Existence of at least two periodic solutions of the
forced relativistic pendulum

Cristian Bereanu
Institute of Mathematics “Simion Stoilow”, Romanian Academy
21, Calea Grivitei, RO-010702-Bucharest, Sector 1, Roméania
cristian.bereanu@imar.ro
Pedro J. Torres
Departamento de Matematica Aplicada

18071 Granada, Spain
ptorres@ugr.es

Abstract

Using Szulkin’s critical point theory, we prove that the relativistic
forced pendulum with periodic boundary value conditions

<ﬁ> +psinu = h(t),  u(0) ~u(T) =0 =u'(0) — u/(T),

has at least two solutions not differing by a multiple of 27 for any con-
tinuous function h : [0,7] — R with _fOT h(t)dt = 0 and any p # 0. The
existence of at least one solution has been recently proved by Brezis and
Mawhin.
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1 Introduction and the main result

It is well known that the classical forced pendulum with periodic boundary value
conditions

u’ + psinu = h(t), u(0)—u(T)=0=1u'(0)—u(T),

has at least two solutions not differing by a multiple of 27 for any continuous
function h : [0,T] — R with fOT h(t)dt = 0 and any pu # 0. The existence of at
least one solution was proved by Hamel [9] and rediscovered independently by
Dancer [7] and Willem [15]. Then, the existence of a second solution has been
proved by Mawhin and Willem [11] using mountain pass arguments.



Motivated by those results, Brezis and Mawhin prove in [6] that the rela-
tivistic forced pendulum with periodic boundary value conditions

(ﬁ) +psinu = h(t), w(0)—u(T)=0=1u'(0)—u'(T), (1)

has at least one solution for any forcing term h with mean value zero and any p #
0. The above problem is reduced to finding a minimum for the corresponding
action integral over a closed convex subset of the space of T-periodic Lipschitz
functions, and then to show, using variational inequalities techniques, that such
a minimum solves the problem.

In this paper we show that (1) has at least two solutions not differing by
a multiple of 27. Actually, we consider as in [2, 6], the more general periodic
boundary value problem

(¢(u')) = f(t,u) +h(t), u(0)—u(T)=0=u'(0)—u(T), (2)
where ¢ satisfies the hypothesis

(Hg) there exists ® : [—a,a] — R such that ®(0) = 0, ® is continuous, of
class C' on (—a,a), with ¢ := ®' : (—a,a) — R an increasing homeomorphism
such that ¢(0) = 0,

f:]0,T] x R — R is a continuous function with its primitive

F(t,x) = / Cfhode,  ((ha) € 0.T) x B)

satisfying the hypothesis
(Hp) there exists w > 0 such that F(t,z) = F(t,x+w) for all (t,z) € [0, T|xR,

and finally the forcing term h : [0,7] — R is supposed to be continuous and
satisfies

(Hp) [y h(t)dt =0.

Of course, by a solution of (2) we mean a function u € C*[0, T] with ||u/||s0 <
a, p(u') € C10,T] and (2) is satisfied.
Our main result is the following one.

Theorem 1 If the hypotheses (He), (Hp) and (H}) are satisfied, then (2) has
at least two solutions not differing by a multiple of w.

Taking in (2), ¢(s) = \/1%7 so that ®(s) = 1 — v1—s2, and f(t,z) =
—usinz so that F(t,2) = u(cosx — 1) and w = 2, one has the following

Corollary 1 Problem (1) has at least two solutions not differing by a multiple
of 2w for any forcing term h satisfying (Hy) and any p # 0.



Our approach is variational and is based upon Szulkin’s critical point theory
[14] and some results given in [2]. The corresponding result for the one dimen-
sional curvature operator has been recently proved, using also Szulkin’s critical
point theory, by Obersnel and Omari [12].

We point out that the approach of Mawhin and Willem [11] has an abstract
formulation given by Pucci and Serrin in [13] and then the Pucci-Serrin’s variant
of the Mountain Pass Lemma has been generalized by Ghoussoub and Preiss
in [8]. For Szulkin type functionals, the Ghoussoub - Preiss result is proved by
Marano and Motreanu [10] assuming also the reflexivity of the space. In our
case, we work in the space of continuous functions defined on a compact interval,
which is not reflexive, and in order to avoid this difficulty we use a truncation
strategy coming from upper and lower solutions method.

2 Auxiliary results and notation

In this section we state some results from [2] which are main tools in the proof
of Theorem 1.

Let g : [0,T] x R — R be a continuous function with its primitive defined by

Glta) = [ gt (o) € 0.7 ),
and consider the periodic boundary value problem

(6(u) = g(t,u), u(0) —u(T) =0=1u'(0) - u'(T). (3)

We set C' := C[0,T], L>* := L>(0,T) and W := Wh>(0,T). The usual
norm || - ||« is considered on C' and L®°, whereas in W1>° we consider the usual
norm [[ull w1 = [ulloe + [ .

We decompose any u € C' as follows

1 /7 T
uU=u+u, U= u(t)dt and / u(t)dt = 0.
T Jo 0

Note that one has

9lloe < Tll0']lsc for all v e Wh. (4)

Let
K:={veWh® : ||| <a, v(0)=uv(T)}
and ¥ : C' — (—o00, +00] be defined by
T -, .
fy @), ifvek,
V(v) =
400, otherwise.



Obviously, ¥ is proper and convex. On the other hand, as shown in [6] (see also
[2]), ¥ is lower semicontinuous on C.
Next, let G : C' — R be given by

T
G(u) = / Gt u)dt, uecC.
0
A standard reasoning shows that G is of class C* on C and its derivative is given
by
T
(G'(u),v) = / g(t,u)vdt, wu,veC.
0
Following [2], we consider the energy functional associated to (3) given by
I:C — (—o00,+00], I=v+g.

Then, I has the structure required by Szulkin’s critical point theory [14]. Ac-
cordingly, a function u € C' is a critical point of I if w € K and

U(v) —¥(u) + (G (u),v—u) >0 forallveC.

It is shown in [2] that if u is a critical point of I, then u is a solution of (3).
On the other hand, {u,} C K is a (PS)-sequence if I(u,) — ¢ € R and

T
/ [@(0) =@ (uz,) + gt un) (v — un)] dt > —enlv — tn|o
0)

forall v e K,

where €, — 04. According to [14], the functional I is said to satisfy the (PS)
condition if any (PS)-sequence has a convergent subsequence in C. Note also
that if {u,} is a (PS)-sequence, then, from [2] one has that

e the sequence {fOT G(t,uy) dt} is bounded;
o if {@, } is bounded, then {u,} has a convergent subsequence in C.

Next lemma is a direct consequence of [4, Theorem 3].

Lemma 1 Let us assume that (3) has two solutions «, B such that a(t) < B(t)
for allt € [0,T]. Let v :[0,T] x R — R be the continuous function defined by

Bt), if x> B(1),
vt x) =< z, ifalt) <z <B(t),
a(t), ifz<alt).

Consider the modified problem
(') = g(t,v(t,u) +u—~(tu), w0)—u(T)=0=u'(0)—u(T). (5)
If u is a solution of (5), then
a(t) <u(t) <B(t) forall tel0,T],

and u is a solution of (3).



3 Proof of the main result

First of all, using the corresponding result for the periodic case of Corollary 1
in [2] one has that the energy functional I associated to (2) is bounded from
below and there exists ug € K a minimizer for I, which is also a solution of (2).
On the other hand, from (Hp) it follows that

Iu)=I(u+jw) forall uweC,jeZ.

So, taking j sufficiently large, we can assume that wug is strictly positive and one
has that u1 := up + w is a minimizer of I and also a solution of (2).
We associate to (2) the corresponding modified problem

(@(u))" = f(t;v(t,w) + h(t) + u —~(t,w),
u(0) —u(T) = 0=4/(0) —u/(T), (6)

where in this case v : [0,7] x R — R is given by
ur(t), if x> uy(¢),
vyt x) =< z,  ifug(t) <z <wuy(t),
uo(t), if x < wg(t).
So, if w is a solution of (6) then by Lemma 1,

uo(t) < u(t) <wuy(t) forall tel0,T] (7)

and w is a solution of (2).
Next, let J : C — (—o00,00] be the energy functional associated to the
modified problem (6). So,

T T
J(u) = / D (u') —|—/ A(t,u)dt for all ue€ K,
0 0

where A :[0,T] x R — R is given by

x 1’2 x
A = [ s +ont+ 5 - [Mo.eas

for all (¢,x) € [0,T] x R.
Let us note that if w is a critical point of J, then w is a solution of (6), hence
u satisfies (7) and w is also a solution of (2).

Lemma 2 The following hold true.
(1) J(uo) = J(u1).
(i) lim|g| o A(t, 2) = +o0 uniformly in t € [0,T].

(i1i) The functional J is bounded from below and satisfies the (PS)-condition.



Proof. (i) From (Hp) and the definition of v we infer that

A(t,uo(t)) = uo(t) f(t, uo(t)) + uo(t)h(t) — @
and 2
A(t,ur (t)) = uo(t) f(t, uo(t)) + ur (t)h(t) — UOT(t)

for all ¢ € [0,T]. On the other hand, using (Hy) we deduce that

/ " o (Oh(t)dt = / C u(Oh()dt.

Hence

which together with

imply that (i) holds true.
(ii) Using that v is bounded, it follows that there exists ¢; > 0 such that

2
A(t,z) > % —ci|z| forall (¢,2)€[0,T] xR,

implying that (ii) holds true.

(iii) From (ii) we deduce immediately that J is bounded from below.

Now, let {u,} be a (PS)-sequence. Then, it follows that the sequence
{fOT A(t,u,)dt} is bounded. This together with (4) and (ii) imply that {@,}
is bounded. Again by (4) and the fact that {u,} C K , we have that {u,} is
bounded in W1°°. By the compact embedding of W1:* into C' (see for example
[5]), it follows that {u,} has a convergent subsequence in C' and .J satisfies the
(PS)-condition. ]

End of the proof of the main result. We conclude the proof by using an
argument inspired in [12]. Using Lemma 2 (iii) and Theorem 1.7 from [14], we
deduce that there exists uo, a critical point of J such that

J(ug) = 1réf J.

We have two cases.

Case 1. If ug # ug and uy # uq, then, using the fact that us satisfies (7), it
follows that ug is a solution of (2) such that us — ug is not a multiple of w.

Case 2. If ug = ug or ug = uq, then using Lemma 2 (i), it follows that wug
and w; are also minimizers of J. Hence, using Lemma 2 (iii) and [14, Corollary
3.3], we infer that there exists ug a critical point of J different to ug and u;.
Because ug is a critical point of .J, one has that ugz satisfies (7) and therefore us
is a solution of (2) such that uz — ug is not a multiple of w.



4 Final remarks about the Neumann problem
Let us consider the Neumann problem
Yo = rN T (rw) + h(r)], W/(Ry) = 0 =W/ (Ry), (8)

where 0 < Ry < Ry, N > 1is an integer and ¢, f and h satisfy hypothesis (Hg),
(Hp) and (Hp). Then, using the same strategy as in the periodic case, without
any change and the corresponding results from [2] and [1], one has that (8) has
at least two solutions not differing by a multiple of w. The existence of at least
one solution has been proved in [3, 2].

In particular, the Neumann problem

Vo ov
div| ———— | +usinu=nh(lz]) in A — =0 on OJA,
( 1W> ’ (=) -

where A = {z € RY : R; < |z| < Ry}, has at least two classical radial solutions
not differing by a multiple of w, for any p # 0 and any h € C such that

/Ah(|a:|)dx ~0.
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