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Abstract. We study the solvability of the quasilinear elliptic problem of parameter s

−∆pu
def
= −div(|∇u|p−2∇u) = g(x, u) + sϕ(x) in Ω, u = 0 on ∂Ω

where Ω is a smooth bounded domain in IRN , ϕ ≥ 0, g(,̇u)/|u|p−2u lies for u < 0 below,
say, the first eigenvalue of the p-laplacian −∆p and g growths for u > 0 less than the
lower Sobolev critical exponent p∗. We combine topological methods via upper and lower
solutions and blow-up techniques to get a-priori bounds to prove a result of Ambrosetti-
Prodi type : there exists s∗ ≤ s∗ such that the problem possesses 2 solutions if s > s∗,
it has at least one solution if s < s∗, and at least two solutions if s < s∗. We prove also
that s∗ = s∗ is some cases.

1. Introduction

Let Ω be a smooth bounded domain in IRN . We are interested in the solvability of the
following quasilinear boundary value problem

(Ps)
{ −∆pu = g(x, u) + sϕ(x) in Ω,

u = 0 on ∂Ω

where ∆pu for 1 < p < +∞ is the usual p-Laplace operator, ϕ ∈ L∞(Ω) with ϕ Â 0,
i.e., ϕ is strictly positive on any compact set of Ω, s is a real parameter and the function
g : Ω × IR → IR is a Carathéodory function which growths in u below the critical Sobolev
exponent p∗ := Np

N−p if p < N ; p∗ := +∞ if p ≥ N , i.e.,

(G) ∃C, D ∈ IR+, 1 ≤ q < p∗ s.t. |g(x, u)| ≤ C|u|q−1 + D, ∀u ∈ IR, a.e. x ∈ Ω.

Problem (Ps) is usually said to be of the Ambrosetti-Prodi type if the nonlinearity
term g crosses the first eigenvalue λ1 of the Dirichlet p-Laplacian in Ω, that is, when

lim sup
t→−∞

g(x, t)
|t|p−2t

< λ1 < lim inf
t→+∞

g(x, t)
|t|p−2t

, (1.1)

or the appropriate reversed inequalities. The expected classical Ambrosetti-Prodi result
under these hypothesis will assure the existence of s∗ ∈ IR such that “(Ps) has no solutions
when s > s∗, at least one solution if s = s∗ and at least two solution when s < s∗.”

Ambrosetti-Prodi type problems have been extensively treated in the semilinear case
p = 2. In the case p 6= 2 it has been recently studied by [2] and [7] assuming among other
hypothesis that both of the limits in (1.1) are finite. Many of the proof of these results
are based on the use of topological degree theory that combine upper and lower solutions
techniques and a priori bounds. We will show in this paper that, in order to obtain a pair
of upper and lower solutions of problem (Ps) for a large range of negative s, it is enough for
instance to assume the following growth condition of g at −∞:

(H1) ∃ b ∈ L∞(Ω), λ1(b) > 1, and C1 > 0 s.t. g(x, u) ≥ b(x)|u|p−2u− C1,
(H2) ∃ B ∈ L∞(Ω), C2 > 0 s.t. g(x, u) ≤ B(x)|u|p−2u + C2,
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for all u ≤ 0, a.e. x ∈ Ω. Here λ1(m) denotes the principal eigenvalue of the Dirichlet
problem for the p-Laplace operator with respect to the weight m. See next section for a
precise definition of λ1(m). Let us observe that (H1) implies

lim sup
t→−∞

g(x, t)
|t|p−2t

≤ b(x), a.e.x ∈ Ω,

and that condition λ1(b) > 1 is equivalent when b(x) is a constant, say b, to b < λ1. More-
over, λ1(b) > 1 when b(x) < λ1 a.e. x ∈ Ω, but one can easily find examples where condition
λ1(b) > 1 is satisfied without having b(x) < λ1 a.e. Ω.

In order to apply degree theory and to prove nonexistence results is essential to
obtain a priori bounds for the solutions of (Ps) with s varying in an unbounded interval.
To find a priori bounds when g has “superlinear” growth at +∞ is allways a difficult task.
Superlinear cases have been considered by [13] and [3] among others. In [13] the author
proves the existence of positive solutions in the case when ϕ ≡ 1 and the nonlinearity
g(x, u) (which may depends also on ∇u and satifies some structure conditions) growths on
u less than p∗, where p∗ := N(p−1)

N−p if p < N ; p∗ := +∞ if p ≥ N , is the lower critical
Sobolev exponent. However the structure hypothesis on g assumed by [13] do not imply
that g crosses the first eigenvalue of the p-laplacian as it is assumed here. The limit growth
p∗ on u appears when one aplies blow-up methods to have the desired a priori bounds of
the solutions. Indeed it assures that the limiting Liouville type of problem either in IRN or
IRN

+ has no positive solutions. We will also use blow-up methods in this work to obtain a
priori bounds, so we will suppose the following growth at +∞:

(H3) ∃ a > 0, C3 > 0 and p < q < p∗ s.t g(x, u) ≥ a|u|q−2u− C3,
(H4) ∃ A > 0, C4 > 0 and p < q < p∗ s.t g(x, u) ≤ A|u|q−2u + C4,

for all u ≥ 0, a.e. x ∈ Ω. Notice that as a consequence of (H3),

lim inf
t→+∞

g(x, t)
|t|p−2t

= +∞, a.e.x ∈ Ω,

so (1.1) holds and we are dealing with an Ambrosetti-Prodi type problem. Of course (H1),
(H2), (H3) and (H4) imply (G).

Our main result is the following:

Theorem 1.1. Assume (H1), (H2), (H3) and (H4) and let ϕ ∈ L∞(Ω) with ϕ Â 0. Then
there exist s∗ ≤ s∗ ∈ IR such that

(1) (Ps) has no solution if s > s∗,
(2) (Ps) has at least one solution if s < s∗,
(3) (Ps) has at least two solutions if s < s∗.

Moreover if we suppose that g is continuous, we prove in Theorem 5.1 that (Ps∗) has
at least one solution and that s∗ = s∗ when moreover ϕ is strictly positive on Ω.

This paper is organized as follows. In the next section we recall some results on the
eigenvalue problems with weights and some particular nonhomogeneous problems related to
them. We also recall there some regularity results for the solutions of quasilinear elliptic
problems. In section 3 we prove the existence of lower and upper solutions for (Ps) and in
section 4 we give a result on a-priori bounds. We complete the proofs of Theorem 1.1 and
Theorem 5.1 using degree arguments in section 5.
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2. Preliminary results

Let us first recall some results concerning the eigenvalue problem

−∆pu = λm|u|p−2u in Ω; u = 0 on ∂Ω. (2.1)

From now on, given a measurable function a in Ω, we will denote a+ := max{a, 0}, a− :=
a+ − a. The following result can be found in [12] and [4] :

Proposition 2.1. For any m ∈ L∞(Ω) with m+ 6= 0 problem (2.1) possesses an unique
principal eigenvalue λ1(m) characterized by

λ1(m) def= inf
{
||u||p def=

∫

Ω

|∇u|p dx; u ∈ W 1,p
0 (Ω),

∫

Ω

m |u|p dx = 1
}

. (2.2)

Moreover 0 < λ1(m) is simple, isolated in the spectrum. The map λ1 : L∞(Ω) → IR+ is
continuous and strictly decreasing in the sense that if m1 ≤ m2 and |{m1 6= m2}| > 0 then
λ1(m1) > λ1(m2).

By principal eigenvalue we mean that it possesses a positive eigenfunction. In the se-
quel we will denote ϕm the positive eigenfuction associated to λ1(m) with

∫
Ω

m(x)ϕm(x)p dx =
1.

Remark 2.1. If we assume (G) the regularity results of [8], [16] and [9] imply that the
solutions of (Ps) belong to L∞(Ω)∩C1,α(Ω) for some α ∈]0, 1[. Moreover, a careful reading
of the proof of Theorem 7.1 Chapter IV of [8] shows that

||u±||∞ ≤ C(p, q, N, ||a||∞, ||b||∞, ||A||∞, ||B||∞, ||u±||p∗).
The following result is a combination of Lemma 3.3 of [3] and Lemma 2.3. of [2].

Proposition 2.2. For all f ∈ L∞(Ω) there exists an unique solution u ∈ W 1,p
0 (Ω) of

−∆pu = f in Ω; u = 0 on ∂Ω.

The solution u belongs to C1,α
0 (Ω) for some α = α(p,N) ∈]0, 1[ and there exists c > 0 such

that
||u||C1,α(Ω) ≤ c(||f ||1/(p−1)

∞ + 1). (2.3)

Moreover the map K : L∞(Ω) 7→ C1,β
0 (Ω) defined as K(f) = u is continuous and compact

for any 0 < β < α.

We will also need the following result. When m > 0 it can be found in [6]. ν stands here
for the outer normal derivative.

Proposition 2.3. Let m ∈ L∞(Ω) be such that λ1(m) > 1. Then for any f ∈ L∞(Ω), f ≥ 0
there exists a unique solution u of

−∆pu = m|u|p−2u + f in Ω; u = 0 on ∂Ω. (2.4)

Moreover u ∈ C1,α
0 (Ω) for some α ∈]0, 1[ and, if f 6≡ 0, then u > 0 in Ω and ∂u

∂ν < 0 on ∂Ω.

Proof. The existence of a positive solution of (2.4) follows by minimization of the functional
J(u) := 1

p

∫
Ω
(|∇u|p −m|u|p) dx− ∫

Ω
fu dx over W 1,p

0 (Ω). Moreover any solution of (2.4) is
nonnegative because, after multiplicating by u− and integrating the equation, we have

∫

Ω

|∇u−|p dx =
∫

Ω

m(u−)p dx−
∫

Ω

fu− ≤
∫

Ω

m(u−)p dx.

Since λ1(m) > 1 we get that u− ≡ 0. By the Strong Maximum Principle of [17] we conclude
that 0 < u in Ω and ∂u

∂ν < 0 in ∂Ω. Let us now prove that the solution is unique. To do so
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let us prove that there is a minimal solution of problem (2.4). We define the following map
T : L∞+ (Ω) 7→ C1,β

0 (Ω)+ defined as T (z) =unique solution v of the problem

−∆pv + m−|v|p−1v = z in Ω; v = 0 on ∂Ω. (2.5)

Notice that the positivity of T (z) and the uniqueness follows from the fact that problem
(2.5) satisfies the weak comparison principle. Define then the sequence v0 = T (f), vn =
T (m+vp−1

n−1 + f). Then we have 0 ≤ vn ≤ vn+1 and , for any solution u of (2.4), it holds
vn ≤ u. Thus the sequence vn is bounded in L∞(Ω) and, by the regularity results of [8],
[16] and [9], the sequence vn is uniformly bounded in C1,α(Ω) for some α ∈]0, 1[. Passing to
a subsequence if necessary we get that vn converges in C1,β(Ω) for any 0 < β < α to some
v which will satisfy (2.4) and 0 ≤ v ≤ u. Finally let us show that v = u to conclude. We
can use for instance Picone’s identity of [1] to get

0 ≥
∫

Ω

fu(1− (
u

v
)p−1) dx =

∫

Ω

|∇u|p dx−
∫

Ω

|∇v|p−2∇v∇(
up

vp−1
) dx ≥ 0

hence u = v and the proof is complete. ¤

3. Existence of upper and lower solutions

Let us recall the definiton of upper and lower solutions.

Definition 3.1. Let f(x, s) be a Carathéodory function on Ω × IR with the property that
for any s0 > 0, there exists a constant M > 0 such that |f(x, t)| ≤ M a.e. x ∈ Ω and all
t ∈ [−s0, s0]. A function α ∈ W 1,p(Ω) ∩ L∞(Ω) is called a (weak) lower solution of the
problem

−∆pu = f(x, u) in Ω; u = 0 on ∂Ω.

if α ≤ 0 on ∂Ω and ∫

Ω

|∇α|p−2∇α∇ψ dx ≤
∫

Ω

f(x, α)ψ dx

for all ψ ∈ C∞c (Ω), ψ ≥ 0. An upper solution is defined by reversing the inequality signs.

We will also use the following notations :

Definition 3.2. Let u, v two mesurable functions in Ω. We will say that u ≺ v if ∀K ⊂
Ω compact ∃ ε > 0 such that u + ε < v a.e. in K.

Notice that if u and v are two continuous functions, say that u ≺ v is equivalent to
say that u < v in Ω.

Definition 3.3. Let u, v ∈ C1(Ω). We will say that u << v if u < v in Ω and when u = v
on ∂Ω, then ∂u

∂ν > ∂v
∂ν on ∂Ω.

In order to obtain upper and lower solutions of the problem (Ps) we introduce the
following two auxiliary problems:

(Pu
s )

{ −∆pu = −B(x)(u−)p−1 + sϕ(x) + C2 in Ω,
u = 0 on ∂Ω,

and

(P l
s)

{ −∆pu = −b(x)(u−)p−1 + sϕ(x)− C1 in Ω,
u = 0 on ∂Ω.

Hypothesis (H2) ensures that any non positive upper solution of (Pu
s ) is an upper

solution of (Ps) and, by (H1), any non positive lower solution of (P l
s) is also a lower solution

of (Ps). The following proposition holds :
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Proposition 3.1. Assume (H2). There exists s ∈ IR− such that, for all s ≤ s there exists
u ∈ C1,α

0 (Ω) upper solution of (Pu
s ) with u << 0. Moreover there exists k ∈]0, 1[ such that

ku is an upper solution of (Pu
s ).

Proof. Let Ω0 be an open subdomain of Ω such that Ω0 ⊂ Ω and fix M > ‖B‖∞+2C2. Let
un be the solution of the the following problem

−∆pu = hn in Ω; u = 0 on ∂Ω,

where hn(x) = −np−1 if x ∈ Ω0 and hn(x) = M if x ∈ Ω \Ω0. Since trivially hn

np−1 → −χΩ0

in L∞(Ω) it follows by Proposition 2.2 that un

n → v in C1,β(Ω) for any 0 < β < α, where v
is the unique solution of

−∆pu = −χΩ0 in Ω; u = 0 on ∂Ω.

Notice that v << 0 by the Strong Maximum Principle of [17]. Then we can choose n0 large
enough such that un0 ≤ 0 a.e. in Ω and un0 < −1 in Ω0. Let us check that u := un0 is an
upper solution of (Pu

s ), provided that

s < s :=
−np−1

0 − ||B||∞‖un0‖p−1
∞ − C2

m
< 0,

where m := inf{ϕ(x) : x ∈ u−1
n0

(−∞,−1]} > 0. We distinguish to cases : (a) un0(x) ≥ −1.
Then x 6∈ Ω0 and hence, by the choice of M we have for any s < 0,

hn0(x) = M > −B(x)u−n0
(x)p−1 + sϕ(x) + C2;

(b) un0(x) < −1. Then, by the choice of M and s, we have

hn0(x) ≥ −np−1
0 > −B(x)u−n0

(x)p−1 + sϕ(x) + C2.

In any case,
∫

Ω

|∇u|p−2∇u∇ψ dx ≤
∫

Ω

(−B(x)(u−)p−1 + sϕ(x) + C2)ψ dx

for all ψ ∈ C∞c (Ω), ψ ≥ 0 and the first part of the proposition follows. To prove the
last statement let us denote v = kun0 and notice that −∆pv = kp−1hn0 . We have, when
un0(x) ≥ −1,

kp−1M > −kp−1B(x)u−n0
(x)p−1 + kp−12C2 > −B(x)v−(x)p−1 + sϕ(x) + C2

if kp−12 > 1, whereas when un0(x) < −1,

kp−1hn0 ≥ −kp−1np−1
0 ≥ −np−1

0 > −B(x)v−(x)p−1 + sϕ(x) + C2

since s ≤ s and ‖v‖∞ ≤ ‖un0‖∞. ¤

Proposition 3.2. Assume (H1). For all ω ∈ C1
0 (Ω) and for all s ∈ IR there exists u ∈

C1,α
0 (Ω) a lower solution of (P l

s) with u << ω and u << 0. Moreover Ku is a lower solution
of (P l

s) for all K > 1.

Proof. Let c > 0 be such that −c− C1 + sϕ < 0 and consider the unique solution uc of

−∆pu = b(x)|u|p−2u− c− C1 + sϕ in Ω; u = 0 on ∂Ω.

By (H1) we infer from Proposition 2.3 that uc << 0 and therefore uc is a lower solution
of (P l

s). We claim that for c large enough uc << ω. Indeed, take cn → +∞ and denote
vn = ucn

c
1/p−1
n

. Then

−∆pvn = b(x)|vn|p−2vn − 1− C1 − sϕ

cn
in Ω; vn = 0 on ∂Ω.
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Since −1 − C1−sϕ
cn

→ −1 in L∞(Ω), we get that the sequence vn tends in C1,β
0 (Ω) to the

solution v of
−∆pv = b(x)|v|p−2v − 1 in Ω; v = 0 on ∂Ω.

By Proposition 2.3 v << 0 so, for n large, ucn
<< ω. Finally we observe for all K > 1

−∆p(Ku) = b(x)|Ku|p−2Ku−Kp−1(c + C1 − sϕ) ≤ b(x)|Ku|p−2Ku− c− C1 + sϕ,

since c + C1 − sϕ > 0. Thus Ku is a lower solution of (P l
s). ¤

4. A priori bounds

Let us consider the following problem

(Pf )
{ −∆pu = g(x, u) + f in Ω;

u = 0 on ∂Ω,
(4.1)

for any f ∈ L∞(Ω). The following result states that the negative part of the solutions of
(4.1) is bounded in terms of the negative part of f . Since we are going to use the L∞- bound
of a solution in terms of his W 1,p

0 norm we need to assume in this section that g satisfies
(G).

Lemma 4.1. Suppose that g satisfies hypothesis (H1) and (G). For any K > 0 there exists
M > 0 such that for all solution u of (Pf ) with ||f−||∞ ≤ K we have ||u−||∞ ≤ M .

Proof. By the results of [8] (see also Remark 2.1) it is enough to find an estimate of ||u−|| in
W 1,p

0 (Ω). Assume by contradiction that there exists a sequence fn ∈ L∞(Ω), ||f−n ||∞ ≤ K
and a sequence un solution of (Pfn) such that ||u−n || → +∞. Let us denote vn := un

||u−n || .
Then it holds

−∆pvn =
g(x, un)
‖u−n ‖p−1

+
fn

||u−n ||p−1
in Ω, vn = 0 on ∂Ω.

By multiplying the previous equation by −v−n and using (H1) we have

1 =
∫

Ω

|∇v−n |p dx ≤
∫

Ω

b(x)|v−n |p dx + C1

∫

Ω

v−n
‖un‖p−1

dx +
∫

Ω

f−n v−n
||un||p−1

dx.

Up to a subsequence, there exists v0 ∈ W 1,p
0 (Ω) such that v−n ⇀ v0 in W 1,p

0 (Ω) and strongly
in Lp(Ω). Going to infinity we have∫

Ω

|∇v0|p dx ≤ lim inf
n→∞

∫

Ω

|∇v−n |p dx =
∫

Ω

b(x)|v0|p dx

and
1 ≤

∫

Ω

b(x)|v0|p dx.

But since λ1(b) > 1 we conclude from the first inequality that v0 = 0, a contradiction with
the second one. ¤
Lemma 4.2. Assume that g satisfies hypothesis (G), (H1) and (H3). Given s0 ∈ IR there
exists R > 0 and M > 0 such that for all s > s0 and for all solution u of (Ps) it holds

s

(‖u‖∞ + M)1−p
≤ R. (4.2)

Proof. We apply Lemma 4.1 with f = sϕ. Since ||(sϕ1)−||∞ ≤ s−0 ||ϕ1||∞ for all s ≥ s0,
there exists M > 1 such that ‖u−‖∞ < M − 1 for all u solution of (Ps) with s ≥ s0.
Applying Picone’s inequality to u + M and ϕ1 we obtain

0 ≤
∫

Ω

|∇ϕ1|pdx−
∫

Ω

|∇u|p−2∇u∇(
ϕp

1

(u + M)p−1
) dx =
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= λ1 −
∫

Ω

{g(x, u) + sϕ(x)} ϕp
1(x)

(u(x) + M)p−1
dx.

By using that ϕ,ϕ1 are nonnegative and that u(x) + M > 1 for all x ∈ Ω we find, on the
one hand,

sb

(‖u‖∞ + M)p−1
≤ λ1 −

∫

Ω

g(x, u)
ϕp

1(x)
(u(x) + M)p−1

dx. (4.3)

where b :=
∫
Ω

ϕ(x)ϕp
1(x) dx. On the other hand, using that g satisfies (H1) and (H3) we

have

inf
x∈Ω, l>−M+1

g(x, l)ϕp
1(x)

(l + M)p−1
> −∞. (4.4)

From (4.3) and (4.4) we easily get (4.2). ¤

Finally we prove a result on a-priori bounds for the solutions of (Ps) using a blow-up
argument. Notice that here we allow only the nonlinearity g to growth at +∞ as uq−1 with
p < q < p∗. We have followed here some ideas of [13]. For the Liouville problem in a half
space we use the recent results of [10].

Proposition 4.3. Assume (H1), (H2), (H3) and (H4). Then given s0 ∈ IR there exists
R > 0 such that, for all s ≥ s0 and for all solution u of (Ps), we have ‖u‖∞ ≤ R.

Proof. Assume by contradiction that there exist a sequence sn ≥ s0 and a solution un of
(Psn) such that ||un||∞ → ∞. We know by Lemma 4.1 that ||u−n ||∞ is bounded. Let us
put γn := ||un||∞ = un(xn) for some xn ∈ Ω and δn :=dist(xn, ∂Ω). In what follows we
will denote by C,D, .. generic constant independent of n. We first prove that there exist a
constant C > 0 such that

δnγ
q−p

p
n > C. (4.5)

Define wn(y) = γ−1
n un(γ

p−q
p

n y + xn) for y ∈ Ωn := γ
q−p

p
n (Ω − xn). Then wn(0) = 1,

||wn||∞ = 1, ∇wn = γ
− q

p
n ∇un, ∆pwn = γ1−q

n ∆pun and
{ −∆pwn = θn(y, wn) in Ωn,

wn = 0 on ∂Ωn
(4.6)

where θn(y, w) = γ1−q
n |g(x, γnw)| + γ1−q

n snϕ. Using (H1) to (H4) we have for a.e y ∈ Ωn

and for all w ∈ IR that γ1−q
n |g(x, γnw)| ≤ D1|w|q−1 + D2 for some D1, D2 independent of

n. For the second term of θn we use the estimate (4.2) and the fact that γn → +∞ to get

γ1−q
n sn ≤ Cγp−q

n → 0.

Thus we have for all w ∈ IR, θn(·, w) ≤ D1|w|q−1 + D3 for some D3 independent of n.
Therefore by the regularity results already quoted we infer that ||∇wn||∞ ≤ C independent
of n. If we now choose zn ∈ ∂Ω such that dist(xn, zn) = δn, we have

1 = wn(0)− wn(γ
q−p

p
n (zn − xn)) ≤ ||∇wn||∞γ

q−p
p

n δn

and (4.5) follows. We then consider two cases :

Case 1. γ
q−p

p
n δn → +∞. By a diagonal argument we can prove that there exists w ∈

W 1,p(IRN ) such that for all R > 0, up to a subsequence, wn ⇀ w, strongly in C(B(0, R)).
By (H3), and having in mind that ||w−n ||∞ → 0 (because of ||u−n ||∞ is bounded), we conclude
that w is a positive solution of

−∆pw ≥ awq−1 in IRN .

By the results of [11] it must be w ≡ 0, a contradiction with w(0) = 1.

Case 2. γ
q−p

p
n δn ≤ C for some C > 0. Notice that in particular δn → 0. Again by a
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diagonal argument there exists w ∈ W 1,p(IRN
+ ) such that for all R > 0, up to a subsequence,

wn ⇀ w, strongly in C(B(0, R) ∩ IRN
+ ). By (H3) and (H4) w is a positive solution of

Awq−1 ≥ −∆pw ≥ awq−1 in IRN
+ .

By the results of [10] we now conclude that w ≡ 0 in contradiction again with w(0) = 1. ¤
Remark 4.1. The results of [10] are stated for 1 < p < N but the proof can be easily
extended to all p > 1. Indeed Lemma 4.1 of [15] is valid for p ≥ N (with no restriction on
γ) and the weak Harnack inequality as well (see remark on page 154 of [14]).

Remark 4.2. Hypothesis (H4) is only needed to assure that the limiting Liouville type of
problem in the half-space has no positve solutions. Indeed, in IRN it is known that there is
no positive solution u satisfying −∆pu ≤ uq−1 with p < q < p∗ (c.f. [11]) whereas in the
half space IRN

+ the same conclusion holds for positive solutions of Duq−1 ≤ −∆pu ≤ uq−1

with p < q < p∗. The validity of this conclusion for positive solutions of the inequality
−∆pu ≤ uq−1 with p < q < p∗ in IRn

+ is to our knowledge an open question.

Corollary 4.4. Under the hypothesis of Proposition 4.3, there exists s̄ ∈ IR such that (Ps)
has no solution if s > s̄.

Proof. Fix any s0 ∈ IR. By Proposition 4.3, there exist D > 0 such that for all s ≥ s0 and
for all solution u of (Ps) it holds ||u||∞ ≤ D. Then by using (4.2) we get that the range of
s > s0 for which (Ps) has a solution is a bounded. Thus (Ps) have no solutions when s is
large enough. ¤

5. Proof of Theorem 1.1.

(1) The nonexistence has already been proved in Corollary 4.4. Define then

s∗ := inf{ s ∈ IR; (Ps) has no solution for all s ≥ s }.
(2) Let us show that (Ps) has at least one solution when s < s∗. By definition, given s < s∗

there exists s1 > s such that (Ps1) has a solution u1. Using that u1 is an upper solution
of (Ps) we get by Proposition 3.2 that there exists u << u1 a lower solution of (Ps). Then
(see Theorem 8.1 of [5]) (Ps) has a solution u with u ≤ u ≤ u1.
(3) Let us show that (Ps) has at least two solutions for all s ≤ s, where s has been found in
Proposition 3.1. Let us denote X := {u ∈ C1(Ω); u = 0 on ∂Ω }. Given s ∈ IR, we define
Ks : X → X by Ksv = u if and only if u is the unique solution of{ −∆pu = g(x, v) + sϕ(x) in Ω,

u = 0 on ∂Ω.

Since g(·, v) ∈ L∞(Ω) for any v ∈ X (as a consequence of (G) and the regularity results),
it follows from Proposition 2.2 that the map Ks is well defined and compact. Moreover, u
is a solution of (Ps) if and only if Ksu = u, that is, if and only if (I − Ks)u = 0. By the
properties of the Leray-Schauder Degree and Proposition 4.3, deg(I−Ks, X, 0) = 0. Besides
let us remark that we can use the upper solution u < 0 found in Proposition 3.1 and the
lower solution u found in Proposition 3.2 to get a solution u of (Ps) in between. Moreover
we have that, for some 0 < k < 1 < K, the functions v := ku and v := Ku are respectively
upper and lower solution of (Ps). Notice that v >> u and v << u so our solution u satisfies
v << u << v and u ≤ 0. Let us denote C := {w ∈ X : v << w << v}. It is known (see, for
instance, [5]) that deg(I−Ks, C, 0) = 1. Then, by the scision property of the Leray-Schauder
degree, (Ps) has a second solution. It is enough to define

s∗ := sup{s ∈ IR; (Ps′) has at least two solutions for any s′ ≤ s},
in order to complete the proof. ¤
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Theorem 1.1 can be improve when the nonlinearity g is continuous. In fact we have

Theorem 5.1. Under the hypothesis of Theorem 1.1, if g : Ω × IR → IR is a continuous
function, then (Ps∗) has at least one solution. If moreover there exists µ > 0 such that
ϕ(x) ≥ µ, for all x ∈ Ω, then s∗ = s∗.

Proof. We will first prove that (Ps∗) has a solution. Let {sn} ∈ IR be a sequence such that
s∗ > sn → s∗ and let un be a solution of (Psn). By Proposition 4.3, the sequence {un} is
bounded in W 1,p

0 (Ω). Up to a subsequence, there exists u0 ∈ W 1,p
0 (Ω) such that un ⇀ u0

in W 1,p(Ω) and un → u0 in Lp(Ω). Then,
∫

Ω

|∇un|p−2∇un(∇un −∇u0) dx =
∫

Ω

(g(x, un) + snϕ)(un − u0) dx → 0,

so ∫

Ω

(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un −∇u0) dx → 0,

and consequently un → u0 in W 1,p(Ω). Hence, for any fixed ω ∈ W 1,p
0 (Ω), we have after

taking limits in the equality∫

Ω

|∇un|p−2∇un∇ω dx =
∫

Ω

(g(x, un) + snϕ)ω dx,

and using the Lebesgue Dominate Convergence Theorem in the right side, we obtain∫

Ω

|∇u0|p−2∇u0∇ω dx =
∫

Ω

(g(x, u0) + s∗ϕ)ω dx.

Thus u0 is a solution of (Ps∗).
Assume finally that there exists µ > 0 such that ϕ(x) ≥ µ, for all x ∈ Ω. Let s < s∗,

take s1 < s < s2 < s∗ and let ui be a solution of (Psi), i = 1, 2. Thus u1 and u2 are lower
and upper solutions of (Ps). Arguing as in the proof of step (3) above, we only need to find
another couple of lower and upper solutions v, v such that v << u and u << v to prove
the result. We will show how to find the lower solutions; the proof for the upper solutions
follows in a similar way. Take 0 < ε < s−s1

2 µ. Since g and u1 are continuous functions,
there exists 0 < δ < 1 such that

|g(x, u)− g(x, v)| ≤ ε, ∀x ∈ Ω, u, v ∈ [−‖u1‖∞ − 1, ‖u1‖∞ + 1], |u− v| < δ.

Define v = u1 − δ/2. We have

−∆pv = −∆pu1 = g(x, v + δ/2) + s1ϕ ≤ g(x, v) + ε + s1ϕ < g(x, v) + sϕ,

since ε < s−s1
2 µ ≤ s−s1

2 ϕ(x) in Ω, so ε + s1ϕ < sϕ. Moreover v = −δ/2, x ∈ ∂Ω. Thus v is
a lower solution of (Ps) and v << u because v(x) < u1(x) ≤ u(x) in Ω and v = −δ/2 < 0 =
u(x) in ∂Ω.

¤
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