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Abstract

Sufficient conditions are established in order to guarantee the existence of
positive periodic solutions to(

u′√
1− u′2

)′
+ f(u)u′ =

m(t)

uµ
− n(t)

uλ
+ h(t)uδ,

where f : (0,+∞)→ R, m,n : [0, T ]→ R+, h : [0, T ]→ R are continuous
functions and µ, λ, δ ≥ 0.

MSC 2010 Classification : 34B15; 34B16; 34C25

1 Introduction

In the related literature a φ−Laplacian operator is a increasing homeomorphism φ :
(−a, a) → (−b, b) with φ(0) = 0 and 0 < a, b ≤ +∞. Essentially there exists three
type of φ−Laplacian operators:

• The singular one: This is a φ−Laplacian operator having bounded domain (that
is a < +∞). The paradigmatic model in this context is defined by

φ(x) =
x√

1− x2
, x ∈ (−1, 1).

• The regular one: It is a φ−Laplacian operator having either unbounded domain
and range. The classical model in this context is the p-Laplacian operator which
is defined by

φp(x) = |x|p−1 sgnx, x ∈ R, p > 1.

• The bounded one: In this case the φ−Laplacian operator has bounded range,
and as a model one may consider

φr(x) =
x√

1 + x2
, x ∈ R.
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There are a several number of references concerning to regular φ−Laplacian oper-
ators [16, 24, 25, 26], most of them involving the case p = 2, e.g., φ2 = Id. This case
is known as the classical case. For instance, the following type of equations

u′′ = f(t, u, u′),

where f : [0, T ]×D → R being D an open set of R2, are included in this case.
Obviously we understand the reason why there are many papers concerning this case.
However the number of papers decreases when one considers singular or bounded
φ−Laplacian operators.

In the present paper we will only consider the singular φ−Laplacian operators. As
some examples of interesting works in this framework we have [3, 4, 5, 6, 8, 9, 12,
17, 21, 22, 23]. One may observe that at the most of above references is only studied
equations of type

(φ(u′))′ = f(t, u, u′)

where f : [0, T ] × R2 → R, e.g., the nonlinearity of the differential equation has not
singularities.

On the other hand, if one considers singularities at the nonlinearity we can cite
[2, 23].

From applied point of view the singular φ−Laplacian operator has relevance on
the context of Special Relativity. More exactly when dealing with particles moving at
speed close to that of light it may be important taking into account relativistic effects.
In this line we cite, amount other ones, [1, 7, 11, 15, 18, 20, 23].

The objective of this paper is to continue studying the following family of periodic
problems with singular nonlinearity

(φ(u′))′ + f(u)u′ =
m(t)

uµ
− n(t)

uλ
+ h(t)uδ, u(0)− u(T ) = 0 = u′(0)− u′(T ), (1)

where f ∈ C
(
(0,+∞); R

)
(it may have singularity at 0), m,n ∈ C

(
[0, T ]; R+

)
, h ∈

C
(
[0, T ]; R

)
, µ, λ, δ are non-negative constants. More exactly we show a novel method

of construction of lower and upper solutions using Theorem 2 in [3] and some recent
results proved in [2] (see Theorem 1 and Theorem 2). In contrast with the results
in [2] we can include the Liénard term f(u)u′, which is not possible consider it using
similar arguments as there.

As a consequence of our main results we study the solvability of the following
problem whose associated equation is known as Raleigh-Plesset equation (see [2, 13,
14])

(φ(u′))′ + f(u)u′ =
m

uµ
− n

uδ
+ h(t)uδ, u(0)− u(T ) = 0 = u′(0)− u′(T ), (2)

where m,n > 0, µ ≥ 1, µ > δ > 0 and h, f are defined as above, getting that if
h := (1/T )

∫ T
0
h(s)ds < 0 then (2) has at least one positive solution (see Theorem 3).

Something similar was proven in [2], but there was necessary to assume that h(t) ≤ 0
for t ∈ [0, T ].

The main tools employed explicitly or implicitly in this paper are lower and upper
solutions and degree theory, in order to do a profound study on this techniques we
refer to the reader to e.g., [10, 19].

The paper is organized as follows. In Section 2 we introduce some notation and
auxiliary results (almost all taken from [3]). In Section 3 we show a new method for
constructing lower and upper solutions of (1). Finally, in the last section, we offer
some applications of our main results.
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2 Some notations and auxiliary results

Let C denote the Banach space of continuous functions on [0, T ] endowed with the uni-
form norm || · ||∞, C1 denote the Banach space of continuously differentiable functions
on [0, T ] equipped with the norm

||u|| = ||u||∞ + ||u′||∞ (u ∈ C1).

The following assumption upon φ is made throughout the paper:

(Hφ) φ :] − a, a[→ R is an increasing homeomorphism such that φ(0) = 0 and 0 <
a <∞.

If u, v ∈ C are such that u(t) ≤ v(t) for all t ∈ [0, T ], we write u ≤ v. Also, we
write u < v if u(t) < v(t) for all t ∈ [0, T ].

Now it would be convenient to define the known concepts of lower and upper
solutions to (1).

Definition 1 A lower solution α (resp. upper solution β) of (1) is a function α ∈
C1
(
[0, T ]; R+

)
such that ||α′||∞ < a, φ(α′) ∈ C1, α(0) = α(T ), α′(0) ≥ α′(T ) (resp.

β ∈ C1
(
[0, T ]; R+

)
, ||β′||∞ < a, φ(β′) ∈ C1, β(0) = β(T ), β′(0) ≤ β′(T )) and

(φ(α′))′ + f(α)α′ ≥ m(t)

αµ
− n(t)

αλ
+ h(t)αδ (3)(

resp. (φ(β′))′ + f(β)β′ ≤ m(t)

βµ
− n(t)

βλ
+ h(t)βδ

)
. (4)

on whole the interval [0, T ]. Such a lower or upper solution is called strict if (3) or (4)
is a strict inequality.

At the first time we recall a criterion on solvability concerning to well-ordered
lower and upper solutions proved in [3].

Lemma 1 If (1) has a lower solution α and an upper solution β such that α ≤ β,
then (1) has a solution u such that α ≤ u ≤ β. Moreover, if α and β are strict, then
α < u < β.

An important fact throughout the paper is that the derivative of a solution u of
(1) is uniformly bounded by a. This remark will be exploited in order to control
the oscillation of solutions of (1). The next result is an elementary estimation of the
oscillation of a periodic function.

Lemma 2 If u : R→ R is a continuously differentiable and T -periodic function, then

max
[0,T ]

u−min
[0,T ]

u ≤ T

2
‖u′‖∞.

Proof. Let t∗ ∈ [0, T ) be such that u(t∗) = min[0,T ] u and t∗ ∈ [t∗, t∗+T ] be such that
u(t∗) = max[0,T ] u. One has that

u(t∗)− u(t∗) =

∫ t∗

t∗

u′(s)ds ≤ ‖u′‖∞(t∗ − t∗),

u(t∗)− u(t∗) = −
∫ t∗+T

t∗
u′(s)ds ≤ ‖u′‖∞(t∗ + T − t∗).
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Then, multiplying both inequalities and using that xy ≤ (x+ y)2/4 for all x, y ∈ R, it
follows that

(u(t∗)− u(t∗))
2 ≤ (‖u′‖∞T )2

4
,

and the proof is completed.

Now we will introduce a result proved as Theorem 1 in [2]. This result guaran-
tees the solvability of (2) whenever it admits lower and upper solutions. Our main
application will be supported on it.

Lemma 3 Let us assume that there exists α and β lower and upper solutions to (2).
Then there exists at least one solution u of (2) such that

min{α(tu), β(tu)} ≤ u(tu) ≤ max{α(tu), β(tu)}

for some tu ∈ [0, T ].

3 Methods of construction of lower and upper
solutions

Now we shall prove a general method to construct lower and upper solutions of (1).
At this moment will be convenient to introduce the following notation: for each

h ∈ L
(
[0, T ]; R

)
we define the numbers

H =

∫ T

0

h(s)ds, H+ =

∫ T

0

h+(s)ds, H− =

∫ T

0

h−(s)ds

where for each x ∈ R its positive and negative part is denoted as x+ = max{x, 0} and
x− = max{−x, 0}.

In order to prove the main Theorems we will need to introduce a continuous op-
erator Π : C1

(
[0, T ]; R

)
→ C1

(
[0, T ]; R

)
. Let x1 > 0, we define Π by

Π(u)(t) = x1 + u(t)−min
[0,T ]

u for t ∈ [0, T ]. (5)

Let us consider the auxiliar problem

(φ(u′))′ + f(Π(u))u′ = q(t), u(0) = 0 = u(T ). (6)

The following lemma will allow us to establish a relationship between a periodic
problem and a Dirichlet problem. The result was proved in [3] and it claims:

Lemma 4 For each operator F : C1
(
[0, T ]; R

)
→ C

(
[0, T ]; R

)
continuous and takes

bounded sets into bounded sets, the Dirichlet problem

(φ(u′))′ = F (u), u(0) = 0 = u(T )

has at least one solution.

Remark 1 For each q ∈ C
(
[0, T ]; R

)
, defining the continuous operator F (u)(t) =

q(t)− f(Π(u))u′ and using Lemma 4, it follows the solvability of (6).
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At this moment we are ready to prove our results in order to construct lower and
upper solutions for (1).

Theorem 1 Let us assume that there exist positive constants A1, A2, A3, A4 such that

max

{[
1

A1

] 1
µ

, A
1
δ
4

}
+
Ta

2
≤ min

{[
1

A2

] 1
λ

, A
1
δ
3

}
, (7)

A1M −A2N +A3H+ −A4H− ≤ 0 (8)

are fulfilled. Then there exists α ∈ C1
(
[0, T ]; R+

)
a lower solution of (1) verifying

max

{
A

1
δ
4 ,

[
1

A1

] 1
µ

}
≤ α(t) < max

{
A

1
δ
4 ,

[
1

A1

] 1
µ

}
+
aT

2
for t ∈ [0, T ]. (9)

Proof. Let us define the operator Π as in (5) putting x1 = max

{
A

1
δ
4 ,
[

1
A1

] 1
µ

}
, and

we consider, by Remark 1, w ∈ C1
(
[0, T ]; R

)
the solution to the Dirichlet problem (6)

where
q(t) = m(t)A1 − n(t)A2 + h+(t)A3 − h−(t)A4 for t ∈ [0, T ].

Now let us define α ∈ C1
(
[0, T ]; R+

)
by α(t) = Π(w)(t) for t ∈ [0, T ]. According to

Lemma 2 it follows

α(t) = x1 + w(t)−min
[0,T ]

w ≤ x1 + max
[0,T ]

w −min
[0,T ]

w < x1 +
aT

2
,

obtaining in this way (9). By virtue of (7), the above inequality implies α < min

{[
1
A2

] 1
λ
, A

1
δ
3

}
.

Therefore, since α ≥ x1, x1 ≤ α < min

{[
1
A2

] 1
λ
, A

1
δ
3

}
holds.

On the other hand, according to the last inequality, one proves

m(t)A1 − n(t)A2 + h+(t)A3 − h−(t)A4 ≥
m(t)

αµ
− n(t)

αλ
+ h+(t)αδ − h−(t)αδ.

In this way

q(t) ≥ m(t)

αµ
− n(t)

αλ
+ h(t)αδ. (10)

Since α′ = w′, it verifies (φ(α′))′ + f(α)α′ = q(t). Thus, from (10) it gets

(φ(α′))′ + f(α)α′ ≥ m(t)

αµ
− n(t)

αλ
+ h(t)αδ. (11)

Finally, since α(0) = α(T ), from (11), in order to prove that α is a lower solution to
(1) is sufficient proving that α′(0) ≥ α′(T ), or equivalently that φ(α′(0)) ≥ φ(α′(T )).
Since φ(α′) = φ(w′), it implies

φ(α′(T ))− φ(α′(0)) =

∫ T

0

(φ(w′))′dt

= −
∫ T

0

f(Π(w))w′dt+

∫ T

0

q(t)dt

= A1M −A2N +A3H+ −A4H−,

using (8) it obtains φ(α′(0)) ≥ φ(α′(T )).
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Analogously one can prove a theorem in order to construct an upper solution for
(1).

Theorem 2 Let us assume that there exist positive constants B1, B2, B3, B4 such that

max

{[
1

B2

] 1
λ

, B
1
δ
3

}
+
Ta

2
≤ min

{[
1

B1

] 1
µ

, B
1
δ
4

}
, (12)

B1M −B2N +B3H+ −B4H− ≥ 0 (13)

are fulfilled. Then there exists β ∈ C1
(
[0, T ]; R+

)
an upper solution of (1) verifying

max

{[
1

B2

] 1
λ

, B
1
δ
3

}
≤ β(t) < max

{[
1

B2

] 1
λ

, B
1
δ
3

}
+
aT

2
for t ∈ [0, T ]. (14)

Remark 2 Following carefully the argument of Theorem 1 (resp. Theorem 2), one
notes that if n is a strict positive function (resp. m is a strict positive function) the
lower solution (resp. the upper solution) constructed above is also strict.

4 Applications

In order to study existence of solutions of (2) we shall introduce the continuous func-
tions Ψ1,Ψ2 : (0,+∞)→ R defined by

Ψ1(x) =
mT

x
µ
δ

− nT(
x

1
δ + aT

2

)δ +

(
x

1
δ +

aT

2

)δ
H+ − xH−,

Ψ2(x) =
mT(

x
1
δ + aT

2

)µ − nT

x
+ xH+ −

(
x

1
δ +

aT

2

)δ
H−.

Now, we shall try to apply our Theorem 1 and 2, in order to study problem (2).
For that reason, we consider that λ = δ and m,n are positive constants.

Theorem 3 If h < 0 then there exists at least one solution of (2). In particular,
under this assumption, the periodic problem of(

u′√
1− u′2

)′
+ 4c

u′

u
4
5

=
m

uµ
− n

uδ
+ h(t)uδ

is solvable for c ∈ R.

Proof. At the first time notice that, since all functions which involve to (2) are contin-
uous, one may take β sufficiently small such that it is an strict upper solution for (2).
On the other hand, since limx→+∞Ψ1(x) < 0, there exists A4 > 0 sufficiently large
such that Ψ1(A4) ≤ 0. Next, let define the positive constants

A1 =

[
1

A4

]µ
δ

, A3 =

(
A

1
δ
4 +

aT

2

)δ
, A2 =

1(
A

1
δ
4 + aT

2

)δ . (15)

One may check that (7) is fulfilled as an identity, and (8) is followed from the condition
Ψ1(A4) ≤ 0. Applying Theorem 1 and Remark 2 it follows the existence of α a strict
lower solution such that (9) holds. Finally, by virtue of Lemma 3, the problem (2) has
at least one solution.
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Now we will study the case when h > 0. For that, notice that, since limx→0+ Ψ1(x) =
limx→+∞Ψ1(x) = +∞, we may define A4 > 0 such that Ψ1(A4) = min(0,+∞) Ψ1. Un-
der this framework we have

Theorem 4 If h > 0 and Ψ1(A4) ≤ 0, then (2) has at least two solutions. In partic-
ular, under this assumption, the periodic problem of(

u′√
1− u′2

)′
+ 4c

u′

u
4
5

=
m

uµ
− n

uδ
+ h(t)uδ

has at least two solutions.

Proof. Let us define the positive constant A1, A2 and A3 by (15). In the same way
as the previous theorem one may check that (7) is fulfilled and (8) is followed from
Ψ1(A4) ≤ 0. Thus, by Theorem 1 and Remark 2, there exists α a strict lower solution
such that

A
1
δ
4 ≤ α < A

1
δ
4 +

aT

2
for t ∈ [0, T ].

On the other hand, since limx→+∞Ψ2(x) > 0, there exists B3 > 0 sufficiently large
such that Ψ2(B3) > 0 and

B3 ≥
(
A

1
δ
4 +

aT

2

)δ
. (16)

Let us define the positive constant

B1 =

 1

B
1
δ
3 + aT

2

µ , B2 =
1

B3
, B4 =

(
B

1
δ
3 +

aT

2

)δ
.

Analogously to the previous arguments it proves that (12) is fulfilled as an identity,
and (13) is followed from Ψ2(B3) > 0. Thus, according to Theorem 2 and Remark 2,
there exists a strict upper solution such that

B
1
δ
3 ≤ β(t) < B

1
δ
3 +

aT

2
for t ∈ [0, T ].

From (16) it follows that α and β are strict well-ordered lower and upper solutions.
According to Lemma 1, the problem (2) has a solution which verifies α < u < β.

On the other hand, if one takes β1 > 0 a sufficiently small number in order to
it would be a strict upper solution, since α and β1 are reverse-ordered lower and
upper solutions, according to Lemma 3, there exists v a solution of (2) such that
β1 ≤ v(tv) ≤ α(tv). Therefore, since α < u < β, necessary, both solutions are different
ones.

Remark 3 Our main results do not cover the limit case h = 0, thus it remains open.

Remark 4 One may use the same strategy in order to study the existence of T−periodic
solutions to the following types of equations

(φ(u′))′ + f(u)u′ +
n(t)

uλ
= h(t),

where f ∈ C((0,+∞); R), n, h ∈ C and λ > 0. The results are like in [2], but now we
have achieved to include the Liénard term f(u)u′ in the equation.
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[17] R. Manásevich, J.R. Ward, On a result of Brezis and Mawhin, Proc. Amer.
Math. Soc. 140 (2012) 531-539.
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