. We will say that
the pair R̃ = (R,R−) is an oriented rectangle if R− = R−l ∪R−r where R−l , R−r
are two disjoint compact arcs contained in the boundary of R.

Definition 2.3. Suppose that ψ : Dψ −→ R2 is a continuous map defined on a set
Dψ and consider Ã := (A,A−) and B̃ := (B,B−) two oriented rectangles of R2 and
a compact set K ⊂ A ∩ Dψ. We say that (K, ψ) stretches Ã to B̃ along the paths
and write

(K, ψ) : Ã m−→B̃,

if the following conditions hold:

• ψ is continuous on K.

• For every path γ : [0, 1] −→ A such that γ(0) ∈ A−l and γ(1) ∈ A−r there
exists a subinterval [t′, t′′] ⊂ [0, 1] so that

γ(t) ∈ K, ψ(γ(t)) ∈ B

for all t ∈ [t′, t′′] and moreover, ψ(γ(t′)) and ψ(γ(t′′)) belong to different
components of B−.
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The next theorem links the definition of stretching along paths with the notion of
chaotic dynamics on two symbols.

Theorem 2.2. ( [8, Theorem 2.3]) Let R̃ := (R,R−) be an oriented rectangle of
R2 and let D ⊂ R ∩ Dψ, with Dψ the domain of a continuous map ψ : Dψ −→ R2.
If K0,K1 are two disjoint compact sets with K0 ∪ K1 ⊂ D and

(Ki, ψ) : R̃ m−→R̃, for all i = 0, 1

then ψ induces chaotic dynamics on two symbols on D relatively to K0 and K1. It
follows that the map ψ has the properties of the theorem 2.1.

Finally, in order to study chaotic behaviors of small perturbations of ψ, we use
the following result.

Corollary 2.1. Consider R̃ = (R,R−) with R = [a1, b1] × [a2, b2] and R−l =
{a1} × [a2, b2] R−r = {b1} × [a2, b2]. Assume that K0 and K1 are compact sets
contained in R and ψ : R → R2 is a continuous map. If (Ki, ψ) : R̃ m−→R̃, with

K0 , K1 ⊂ ]a1, b1[× [a2, b2] and ψ(K0) ∩R, ψ(K1) ∩R ⊂ R×]a2, b2[,

then there exists ε > 0 such that every continuous map φ : R → φ(R) is chaotic
provided that

||ψ(x)− φ(x)|| ≤ ε for all x ∈ R
where ‖ · ‖ denotes the Euclidean norm.

3 Chaotic Dynamics in the system (1.1)

The purpose of this section is to prove the presence of chaotic dynamics in (1.1).
Firstly we consider the T -periodic system

{
x′ = x(−a1 + c1y)
y′ = y(d1 − e1x) for t ∈ [nT, nT + T1[

(3.4)

{
x′ = x(−a2 − b2x + c2y)
y′ = y(d2 − f2y) for t ∈ [nT + T1, (n + 1)T [ (3.5)

where all parameters are strictly positive and 0 < T1 < T . For convenience, we
employ the notation (S) to denote the previous system and T2 := T − T1. From a
mathematical point of view, the dynamics of (S) is described in the following way.
If (x(t, (p1, p2)), y(t, (p1, p2))) denotes the maximal solution with initial condition
(p1, p2), we have that (x(t, (p1, p2)), y(t, (p1, p2))) is solution of (3.4) for t ∈ [0, T1[, it
is solution of (3.5) for t ∈ [T1, T [ and the same transition is repeated in a T -periodic
manner. Therefore, using that the system (3.5) is autonomous, the Poincaré map
associated with the system (S), that is

Φ : R2
+ −→ R2

+
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Φ(p1, p2) = (x(T, (p1, p2)), y(T, (p1, p2))),

satisfies that Φ = Φ2 ◦ Φ1 with
{

Φi : R2
+ −→ R2

+

Φi(p1, p2) = (xi(Ti, (p1, p2)), yi(Ti, (p1, p2)))
(3.6)

where (x1(t, (p1, p2)), y1(t, (p1, p2))) (resp. (x2(t, (p1, p2)), y2(t, (p1, p2)))) is the so-
lution of the system (3.4) (resp. (3.5)) with initial condition p = (p1, p2). In the
previous definition we have employed the notation R2

+ = {(x, y) : x, y ≥ 0}.
Proposition 3.1. Consider the system (S) with all parameters fixed except d1, T1, T2

and suppose that
3d2

4f2
<

a2

c2
<

5d2

4f2
. (3.7)

Then there exist a constant T ∗2 and two maps d∗1(T̃2), T1(d̃1, T̃2) such that if 0 <
T2 < T ∗2 , d1 > d∗1(T2), T1 > T ∗1 (d1, T2); the Poincaré map associated to (S) with
parameters T2, d1 and T1 is chaotic.

Remark 3.1. In the proof we give precise estimates of T ∗2 , d∗1(T2) and T ∗1 (d1, T2)
depending on the coefficients of the system.

Proof. We split the proof into three steps.

Step 1: Construction of the rectangle.
Consider the second equation of the second system, namely

Y ′ = Y (d2 − f2Y ) (3.8)

and define

T ∗2 := max{T2 :
∣∣∣∣Y (t,

d2

2f2
)− d2

f2

∣∣∣∣ ,

∣∣∣∣Y (t,
3d2

2f2
)− d2

f2

∣∣∣∣ ≥
d2

4f2
for all t ∈ [0, T2]}

where Y (t, Y0) denotes the maximal solution of (3.8) with initial condition Y0. No-
tice that the equation (3.8) can be easily integrated and so we can explicitly compute
T ∗2 . After that we fix three constants T2, α, l such that 0 < T2 < T ∗2 , α > l > 0 and

−a2 − b2(α + l) +
5c2d2

4f2
> 0, (3.9)

−a2 − b2(α− l) +
3c2d2

4f2
< 0, (3.10)

−b2α
2 + α(−a2 +

5c2d2

4f2
) + la2 + l2b2 − 5lc2d2

4f2
− 2l

T2
> 0, (3.11)

−b2α
2 + α(2b2l − a2 +

3c2d2

4f2
) + la2 − l2b2 − 3lc2d2

4f2
+

2l

T2
< 0. (3.12)
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To prove the existence of these constants, we observe that the previous inequalities
hold for l = 0 and

0 < α <
−a2 + 5c2d2

4f2

b2
,

(see (3.7)). At this point we define the rectangle

S = [α− l, α + l]×
[

d2

2f2
,
3d2

2f2

]
.

Finally we estimate d∗1. Consider d1 satisfying that d1
e1

> (α + l). It is clear
that if (x1(t), y1(t)) is solution of (3.4) then we can compute the derived of the first
component with respect to the second component provided (x1(t), y1(t)) ∈ S. In
this case

∣∣∣∣
dx1

dy1

∣∣∣∣ =
∣∣∣∣
x1(−a1 + c1y1)
y1(d1 − e1x1)

∣∣∣∣ ≤
(α + l)max{| −a1 + 3c1d2

2f2
|, | −a1 + c1d2

2f2
|}

d2
2f2

(d1 − e1(α + l))
= K.

Thus, if

K
d2

f2
<

l

2
, (3.13)

we deduce that the solutions of (3.4) with initial conditions at (α − l
2 , d2

l2
) and

(α+ l
2 , d2

l2
) leave the rectangle S across the faces [α− l, α+ l]×{ d2

2f2
} and [α− l, α+

l]× { 3d2
2f2
}. We illustrate this behavior with the following figure.

S

A straightforward computation shows that if d1 > d∗1 with

4(α + l)max{| −a1 + 3c1d2
2f2

|, | −a1 + c1d2
2f2

|}
l

+ e1(α + l) = d∗1,
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the condition (3.13) holds. Notice that d∗1 depends on the coefficients of the system
(3.4) except d1, T1 and on the coefficients of the system (3.5), including T2.
In the rest of the proof, we fix a constant d1 such that d1 > d∗1.

Step 2: Stretching property for the map Φ1.
In this step we prove the existence of a constant T ∗1 > 0 such that if T1 > T ∗1 then
there exists two compact sets K1,K2 ⊂ S satisfying that

(Ki,Φ1) : S̃1 m−→S̃2, for i = 1, 2

where Φ1 is the Poincaré map associated with (3.6) at the instant T1, and the ori-
entated rectangles are defined as S̃1 = (S,S−1 ) with (S1)−l = {α − l} × [ d2

2f2
, 3d2

2f2
],

(S1)−r = {α + l} × [ d2
2f2

, 3d2
2f2

] and S̃2 = (S,S−2 ) with (S2)−l = [α − l, α + l] × { d2
2f2
},

(S2)−r = [α− l, α + l]× { 3d2
2f2
}.

Before starting the proof of this claim, we introduce the concept of rotation num-
ber for the system (3.4). It is well known that given q = (q1, q2) ∈ IntR2

+\{(d1
e1

, a1
c1

)},
the solution of (3.4) with this initial condition, namely (x1(t, q), y1(t, q)), is a peri-
odic orbit determined by the energy function

E(x1, y1) = c1y1 + e1x1 − a1 log y1 − d1 log x1.

Using this fact, we can define the rotation number associated to the system (3.4)
in the following way

rot(q, τ) :=
1
2π

∫ τ

0

(
y1(t; q)− a1

b1

)
X1(t)−

(
x1(t, q)− d1

e1

)
X2(t)

(
x1(t, q)− d1

e1

)2

+
(
y1(t, q)− a1

b1

)2 dt,

where

X1(t) := x1(t; q)(−a1 + c1y1(t; q)), X2(t) := y1(t, q)(d1 − e1x1(t, q))

The rotation number counts the number of winds around the equilibrium along
the interval [0, τ ] in the clockwise sense. Moreover, we can point out the following
properties:

• rot(q, τ) is a strictly increasing function of τ .

• rot(q, τ) ≶ m ⇐⇒ τ ≶ mP (q) where P (q) is the minimal period of the solution
(x1(t, q), y1(t, q)).

At this point we recall that by [1, Theorem 2], the minimal period of (x1(t, q), y1(t, q))
is a strictly increasing function with respect to the energy and so using that d1 > d∗1,

P1 = P (α− l

2
,
d2

f2
) > P2 = P (α +

l

2
,
d2

f2
).
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For convenience we introduce θ(τ, q) as the angular coordinate at time τ of the
solution of (3.4) departing from q ∈ S and such that for all q ∈ S

θ(τ, q) = θ(0, q) + 2πrot(q, τ) ∈ [2πrot(q, τ)− π/2, 2π rot(q, τ) + π/2].

Now we are ready to prove the aim of this step. Indeed, take

T1 >
5P1P2

P1 − P2
= T ∗1 .

By the choice of T1, we can find two integers m1,m2 so that m1 ≤ T1
P1

, m2 ≥ T1
P2

and m2 −m1 ≥ 3. From these inequalities, we can check that

rot(q, T1) ≤ m1 for all q ∈ S ∩ B

rot(q, T1) ≥ m2 for all q ∈ S ∩ A
where B = {(x, y) ∈ S : E(x, y) = E(α − l, d2

f2
)} and A = {(x, y) ∈ S : E(x, y) =

E(α + l, d2
f2

)}). Therefore, for k1, k2 ∈ [m1 + 1,m2 − 1],

[2kiπ − π

2
, 2kiπ +

π

2
] ⊂ [max

q∈B
θ(T1, q),min

q∈A
θ(T1, q)]. (3.14)

Finally, we define the sets

K1 := {q ∈ S : θ(T1, q) ∈ [2πk1 − π

2
, 2πk1 +

π

2
], Φ1(q) ∈ S,

E(q) ∈ [E(α + l,
d2

f2
), E(α− l,

d2

f2
)]}

K2 := {q ∈ S : θ(T1, q) ∈ [2πk2 − π

2
, 2πk2 +

π

2
], Φ1(q) ∈ S,

E(q) ∈ [E(α + l,
d2

f2
), E(α− l,

d2

f2
)]}.

Once these comments have been done, we prove the stretching property for Φ1.
Indeed, consider γ : [0, 1] −→ S a continuous path satisfying that γ(0) ⊂ {(x, y) ∈
S : x = α − l} and γ(1) ⊂ {(x, y) ∈ S : x = α + l}. Firstly we take a subinterval
[Γ1, Γ2] ⊂ [0, 1] with γ([Γ1, Γ2]) ⊂ {(x, y) ∈ S : E(α+ l

2 , d2
f2

) ≤ E(x, y) ≤ E(α− l
2 , d2

f2
}

and
γ(Γ1) ∈ {(x, y) ∈ S : E(x, y) = E(α− l

2
,
d2

f2
)}

γ(Γ2) ∈ {(x, y) ∈ S : E(x, y) = E(α +
l

2
,
d2

f2
)}.

By continuity and using (3.14), we can find two subintervals [Γ′0, Γ
′
1], [Γ

′′
0 ,Γ′′1 ] satis-

fying that

−π

2
+ 2k1π ≤ θ(T1, γ(s)) ≤ π

2
+ 2k1π for all s ∈ [Γ′0,Γ

′
1]
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−π

2
+ 2k2π ≤ θ(T1, γ(s)) ≤ π

2
+ 2k2π for all s ∈ [Γ′′0 ,Γ′′1 ].

From these inequalities we obtain easily the desired subintervals [σ′0, σ
′
1] ⊂ [Γ′0,Γ

′
1]

and [σ′′0 , σ′′1 ] ⊂ [Γ′′0 , Γ′′1 ].

Step 3: Stretching property for the map Φ2.
In this step we prove the following stretching property: given a continuous path
γ : [0, 1] −→ S with γ(0) ⊂ {(x, y) ∈ S : y = d2

2f2
} and γ(1) ⊂ {(x, y) ∈ S : y = 3d2

2f2
},

there exists a subinterval [ζ1, ζ2] ⊂ [0, 1] so that Φ2(γ([ζ1, ζ2])) ⊂ S with Φ2(γ(ζ1)) ⊂
{(x, y) ∈ S : x = α − l} and Φ2(γ(ζ2)) ⊂ {(x, y) ∈ S : x = α + l}. Indeed, us-
ing the dynamics of the equation (3.8), Φ2(γ([0, 1])) ⊂ {(x, y) : d2

2f2
≤ y ≤ 3d2

f2
}.

At this moment, it is enough to prove that Φ2(γ(1)) ⊂ {(x, y) : x > α + l} and
Φ2(γ(0)) ⊂ {(x, y) : x < α − l}). To see the first claim, we recall that by the
definition of T2, Φ2(γ(1)) ⊂ {(x, y) : 5d2

4f2
≤ y ≤ 3d2

2f2
}. On the other hand, by (3.9)

we know that

x(−a2 − b2x + c2y) > 0 for all (x, y) ∈ [α− l, α + l]× [
5d2

4f2
,
3d2

2f2
].

To conclude the proof, we notice that by (3.11),

(α− l) + T2 min{x(−a2 − b2x + c2y) : (x, y) ∈ S ∩ {5d2

4f2
≤ y ≤ 3d2

2f2
}} > α + l.

Another claim is proved analogously.

Finally we apply the theorem 2.2 to K1, K2, S̃1 and Φ. ¤

Next we give the main result of this section.

Theorem 3.1. Fix all parameters in (S) verifying the conditions of proposition
3.1, i.e. (3.7) and 0 < T2 < T ∗2 , d1 > d∗1(T2), T1 > T ∗1 (d1, T2). Then there exists
ε > 0 such that if the distance in L1

T between the previous parameters in (S) and
the coefficients of (1.1) is smaller than ε, the Poincaré map associated to (1.1) is
chaotic.

Given two T -periodic integrable functions f(t) and g(t), their distance in L1
T is

given by
∫ T

0
|f(t) − g(t)| dt. In our setting, the assumptions of theorem 3.1 means

that ∫ T1

0

|a(t) + a1|dt +
∫ T

T1

|a(t) + a2|dt < ε,

and so on (for the other coefficients).
Proof. Notice that by the construction, the conditions of the corollary 2.1 hold.¤

In [2], Amine and Ortega give a system of the type (1.1) with three T -periodic
solutions in the IntR2

+. Theorem 3.1 can be considered as a generalization of this
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fact since we give sufficient conditions ensuring the existence of infinitely many pe-
riodic solutions. In contrast with [9], we observe that in our construction, all the
parameters can be large (in integral sense), however, in [9], the parameters b(t), f(t)
must be small (in sense of perturbation ). In fact, the technique of Stretching Along
Paths has been mainly applied in hamiltonian systems, (see [3], [4], [6], [7], [9]).

4 Systems with Impulsive Effect

Consider the system
{

I ′ = I(−α + βS)
S′ = S(γ − δI) for t 6= nT

(4.15)

∆I = a + uS + qI for t = nT

where ∆I = I(T+) − I(T ), all parameters are positive and also assume that 0 ≤
q ≤ 1. It is well known that the dynamics of (4.15) is completely determined by
Φ = Φ2 ◦ Φ1 with Φ1 the Poincaré map at the instant T associated to the system

{
I ′ = I(−α + βS)
S′ = S(γ − δI) (4.16)

(See (3.6)) and
Φ2(I, S) = (a + (1− q)I + uS, S).

The next result provides us sufficient conditions for the presence of chaotic dynamics
in the system (4.15).

Theorem 4.1. Fix all parameters in (4.15) except T, u, a, q. Then, there exist
T ∗ > 0 and three closed intervals with non-empty interior I1, I2, I3 so that if T > T ∗

and (u, a, q) ∈ I1× I2× I3, the map Φ associated to (4.15) with parameters T, a, u, q
is chaotic.

Remark 4.1. In the proof we give precise estimates of T ∗, I1, I2, and I3 depending
on the coefficients of the system.

Proof. We divide the proof into three steps.

Step 1: Construction of the rectangle.
Denote by E(I, S) the energy function of the system (4.16), namely

E(I, S) = δI + βS − α log S − γ log I.

By the dynamics of the system (4.16), we can take a constant X̃0 with X̃0 < γ
δ such

that the curve µ0 given by

µ0 = {(I, S) : E(I, S) = E(X̃0,
α

β
)}
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satisfies that
µ0 ∩ {(I, S) : S =

α

β
} = {(X̃0,

α

β
), (X0,

α

β
)}

with X0 > α
β . Next, take l > 0 small enough satisfying the following properties:

• X̃0 + l < γ
δ < X0 − l,

• for the rectangles

R1 = [X̃0 − l, X̃0 + l]× [
α

β
− l,

α

β
+ l],

R2 = [X0 − l, X0 + l]× [
α

β
− l,

α

β
+ l],

the curve µ0 leaves R1 (resp. R2) across the faces ]X̃0 − l, X̃0 + l[×{α
β − l}

and ]X0− l, X0 + l[×{α
β + l} (resp. ]X0− l,X0 + l[×{α

β − l} and ]X0− l,X0 +
l[×{α

β + l}).

By continuity, we can find X̃1 so that X̃0 − l < X̃1 < X̃0 and the curve µ1 =
{(I, S) : E(I, S) = E(X̃1,

β
b )} leaves the rectangle R1 (resp. R2) across the faces

]X̃0− l, X̃0 + l[×{α
β − l} and ]X̃0− l, X̃0 + l[×{α

β + l} (resp. ]X0− l, X0 + l[×{α
β − l}

and ]X0 − l, X0 + l[×{α
β + l} ). This construction is illustrated in the figure below.

µ0

µ1

R2R1

Step 2: Stretching property for Φ1.
Consider R̃2 = (R2,R−2 ) withR−2 = ({X0−l}×[α

β−l, α
β +l])∪({X0+l}×[α

β−l, α
β +l])

and R̃1 = (R1,R−1 ) withR−1 = ([X̃0−l, X̃0+l]×{α
β−l})∪([X̃0−l, X̃0+l]×{α

β +l}).
In this step we prove the existence of a constant T ∗1 such that if T1 > T ∗1 then there
exist two compact sets K1,K2 ⊂ R2 so that

(Ki, Φ1) : R̃2 m−→R̃1



Chaos in Predator Prey Systems With/Without Impulsive Effect 13

where Φ1 is the Poincaré map associated with the system (4.16) at the instant T1.
Firstly, we define rot(·) the rotation number for the system (4.16) as in the previous
section. Again, by [1, Theorem 2], we know that

P1 = P (X̃1,
α

β
) > P2 = P (X̃0,

α

β
)

where P (I0, S0) is the minimal period of the orbit of (4.16) with initial condition
at (I0, S0). For convenience, we introduce θ̃(τ, q) as the angular coordinate at time
τ of the solution of (4.16) departing from q ∈ R2 such that for all q ∈ R2

θ̃(τ, q) = θ̃(0, q) + 2πrot(q, τ) ∈ [2πrot(q, τ)− π

2
, 2πrot(q, τ) +

π

2
].

At this moment, we are ready to prove the aim of this step. Indeed, take

T1 >
5P1P2

P1 − P2
= T ∗1 .

By the choice of T1, we can find two integers m1,m2 so that m1 ≤ T1
P1

, m2 ≥ T1
P2

and m2 −m1 ≥ 3. For these inequalities

rot(q, T1) ≤ m1 for all q ∈ R2 ∩ A
rot(q, T1) ≥ m2 for all q ∈ R2 ∩ B

where B = {(I, S) ∈ R2 : E(I, S) = E(X̃0,
α
β )} and A = {(I, S) ∈ R2 : E(I, S) =

E(X̃1,
α
β )}. Therefore, for k1, k2 ∈ [m1 + 1,m2 − 1],

[2kiπ +
π

2
, 2kiπ +

3π

2
] ⊂ [max

q∈B
θ̃(T1, q),min

q∈A
θ̃(T1, q)]. (4.17)

Finally, we define the sets

K1 = {q ∈ R2 : θ̃(T1, q) ∈ [2πk1 +
π

2
, 2πk1 +

3π

2
],Φ1(q) ∈ S

E(q) ∈ [E(X̃0,
α

β
), E(X̃1,

α

β
)]}

K2 = {q ∈ R2 : θ̃(T1, q) ∈ [2πk2 +
π

2
, 2πk2 +

3π

2
],Φ1(q) ∈ S

E(q) ∈ [E(X̃0,
α

β
), E(X̃1,

α

β
)]}.

Once these comments have been done, we prove the stretching property for Φ1.
Indeed, consider γ : [0, 1] −→ R2 a continuous path satisfying that γ(0) ⊂ {(I, S) ∈
R2 : I = X0−l} and γ(1) ⊂ {(I, S) ∈ R2 : I = X0+l}. Firstly, we take a subinterval
[Γ1, Γ2] ⊂ [0, 1] with γ([Γ1, Γ2]) = {(I, S) ∈ R2 : E(X̃0,

α
β ) ≤ E(I, S) ≤ E(X̃1,

α
β )}

and
γ(Γ1) = {(I, S) ∈ R2 : E(X̃0,

α

β
) = E(I, S)}
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γ(Γ2) = {(I, S) ∈ R2 : E(X̃1,
α

β
) = E(I, S)}.

Now, by continuity and using (4.17), we can find two subintervals [Γ′0,Γ
′
1], [Γ′′0 , Γ′′1 ]

so that
π

2
+ 2k1π ≤ θ(T1, γ(s)) ≤ 3π

2
+ 2k1π for all s ∈ [Γ′0, Γ

′
1]

π

2
+ 2k2π ≤ θ(T1, γ(s)) ≤ 3π

2
+ 2k2π for all s ∈ [Γ′′0 ,Γ′′1 ].

From these inequalities we obtain easily the desired subintervals [σ′0, σ
′
1] ⊂ [Γ′0,Γ

′
1]

and [σ′′0 , σ′′1 ] ⊂ [Γ′′0 , Γ′′1 ].

Step 3: Stretching property for Φ2.
Firstly we take three intervals I1, I2 and I3 so that for all (a, u, q) ∈ I1 × I2 × I3

a + u(
α

β
− l) + (1− q)(X̃0 + l) < X0 − l (4.18)

a + u(
α

β
+ l) + (1− q)(X̃0 − l) > X0 + l. (4.19)

To prove the existence of these intervals we notice that the previous inequalities
hold for q = 1, a = 0 and u satisfying

X0 + l
α
β + l

< u <
X0 − l
α
β − l

,

(this inequality makes sense by the condition X0 > α
β ). At this moment, we can de-

duce that given a continuous path γ : [0, 1] −→ R1 with γ(0) ⊂ {(I, S) ∈ R1 : S =
α
β −l} and γ(1) ⊂ {(I, S) ∈ R1 : S = α

β +l}, there exists a subinterval [ζ1, ζ2] ⊂ [0, 1]
so that Φ2(γ[ζ1, ζ2]) ⊂ R2 with Φ2(γ(ζ1)) ⊂ {(I, S) ∈ R2 : I = X0 − l} and
Φ2(γ(ζ2)) ⊂ {(I, S) ∈ R2 : I = X0 + l}.

To conclude the proof we apply theorem 2.2 to R̃2, K1, K2 and Φ. ¤

As a direct consequence of the previous theorem and corollary 2.1, we are able
to prove the presence of chaotic dynamics in the system

{
I ′ = I(−αε + βεS − ωεI))
S′ = S(γε − δεI) for t 6= nT

(4.20)

∆I = aε + uεS − qεI
∆S = −κεS for t = nT

where all parameters are positive and 0 < qε, κε ≤ 1. The next result shows this
fact.

Corollary 4.1. Fix all the parameters in (4.15) verifying the conditions of Theorem
3.1, i.e. T > T ∗ and (u, a, q) ∈ I1× I2× I3. Then there exists ε > 0 such that if the
distance between the previous parameters in (4.15) and the coefficients of (4.20) is
smaller than ε, the map Φε associated to (4.20) is chaotic.
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In [16], Wang, Chen, Nieto prove numerically that the system (4.20) can be
chaotic. From the previous corollary we analytically confirm these evidences.
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[11] R. Srzednicki, K. Wójcik, A geometric method for detecting chaotic dy-
namics, J. Differential Equations 135 (1997), 66–82.
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