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Abstract. We study the existence of positive periodic solutions for second
order singular damped differential equations by combining the analysis of the

sign of Green’s functions for the linear damped equation, together with a non-

linear alternative principle of Leray–Schauder. Recent results in the literature
are generalized and significantly improved.

1. Introduction

In this paper, we study the existence of positive T -periodic solutions for the following
singular damped differential equation

(1.1) x′′ + h(t)x′ + a(t)x = f(t, x, x′),

where h, a ∈ C(R/TZ,R) and the nonlinearity f ∈ C((R/TZ)×(0,∞)×R,R). In particular,
the nonlinearity may have a repulsive singularity at x = 0, which means that

lim
x→0+

f(t, x, y) = +∞, uniformly in (t, y) ∈ R2.

Electrostatic or gravitational forces are the most important examples of singular interac-
tions.

During the last two decades, the study of the existence of periodic solutions for singular
differential equations has attracted the attention of many researchers [3, 5, 6, 21, 25, 29, 30,
33]. Some strong force conditions introduced by Gordon [14] are standard in the related
earlier works [10, 17, 30, 31, 33]. Compared with the case of a strong singularity, the
study of the existence of periodic solutions under the presence of a weak singularity is
more recent, but has also attracted many researchers [6, 7, 9, 12, 25, 28]. Some classical
tools have been used to study singular differential equations in the literature, including the
method of upper and lower solutions [2, 25], degree theory [30, 31, 33], some fixed point
theorems in cones for completely continuous operators [11, 26, 27], Schauder’s fixed point
theorem [6, 12, 28] and a nonlinear Leray-Schauder alternative principle [7, 8, 20].
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However, the singular differential equation (1.1), in which there is the damping term
and the nonlinearity is dependent of the derivative, has not attracted much attention in
the literature. There are not so many existence results for (1.1) even when the nonlinearity
is independent of the derivative. Several existence results can be found in [22, 32]. In this
paper, we try to fill this gap and establish the existence of positive T -periodic solutions
of (1.1) using a nonlinear alternative of Leray-Schauder, which has been used in [7, 8,
20]. We would like to emphasize that the inclusion of the derivative dependence in the
nonlinearity implies a new technical difficulty concerning the right choice of the function
space and associated norm. Our new results generalize in several aspects some recent
results contained in [6, 7, 20, 26, 29]. Our main motivation is to obtain new existence
results for positive T -periodic solutions of the following differential equations

(1.2) x′′ + h(t)x′ + a(t)x =

(
e(t) + κ(t)|x′|γ

)(
b(t)

xα
+ µc(t)xβ

)
,

where a, b, c, e, h, κ ∈ C(R/TZ,R), α, β > 0 and µ > 0 is a parameter. The reason
for considering equation (1.2) is mainly academic, since it unifies many of the particular
examples in the quoted literature and illustrates how our method is applicable to equations
depending on the derivative. From a point of view of modelling, singular forces arise in
classical mechanics when electromagnetic or gravitational forces are involved, and in many
of such models the inclusion of a damping term modelling the loss of energy by friction is
reasonable.

The rest of this paper is organized as follows. In Section 2, we present a survey on some
known results concerning the sign of Green’s function of the linear damped equation

(1.3) x′′ + h(t)x′ + a(t)x = 0,

associated to periodic boundary conditions

(1.4) x(0) = x(T ), x′(0) = x′(T ).

We present two classes of functions h, a to guarantee that (1.3)-(1.4) has a positive or non-
negative Green’s function. These two classes have been studied in [19] and [4], respectively.
The proofs of the results in [4] are based on the so-called “Lp−criterion” developed by
Torres in [26] for the Green’s function of the Hill equation

(1.5) x′′ + a(t)x = 0.

During the last several years, the “Lp−criterion” for (1.5) has become a standard assump-
tion in the searching for periodic solutions of second order nonlinear regular and singular
differential equation

(1.6) x′′ + a(t)x = f(t, x).

See, for example, [6, 7, 12, 20, 28]. Here we note that the Green’s function of (1.3) with
separated boundary conditions has also been considered in [1, 13].

In Section 3, by employing a nonlinear alternative principle of Leray–Schauder, we
prove the main existence results for (1.1) under the positiveness of the Green’s function
associated with (1.3)-(1.4). Applications of the new results to (1.2) are also given. The
results are applicable to the case of a strong singularity as well as the case of a weak
singularity. We are mainly motivated by the recent papers [7, 8, 20], in which periodic
singular problem (1.6) has been studied. We have generalized those results in [8, 20] and
improved those in [22].

From now on, let us denote by p∗ and p∗ the essential supremum and infimum of a
given function p ∈ L1[0, T ], if they exist. Also, we write p � 0 if p ≥ 0 for almost every
t ∈ [0, T ] and it is positive in a set of positive measure. The usual Lp−norm is denoted by
‖ · ‖p. The conjugate exponent of p is denoted by q: 1/p+ 1/q = 1.
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2. Sign of Green’s function

We say that (1.3)-(1.4) is nonresonant when its unique T -periodic solution is the trivial
one. When (1.3)-(1.4) is nonresonant, as a consequence of Fredholm’s alternative, the
nonhomogeneous equation

(2.1) x′′ + h(t)x′ + a(t)x = l(t)

admits a unique T -periodic solution which can be written as

x(t) =

∫ T

0

G(t, s)l(s)ds,

where G(t, s) is the Green’s function of problem (1.3)-(1.4).
In next section, we will assume that the following standing hypothesis is satisfied:

(A) The Green’s function G(t, s), associated with (1.3)-(1.4), is positive for all (t, s) ∈
[0, T ]× [0, T ].

The rest part of this section is devoted to present some sufficient conditions, which
guarantee that (A) is satisfied. We have two classes.

2.1. Class 1: the general case a, h ∈ C(R/TZ).

Definition 2.1. We say that (1.3) admits the anti-maximum principle if (2.1) has a unique
T -periodic solution for any l ∈ C(R/TZ) and the unique T -periodic solution xl of (2.1)
satisfies xl(t) > 0 for all t if l � 0.

Theorem 2.2. Assume that (1.3) admits the anti-maximum principle. Then the Green’s
function G(t, s), associated with (1.3)-(1.4), is nonnegative for all (t, s) ∈ [0, T ]× [0, T ].

Proof. For the case h ≡ 0, this result is proved in [35, Theorem 4.1]. This proof remains
invariant in our more general setting. �

For the positiveness of Green’s function, we can use the following result.

Theorem 2.3. Let us assume that the distance between two consecutive zeroes of a non-
trivial solution of (1.3) is always strictly greater than T . Then, the Green’s function G(t, s)
does not vanish.

Proof. For the case h ≡ 0, this result is proved in [26, Theorem 2.1] (see also [35, Lemma
4.13]). As in the latter result, this proof remains invariant in our more general setting. �

By combining Theorems 2.2 and 2.3, one has abstract conditions for property (A) to
hold.

Next we recall one explicit criterion proved by Halk and Torres in [19] that (1.3) admits
the anti-maximum principle. To do this, let us define the functions

σ(h)(t) = exp
(∫ t

0

h(s)ds
)
,

and

σ1(h)(t) = σ(h)(T )

∫ t

0

σ(h)(s)ds+

∫ T

t

σ(h)(s)ds.

Lemma 2.4. [19, Theorem 2.2] Assume that a 6≡ 0 and the following two inequalities are
satisfied

(2.2)

∫ T

0

a(s)σ(h)(s)σ1(−h)(s)ds ≥ 0,

and

(2.3) sup
0≤t≤T

{∫ t+T

t

σ(−h)(s)ds

∫ t+T

t

[a(s)]+σ(h)(s)ds

}
≤ 4,

where [a(s)]+ = max{a(s), 0}. Then the anti-maximum principle for (1.3) holds.
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The results in [19] can be exploited to derive a lower bound for the distance among
zeroes of solutions of (1.3) as well.

Lemma 2.5. Assume that a 6≡ 0 and (2.3) holds. Then, the distance between two consec-
utive zeroes of a nontrivial solution of (1.3) is always strictly greater than T .

Proof. By contradiction, let us assume that x is a non-trivial solution of (1.3) with two
consecutive zeroes at c < b such that b− c ≤ T . Then x(c) = x(b) = 0 and, without loss of
generality, we can assume that c ∈ [0, T ] and x(t) > 0 for t ∈]c, b[. By a direct application
of [19, Lemma 3.4], one has

4 <

∫ b

c

σ(−h)(s)ds

∫ b

c

[a(s)]+σ(h)(s)ds.

Note that all the integrated functions are non-negative. Since b− c ≤ T , we have

4 <

∫ c+T

c

σ(−h)(s)ds

∫ c+T

c

[a(s)]+σ(h)(s)ds,

which is a contradiction with (2.3). �
As a consequence of the two previous lemmas, we have explicit conditions for property

(A).

Corollary 2.6. Assume that a 6≡ 0 and (2.2)-(2.3) hold. Then the Green’s function G(t, s),
associated with (1.3)-(1.4), is positive for all (t, s) ∈ [0, T ]× [0, T ].

2.2. Class 2: special case
∫ T

0
a(t)σ(h)(t)dt > 0 and h̄ = 0. Next we consider one

special case, that is

h ∈ C̃(R/TZ) := {h ∈ C(R/TZ) : h̄ = 0}.

In this case, one criterion has been developed by Cabada and Cid in [4].
To describe these, given an exponent q ∈ [1,∞], the best constant in the Sobolev

inequality

C‖u‖q,[0,1] ≤ ‖u′‖2,[0,1] for all u ∈ H1
0 (0, 1)

is denoted by M(q). The explicit formula for M(q) is known. That is,

M(q) =

{ (
2π
q

)1/2 (
2
q+2

)1/2−1/q
Γ(1/q)

Γ(1/2+1/q)
, for 1 ≤ q <∞,

2, for q =∞,

where Γ(·) is the Gamma function of Euler. In particular, M(2) = π, M(∞) = 2. See
[34].

Theorem 2.7. [4, Theorem 5.1] Assume that h ∈ C̃(R/TZ) and
∫ T

0
a(t)σ(h)(t)dt > 0.

Suppose further that there exists 1 ≤ p ≤ ∞ such that(
B(T )

)1+1/q

‖A+‖p,T < (≤)M2(2q),

where

B(T ) =

∫ T

0

σ(−h)(t)dt,

and

A+(t) = a+(t)
(
σ(h)(t)

)2−1/p

.

Then the Green’s function G(t, s), associated with (1.3)-(1.4), is positive (nonnegative) for
all (t, s) ∈ [0, T ]× [0, T ].
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Remark 2.8. From the proof of [4, Theorem 5.1], we know that the Green’s function of
(1.3)-(1.4) can be written as

G(t, s) = G̃(B(t), B(s))σ(h)(s), for all (t, s) ∈ [0, T ]× [0, T ],

where G̃(r, s) is the Green’s function related to the linear equation

x′′(r) + a(B−1(r))σ(2h)(B−1(r))x(r) = l(B−1(r))σ(2h)(B−1(r)), r ∈ [0, B(T )]

with the periodic boundary condition

x(0) = x(B(T )), x′(0) = x′(B(T )).

Example 2.9. In the case h(t) ≡ 0, a(t) ≡ k2 with 0 < k ≤ π/T , the Green’s function
has the form

G(t, s) =


sin k(t− s) + sin k(T − t+ s)

2k(1− cos kT )
, 0 ≤ s ≤ t ≤ T,

sin k(s− t) + sin k(T − s+ t)

2k(1− cos kT )
, 0 ≤ t ≤ s ≤ T.

See [11, 26]. Using Remark 2.8, for the case that

h ∈ C̃(R/B−1(T )Z), a(t)σ(2h)(t) = k2, k > 0,

one may easily see that the Green’s function of (1.3)-(1.4) has the form

G(t, s) = σ(h)(s)


sin k(B(t)−B(s)) + sin k(T −B(t) +B(s))

2k(1− cos kT )
, 0 ≤ s ≤ t ≤ T,

sin k(B(s)−B(t)) + sin k(T −B(s) +B(t))

2k(1− cos kT )
, 0 ≤ t ≤ s ≤ T.

3. Main results

In this section, we state and prove the new existence results for (1.1). The proof is
based on the following nonlinear alternative of Leray-Schauder, which can be found in [15]
or [16, page 120-130] and has been used by Meehan and O’Regan in [23, 24]. From now
on, property (A) is fixed as standing hypothesis.

Lemma 3.1. Assume Ω is an open subset of a convex set K in a normed linear space X
and p ∈ Ω. Let T : Ω → K be a compact and continuous map. Then one of the following
two conclusions holds:

(I) T has at least one fixed point in Ω.
(II) There exists x ∈ ∂Ω and 0 < λ < 1 such that x = λTx+ (1− λ)p.

Theorem 3.2. Suppose that (1.3) satisfies (A) and

(3.1)

∫ T

0

a(t)σ(h)(t)dt > 0.

Furthermore, assume that there exists a constant r > 0 such that

(H1) There exists a continuous function φr � 0 such that f(t, x, y) ≥ φr(t) for all
(t, x, y) ∈ [0, T ]× (0, r]× (−∞,∞).

(H2) There exist continuous, non-negative functions g(·), h(·) and %(·) such that

0 ≤ f(t, x, y) ≤

(
g(x) + h(x)

)
%(|y|), for all (t, x, y) ∈ [0, T ]× (0, r]× R,

where g(·) > 0 is non-increasing, h(·)/g(·) is non-decreasing in (0, r] and %(·) is
non-decreasing in (0,∞).
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(H3) The following inequality holds
r

g(ιr)
{

1 + h(r)
g(r)

}
%(Lr)

> ω∗,

where

ω(t) =

∫ T

0

G(t, s)ds, L =

2

∫ T

0

a(t)σ(h)(t)dt

min
0≤t≤T

σ(h)(t)
,

and

ι = m/M, m = min
0≤s,t≤T

G(t, s), M = max
0≤s,t≤T

G(t, s), .

Then (1.1) has at least one positive T -periodic solution x with 0 < ‖x‖ ≤ r.

Proof. Since (H3) holds, we can choose n0 ∈ {1, 2, · · · } such that
1

n0
< ιr and

ω∗g(ιr)

{
1 +

h(r)

g(r)

}
%(Lr) +

1

n0
< r.

Let N0 = {n0, n0 + 1, · · · }. Consider the family of equations

(3.2) x′′ + h(t)x′ + a(t)x = λfn(t, x(t), x′(t)) +
a(t)

n
,

where λ ∈ [0, 1], n ∈ N0 and

fn(t, x, y) =

{
f(t, x, y) if x ≥ 1/n,
f(t, 1/n, y) if x ≤ 1/n.

A T -periodic solution of (3.2) is just a fixed point of the operator equation

x = λTnx+ (1− λ)p,(3.3)

where p = 1/n and Tn is a continuous and completely continuous operator defined by

(Tnx)(t) =

∫ T

0

G(t, s)fn(s, x(s), x′(s))ds+
1

n
,

where we used the fact ∫ T

0

G(t, s)a(s)ds ≡ 1.

First we claim that any fixed point x of (3.3) for any λ ∈ [0, 1] must satisfy ‖x‖ 6= r.
Otherwise, assume that x is a fixed point of (3.3) for some λ ∈ [0, 1] such that ‖x‖ = r.
Note that

x(t)− 1

n
= λ

∫ T

0

G(t, s)fn(s, x(s), x′(s))ds

≥ λm

∫ T

0

fn(s, x(s), x′(s))ds

= ιMλ

∫ T

0

fn(s, x(s), x′(s))ds

≥ ι max
t∈[0,T ]

{
λ

∫ T

0

G(t, s)fn(s, x(s), x′(s))ds

}
= ι‖x− 1

n
‖.

By the choice of n0,
1

n
≤ 1

n0
< ιr. Hence, for all t ∈ [0, T ], we have

x(t) ≥ ι‖x− 1

n
‖+

1

n
≥ ι(‖x‖ − 1

n
) +

1

n
≥ ιr.
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Next we claim that

(3.4) ‖x′‖ ≤ Lr

for any T -periodic solution x(t) of equation (3.2). Note that (3.2) is equivalent to

(3.5) (σ(h)(t)x′)′ + a(t)σ(h)(t)x = σ(h)(t)

(
λfn(t, x(t), x′(t)) +

a(t)

n

)
.

Integrating (3.5) from 0 to T , we obtain∫ T

0

a(t)σ(h)(t)x(t)dt =

∫ T

0

σ(h)(t)

(
λfn(t, x(t), x′(t)) +

a(t)

n

)
dt.

By the periodic boundary conditions, x′(t0) = 0 for some t0 ∈ [0, T ]. Therefore

|σ(h)(t)x′(t)| =

∣∣∣∣∫ t

t0

(
σ(h)(s)x′(s)

)′
ds

∣∣∣∣
=

∣∣∣∣∣
∫ t

t0

σ(h)(s)

(
λfn(s, x(s), x′(s)) +

a(s)

n
− a(s)x(s)

)
ds

∣∣∣∣∣
≤
∫ T

0

σ(h)(s)

(
λfn(s, x(s), x′(s)) +

a(s)

n
+ a(s)x(s)

)
ds

= 2

∫ T

0

a(s)σ(h)(s)x(s)ds

≤ 2r

∫ T

0

a(s)σ(h)(s)ds,

where we have used the assumption (3.1). Therefore,(
min

0≤t≤T
σ(h)(t)

)
|x′(t)| ≤ 2r

∫ T

0

a(s)σ(h)(s)ds,

which implies that (3.4) holds.
Thus we have from condition (H2), for all t ∈ [0, T ],

x(t) = λ

∫ T

0

G(t, s)fn(s, x(s), x′(s))ds+
1

n

= λ

∫ T

0

G(t, s)f(s, x(s), x′(s))ds+
1

n

≤
∫ T

0

G(t, s)f(s, x(s), x′(s))ds+
1

n

≤
∫ T

0

G(t, s)g(x(s))

{
1 +

h(x(s))

g(x(s))

}
%(|x′(s)|)ds+

1

n

≤ g(ιr)

{
1 +

h(r)

g(r)

}
%(Lr)

∫ T

0

G(t, s)ds+
1

n

≤ g(ιr)

{
1 +

h(r)

g(r)

}
%(Lr)ω∗ +

1

n0
.

Therefore,

r = ‖x‖ ≤ g(ιr)

{
1 +

h(r)

g(r)

}
%(Lr)ω∗ +

1

n0
.

This is a contradiction to the choice of n0 and the first claim is proved.
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Let be C1
T = {x : x, x′ ∈ C(R/TZ,R)} with the norm ‖x‖ = maxt∈[0,T ] |x(t)|. Then

C1
T is a normed linear space (not complete). Define

Br = {x ∈ C1
T : ‖x‖ < r}.

Then Br is an open subset in C1
T with p = 1/n ∈ Br since 1/n < r. Now using Lemma

3.1, we know that

x = Tnx

has a fixed point, denoted by xn, in , i.e., equation

(3.6) x′′ + h(t)x′ + a(t)x = fn(t, x(t), x′(t)) +
a(t)

n

has a periodic solution xn with ‖xn‖ < r. Since xn(t) ≥ 1/n > 0 for all t ∈ [0, T ] and xn
is actually a positive periodic solution of (3.6).

Next we claim that xn(t) have a uniform positive lower bound, i.e., there exists a
constant δ > 0, independent of n ∈ N0, such that

(3.7) min
t∈[0,T ]

xn(t) ≥ δ

for all n ∈ N0.
Since (H1) holds, there exists a continuous function φr � 0 such that f(t, x, y) ≥ φr(t)

for all (t, x, y) ∈ [0, T ]× (0, r]× R. Therefore,

xn(t) =

∫ T

0

G(t, s)

{
fn
(
t, xn(s), x′n(s)

)
+
a(s)

n

}
ds

≥
∫ T

0

G(t, s)φr(s)ds,

which means that (3.7) holds with

δ = min
0≤t≤T

∫ T

0

G(t, s)φr(s)ds > 0.

Using the similar procedure in the proof of (3.4), we can prove that

(3.8) ‖x′n‖ ≤ Lr

for all n ≥ n0.
From equation (1.1), ‖xn‖ < r and (3.8), it is easy to see that {‖x′′n‖}n∈N0 is also uni-

formly bounded. In consequence, {‖x′n‖}n∈N0 is equicontinuous, and therefore {xn}n∈N0

is a bounded and equi-continuous family in C1
T . Now the Arzela–Ascoli Theorem guar-

antees that {xn}n∈N0 has a subsequence, {xnk}k∈N, converging uniformly on [0, T ] to a
function x ∈ X. From the fact ‖xn‖ < r and (3.7), x satisfies δ ≤ x(t) ≤ r for all t ∈ [0, T ].
Moreover, xnk satisfies the integral equation

xnk (t) =

∫ T

0

G(t, s)f(s, xnk (s), x′nk (s))ds+
1

nk
.

Letting k →∞, we arrive at

x(t) =

∫ T

0

G(t, s)f(s, x(s), x′(s))ds.

Therefore, x is a positive T -periodic solution of (1.1) and satisfies 0 < ‖x‖ ≤ r.

Corollary 3.3. Let the nonlinearity in (1.1) be

(3.9) f(t, x, y) =
(

1 + |y|γ
)(
x−α + µxβ

)
,

where α > 0, β, γ ≥ 0, µ > 0 is a positive parameter.

(i) if β + γ < 1, then (1.1) has at least one positive periodic solution for each µ > 0.
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(ii) if β + γ ≥ 1, then (1.1) has at least one positive periodic solution for each 0 <
µ < µ1, where µ1 is some positive constant.

Proof. We will apply Theorem 3.2. To this end, the assumption (H1) is fulfilled by
φr(t) = r−α. Take

g(x) = x−α, h(x) = µxβ , %(x) = 1 + |x|γ .

Then (H2) is satisfied and the existence condition (H3) becomes

µ <
σαr1+α − ω∗ − ω∗Lγrγ

rα+β(ω∗ + ω∗Lγrγ)

for some r > 0. So (1.1) has at least one positive periodic solution for

0 < µ < µ1 := sup
r>0

σαr1+α − ω∗ − ω∗Lγrγ

rα+β(ω∗ + ω∗Lγrγ)
.

Note that µ1 =∞ if β + γ < 1 and µ1 <∞ if β + γ ≥ 1. We have (i) and (ii). �

Corollary 3.4. Let the nonlinearity in (1.1) be

(3.10) f(t, x, y) =
(

1 + |y|γ
)( 1

xα
− µ

xβ

)
,

where α > β > 0,γ ≥ 0 with γ < α+ 1, µ > 0 is a positive parameter. Then there exists a
positive constant µ2 such that (1.1) has at least one positive T -periodic solution for each
0 ≤ µ < µ2.

Proof. Take

g(x) = x−α, h(x) ≡ 0, %(y) = 1 + |y|γ .
Then (H2) is satisfied and the existence condition (H3) becomes

(3.11) σαr1+α >
(

1 + Lγrγ
)
ω∗

for some r > 0. Since α + 1 > γ, we can choose r > 0 large enough such that (3.11) is
satisfied. Next we show that (H1) is satisfied. Let

l(x) = x−α − µx−β , x ∈ (0,+∞)

and

s1 = µ−
1

α−λ , s2 = (α/µλ)
1

α−λ .

Since α > β, one can easily verify that s1 < s2 and

l(s1) = 0, l′(s2) = 0, l′(s) < 0, s ∈ (0, s2).

Therefore, l(s) is decreasing on (0, s1) ⊂ (0, s2). On the other hand, we can choose µ > 0
small enough such that

r ∈ (0, s1).

Thus,

min
s∈(0,r)

l(s) = l(r) > l(s1) = 0.

This implies that the condition (H1) is satisfied if we take

φr(t) ≡ l(r).

Remark 3.5. Corollary 3.4 is interesting because the singularity on the right-hand side
combines attractive and repulsive effects. The analysis of such differential equations with
mixed singularities is at this moment very incomplete, and few references can be cited
[3, 18]. Therefore, the results in Corollary 3.4 can be regarded as one contribution to the
literature trying to fill partially this gap in the study of singularities of mixed type.
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Remark 3.6. It is easy to find results analogous to Corollary 3.3 and 3.4 for the gen-
eral equation (1.2) when b, c, e, κ ∈ C(R/TZ,R) with b, e, κ � 0. Here we consider the
nonlinearities (3.9) and (3.10) only for simplicity.

Finally in this section, we consider one special case of (1.1), that is

(3.12) x′′ + h(t)x′ + a(t)x = f(t, x),

in which the nonlinearity does not depend on the derivative. The following result is a
direct consequence of Theorem 3.2.

Theorem 3.7. Suppose that (1.3) satisfies (A). Furthermore, assume that there exists a
constant r > 0 such that

(H′1) There exists a continuous function φr � 0 such that f(t, x) ≥ φr(t) for all (t, x) ∈
[0, T ]× (0, r].

(H′2) There exist continuous, non-negative functions g(·) and h(·) such that

0 ≤ f(t, x) ≤ g(x) + h(x), for all (t, x) ∈ [0, T ]× (0, r],

where g(·) > 0 is non-increasing, h(·)/g(·) is non-decreasing in (0, r].

(H′3) The following inequality holds

r

g(σr)
{

1 + h(r)
g(r)

} > ω∗.

Then (3.12) has at least one positive periodic solution x with 0 < ‖x‖ ≤ r.

Remark 3.8. Even in Theorem 3.7, we have generalized those results contained in [6, 8,
26], in which only equations without damping term are considered. We emphasize that
our results are applicable to the case of a strong singularity as well as the case of a weak
singularity. Note that in the proof of Theorem 3.2, the positiveness of Green’s function
plays an important role. Finally, we remark that the results contained in this paper can
be translated to the L1-Caratheodory framework without significant changes.

Acknowledgments. We would like to show our great thanks to the anonymous referee
for his/her valuable suggestions and comments, which have improved a former version of
this paper.
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