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Abstract

Using Szulkin’s critical point theory, we prove that the relativistic
forced pendulum with periodic boundary value conditions(

u′
√

1− u′2

)′

+ µ sinu = h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ),

has at least two solutions not differing by a multiple of 2π for any con-
tinuous function h : [0, T ] → R with

∫ T

0
h(t)dt = 0 and any µ 6= 0. The

existence of at least one solution has been recently proved by Brezis and
Mawhin.
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1 Introduction and the main result

It is well known that the classical forced pendulum with periodic boundary value
conditions

u′′ + µ sinu = h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ),

has at least two solutions not differing by a multiple of 2π for any continuous
function h : [0, T ] → R with

∫ T

0
h(t)dt = 0 and any µ 6= 0. The existence of at

least one solution was proved by Hamel [9] and rediscovered independently by
Dancer [7] and Willem [15]. Then, the existence of a second solution has been
proved by Mawhin and Willem [11] using mountain pass arguments.
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Motivated by those results, Brezis and Mawhin prove in [6] that the rela-
tivistic forced pendulum with periodic boundary value conditions(

u′√
1− u′2

)′
+ µ sinu = h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ), (1)

has at least one solution for any forcing term h with mean value zero and any µ 6=
0. The above problem is reduced to finding a minimum for the corresponding
action integral over a closed convex subset of the space of T-periodic Lipschitz
functions, and then to show, using variational inequalities techniques, that such
a minimum solves the problem.

In this paper we show that (1) has at least two solutions not differing by
a multiple of 2π. Actually, we consider as in [2, 6], the more general periodic
boundary value problem

(φ(u′))′ = f(t, u) + h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ), (2)

where φ satisfies the hypothesis

(HΦ) there exists Φ : [−a, a] → R such that Φ(0) = 0, Φ is continuous, of
class C1 on (−a, a), with φ := Φ′ : (−a, a)→ R an increasing homeomorphism
such that φ(0) = 0,

f : [0, T ]× R→ R is a continuous function with its primitive

F (t, x) =
∫ x

0

f(t, ξ)dξ, ((t, x) ∈ [0, T ]× R)

satisfying the hypothesis

(HF ) there exists ω > 0 such that F (t, x) = F (t, x+ω) for all (t, x) ∈ [0, T ]×R,

and finally the forcing term h : [0, T ] → R is supposed to be continuous and
satisfies

(Hh)
∫ T

0
h(t)dt = 0.

Of course, by a solution of (2) we mean a function u ∈ C1[0, T ] with ||u′||∞ <
a, φ(u′) ∈ C1[0, T ] and (2) is satisfied.

Our main result is the following one.

Theorem 1 If the hypotheses (HΦ), (HF ) and (Hh) are satisfied, then (2) has
at least two solutions not differing by a multiple of ω.

Taking in (2), φ(s) = s√
1−s2 so that Φ(s) = 1 −

√
1− s2, and f(t, x) =

−µ sinx so that F (t, x) = µ(cosx− 1) and ω = 2π, one has the following

Corollary 1 Problem (1) has at least two solutions not differing by a multiple
of 2π for any forcing term h satisfying (Hh) and any µ 6= 0.
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Our approach is variational and is based upon Szulkin’s critical point theory
[14] and some results given in [2]. The corresponding result for the one dimen-
sional curvature operator has been recently proved, using also Szulkin’s critical
point theory, by Obersnel and Omari [12].

We point out that the approach of Mawhin and Willem [11] has an abstract
formulation given by Pucci and Serrin in [13] and then the Pucci-Serrin’s variant
of the Mountain Pass Lemma has been generalized by Ghoussoub and Preiss
in [8]. For Szulkin type functionals, the Ghoussoub - Preiss result is proved by
Marano and Motreanu [10] assuming also the reflexivity of the space. In our
case, we work in the space of continuous functions defined on a compact interval,
which is not reflexive, and in order to avoid this difficulty we use a truncation
strategy coming from upper and lower solutions method.

2 Auxiliary results and notation

In this section we state some results from [2] which are main tools in the proof
of Theorem 1.

Let g : [0, T ]×R→ R be a continuous function with its primitive defined by

G(t, x) =
∫ x

0

g(t, ξ)dξ, ((t, x) ∈ [0, T ]× R),

and consider the periodic boundary value problem

(φ(u′))′ = g(t, u), u(0)− u(T ) = 0 = u′(0)− u′(T ). (3)

We set C := C[0, T ], L∞ := L∞(0, T ) and W 1,∞ := W 1,∞(0, T ). The usual
norm ‖ · ‖∞ is considered on C and L∞, whereas in W 1,∞ we consider the usual
norm ‖u‖W 1,∞ = ‖u‖∞ + ‖u′‖∞.

We decompose any u ∈ C as follows

u = u+ ũ, u =
1
T

∫ T

0

u(t)dt and
∫ T

0

ũ(t)dt = 0.

Note that one has

||ṽ||∞ ≤ T‖v′‖∞ for all v ∈W 1,∞. (4)

Let
K := {v ∈W 1,∞ : ‖v′‖∞ ≤ a, v(0) = v(T )}

and Ψ : C → (−∞,+∞] be defined by

Ψ(v) =


∫ T

0
Φ(v′), if v ∈ K,

+∞, otherwise.
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Obviously, Ψ is proper and convex. On the other hand, as shown in [6] (see also
[2]), Ψ is lower semicontinuous on C.

Next, let G : C → R be given by

G(u) =
∫ T

0

G(t, u) dt, u ∈ C.

A standard reasoning shows that G is of class C1 on C and its derivative is given
by

〈G′(u), v〉 =
∫ T

0

g(t, u)v dt, u, v ∈ C.

Following [2], we consider the energy functional associated to (3) given by

I : C → (−∞,+∞], I = Ψ + G.

Then, I has the structure required by Szulkin’s critical point theory [14]. Ac-
cordingly, a function u ∈ C is a critical point of I if u ∈ K and

Ψ(v)−Ψ(u) + 〈G′(u), v − u〉 ≥ 0 for all v ∈ C.

It is shown in [2] that if u is a critical point of I, then u is a solution of (3).
On the other hand, {un} ⊂ K is a (PS)–sequence if I(un)→ c ∈ R and∫ T

0)

[Φ(v′)−Φ(u′n) + g(t, un)(v − un)] dt ≥ −εn‖v − un‖∞

for all v ∈ K,

where εn → 0+. According to [14], the functional I is said to satisfy the (PS)
condition if any (PS)–sequence has a convergent subsequence in C. Note also
that if {un} is a (PS)–sequence, then, from [2] one has that
• the sequence {

∫ T

0
G(t, un) dt} is bounded;

• if {un} is bounded, then {un} has a convergent subsequence in C.

Next lemma is a direct consequence of [4, Theorem 3].

Lemma 1 Let us assume that (3) has two solutions α, β such that α(t) ≤ β(t)
for all t ∈ [0, T ]. Let γ : [0, T ]× R→ R be the continuous function defined by

γ(t, x) =

 β(t), if x > β(t),
x, if α(t) ≤ x ≤ β(t),
α(t), if x < α(t).

Consider the modified problem

(φ(u′))′ = g(t, γ(t, u)) + u− γ(t, u), u(0)− u(T ) = 0 = u′(0)− u′(T ). (5)

If u is a solution of (5), then

α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ],

and u is a solution of (3).

4



3 Proof of the main result

First of all, using the corresponding result for the periodic case of Corollary 1
in [2] one has that the energy functional I associated to (2) is bounded from
below and there exists u0 ∈ K a minimizer for I, which is also a solution of (2).
On the other hand, from (HF ) it follows that

I(u) = I(u+ jω) for all u ∈ C, j ∈ Z.

So, taking j sufficiently large, we can assume that u0 is strictly positive and one
has that u1 := u0 + ω is a minimizer of I and also a solution of (2).

We associate to (2) the corresponding modified problem

(φ(u′))′ = f(t, γ(t, u)) + h(t) + u− γ(t, u),
u(0)− u(T ) = 0 = u′(0)− u′(T ), (6)

where in this case γ : [0, T ]× R→ R is given by

γ(t, x) =

 u1(t), if x > u1(t),
x, if u0(t) ≤ x ≤ u1(t),
u0(t), if x < u0(t).

So, if u is a solution of (6) then by Lemma 1,

u0(t) ≤ u(t) ≤ u1(t) for all t ∈ [0, T ] (7)

and u is a solution of (2).
Next, let J : C → (−∞,∞] be the energy functional associated to the

modified problem (6). So,

J(u) =
∫ T

0

Φ(u′) +
∫ T

0

A(t, u)dt for all u ∈ K,

where A : [0, T ]× R→ R is given by

A(t, x) =
∫ x

0

f(t, γ(t, ξ))dξ + xh(t) +
x2

2
−
∫ x

0

γ(t, ξ)dξ,

for all (t, x) ∈ [0, T ]× R.
Let us note that if u is a critical point of J, then u is a solution of (6), hence

u satisfies (7) and u is also a solution of (2).

Lemma 2 The following hold true.

(i) J(u0) = J(u1).

(ii) lim|x|→∞A(t, x) = +∞ uniformly in t ∈ [0, T ].

(iii) The functional J is bounded from below and satisfies the (PS)-condition.
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Proof. (i) From (HF ) and the definition of γ we infer that

A(t, u0(t)) = u0(t)f(t, u0(t)) + u0(t)h(t)− u2
0(t)
2

,

and

A(t, u1(t)) = u0(t)f(t, u0(t)) + u1(t)h(t)− u2
0(t)
2

,

for all t ∈ [0, T ]. On the other hand, using (Hh) we deduce that∫ T

0

u0(t)h(t)dt =
∫ T

0

u1(t)h(t)dt.

Hence ∫ T

0

A(t, u0(t))dt =
∫ T

0

A(t, u1(t))dt,

which together with
u′0 = u′1,

imply that (i) holds true.
(ii) Using that γ is bounded, it follows that there exists c1 > 0 such that

A(t, x) ≥ x2

2
− c1|x| for all (t, x) ∈ [0, T ]× R,

implying that (ii) holds true.
(iii) From (ii) we deduce immediately that J is bounded from below.
Now, let {un} be a (PS)–sequence. Then, it follows that the sequence

{
∫ T

0
A(t, un) dt} is bounded. This together with (4) and (ii) imply that {un}

is bounded. Again by (4) and the fact that {un} ⊂ K , we have that {un} is
bounded in W 1,∞. By the compact embedding of W 1,∞ into C (see for example
[5]), it follows that {un} has a convergent subsequence in C and J satisfies the
(PS)-condition.

End of the proof of the main result. We conclude the proof by using an
argument inspired in [12]. Using Lemma 2 (iii) and Theorem 1.7 from [14], we
deduce that there exists u2, a critical point of J such that

J(u2) = inf
C
J.

We have two cases.

Case 1. If u2 6= u0 and u2 6= u1, then, using the fact that u2 satisfies (7), it
follows that u2 is a solution of (2) such that u2 − u0 is not a multiple of ω.

Case 2. If u2 = u0 or u2 = u1, then using Lemma 2 (i), it follows that u0

and u1 are also minimizers of J. Hence, using Lemma 2 (iii) and [14, Corollary
3.3], we infer that there exists u3 a critical point of J different to u0 and u1.
Because u3 is a critical point of J, one has that u3 satisfies (7) and therefore u3

is a solution of (2) such that u3 − u0 is not a multiple of ω.
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4 Final remarks about the Neumann problem

Let us consider the Neumann problem

[rN−1φ(u′)]′ = rN−1[f(r, u) + h(r)], u′(R1) = 0 = u′(R2), (8)

where 0 ≤ R1 < R2, N ≥ 1 is an integer and φ, f and h satisfy hypothesis (HΦ),
(HF ) and (Hh). Then, using the same strategy as in the periodic case, without
any change and the corresponding results from [2] and [1], one has that (8) has
at least two solutions not differing by a multiple of ω. The existence of at least
one solution has been proved in [3, 2].

In particular, the Neumann problem

div

(
∇v√

1− |∇v|2

)
+ µ sinu = h(|x|) in A, ∂v

∂ν
= 0 on ∂A,

where A = {x ∈ RN : R1 ≤ |x| ≤ R2}, has at least two classical radial solutions
not differing by a multiple of ω, for any µ 6= 0 and any h ∈ C such that∫

A
h(|x|) dx = 0.
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