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Twist Mappings, Invariant
Curves and Periodic
Differential Equations

Rafael Ortega

1 Introduction
Let us consider the periodic differential system in the plane,
= X(t,z), = €R2
where X satisfies N
X(t+ Z\jr) = X(t,z), VY(t,z)€R2

In this course we will study the quasi-periodic solutions of this equation
and we will show that these solutions play an important role in the study
of the dynamics when the equation has a hamiltonian structure.

Before trying to do any theory, we discuss a simple case at an intuitive
level.

Example.
Z + 2z = sint. (1.1)

This equation has the unique 27-periodic solution
z*(t) = sint.
The other solutions are not periodic, in fact they are of the form
z(t) = sint + ¢1 sin V2t + ¢z cos V2, ¢1,c2 € R.
These functions are each sums of two periodic functions with nonconmensu-

rable periods (77 = 2w, Ty = /27). As we shall see, they are quasi-periodic
solutions with frequencies w; = g,—” =1and wy = % =2.
From the mechanical point of view these solutions are very natural. In

the absence of external force the oscillator

T+2x=0
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has periodic solutions with frequency wy = /2. We now add an external
force with frequency w; = 1 and the typical solution of the forced equation
will combine both frequencies.

Next we shall look at the equation (1.1) from a geometrical point of view.
Let us consider the space of three dimensions with coordinates (z,z,t).
First we draw in this space the curve produced by the periodic solution
z*. This is the helix with parametric equation (sint,cost,t). The other
solutions of (1.1) satisfy

%(a’:(t) —cost)? + (z(t) — sint)? = constant, VteR.  (1.2)

This identity follows from the conservation of energy for the autonomous
equation. The solutions corresponding to the level constant = 0.25 are

z.(t) = sint + 0.5sin(v2t + ¢), c€R.

The corresponding initial conditions at ¢ = 0 define an ellipse in the plane
(z, ), namely
1
£: - 1)2 + 22 = 0.25.
This ellipse is transported by the flow according to (1.2). It becomes an
ellipse £(t) with moving center at the helix generated by z*. In this way
we produce a cylinder that is invariant by the flow. See the figure below.

The intersection of the cylinder with ¢ = 0, £2m, &4, ... is always the
initial ellipse. However, the corresponding solutions are not periodic and
will not arrive at the same point of the ellipse. To be more precise let us
define the Poincaré map

P:R? - R?%, (z(0),%(0)) = (z(27), £(2)),

where z(t) is an arbitrary solution of (1.1). The ellipse & is invariant by
P, that is
P(&) = &o.
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The following exercise gives more details on this curve.

Exzercise 1. Define & = (z9,%0)" € R? and prove that the Poincaré map
can be expressed in the form

P(&) = AL +b.

Compute the matrix A and the vector b and prove that, for each £ € &,
the orbit {P™(&)}nez is dense in &. O

The periodic solution z* corresponds to the fixed point (0,1)! of P. In
a similar way, the family of quasi-periodic solutions {z.}cer is associated
to the invariant curve &. As we shall see later, this correspondence be-
tween invariant curves and quasi-periodic solutions is typical in the class
of periodic equations.

We have been able to understand so well the previous equation because it
is linear and the solutions have been explicitly computed. We can now ask
what happens in the case of nonlinear equations. As an example consider
the forced oscillator

I +g(z) = f(t), (1.3)

where g is nonlinear, g(r) — *oo0 asz — +oo and f is 27-periodic. Now the
dynamics can be complicated but still many things can be said. In 1976
Morris studied this equation when g(z) = 2z3 (see [14]). He proved the
existence of many invariant curves for the Poincaré map of this equation.
Each of these curves produces a family of quasi-periodic solutions with
frequencies wy and ws. The frequency w; = 1 is due to the period of f but
wg changes with the invariant curve. This is an important difference with
respect to the linear case. These families of quasi-periodic solutions can
be visualized as invariant cylinders in the space (¢,z,z). These cylinders
are 2m-periodic in time and they become the so-called invariant tori after
the identification ¢t = t + 27. By uniqueness, the solution starting inside a
cylinder will never escape. This implies that all the solutions are bounded.
In contrast to the linear case the invariant curves probably do not foliate the
plane. The work of Morris was motivated by a problem posed by Littlewood,
and several authors have extended it to more general equations of the type
(1.3). See [11] for a description of the results obtained in the superlinear
case. In all these works the existence of invariant curves is proved using
the Twist Theorem. This result was obtained by Moser in the sixties in
order to solve a problem in the theory of stability. By now it has become a
crucial tool for the understanding of the dynamics of periodic hamiltonian
systems in the plane.

As we mentioned already, this course is devoted to the study of quasi-
periodic solutions. They are interesting by themselves, especially from a
mechanical point of view, but they are also useful to obtain interesting
properties of the equation. Due to the associated invariant cylinders they
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can be employed to prove boundedness (invariant curves around infinity)
or stability (invariant curves around the origin). The plan of this course
is the following. First we shall study some generalities of quasi-periodic
functions and quasi-periodic solutions. This includes the precise connection
between invariant curves and quasi-periodic solutions. After this we shall
state a simple version of the Twist Theorem that is ready for applications.
It follows from the works of Moser in [15] and Herman in [4, 5]. Finally we
shall apply all the previous theory to a concrete equation of the type (1.3):
the asymmetric oscillator. This section combines [16, 3] with ideas taken
from [13].

To conclude this preliminary chapter we introduce some notation. The
circle will be identified with the quotient group

T! = R/27Z.

Given a real number 0 € R, the corresponding equivalence class is denoted
by
0 =6+ 2rZ.

The rotation of angle « is defined as
Ro: T = T! R,0)=0+c.

Periodic functions f = f(@) will be identified with functions defined on the
circle.
The torus is defined as
T? =T % T%

and, in an analogous way, doubly periodic functions f = f(6;,62) will be
identified with functions defined on the torus.

2 Quasi-periodic functions with two frequencies

Let wy,wz € R — {0} be two real numbers which are not commensurable;
that is,

wi
“¢Q (2.1)
A function £ : R — R¥, t — z(t), is said to be quasi-periodic with
frequencies (wy,ws) if there exists another function F € C(T?,RN), F =
F(61,602), such that
z(t) = F(wit,wet), VteR.

The condition (2.1) says that the set {(w1f,wsf) : t € R} is dense in T2.
In consequence, F' is uniquely determined by z.
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Example. The function z(t) = sint + 0.5sin /2t is quasi-periodic with
frequencies w; = 1, wp = v/2. Notice that sup z(t) = 1.5 and inf z(t) = —1.5
are not reached and therefore z is not periodic of any period.

The class of quasi-periodic functions with frequencies (w;,ws2) will be
denoted by QP(wy,ws). The target space RN will not be specified in this
notation because it will be fixed. We have in mind the case N = 2.

Ezercise 2. Prove that every function in QP (w,ws) is almost periodic.

O

Ezercise 8. Given z € QP(w;,ws), the limit below exists,
1 T
T = Tl—l—-n;o T, z(t)dt.
Moreover,
1 27 27
T = WA A F(01,02)d01d92.

[Hint: study first the case z(t) = el(nwitmwa)t], O

A function z in QP(w1,ws2) can also belong to other spaces QP(w},w3).
In such a case, the function F' representing x will change when we change
the frequencies. As an example let us go back to the function z(t) = sint +
0.5sin v/2t. It also belongs to QP(3 + v/2,5 + 21/2) and the corresponding
function F'* representing « is now F™*(6;,02) = sin(26, —62)+0.5sin(—50; +
3603). The next result clarifies this.

Proposition 2.1. Let wi,ws and wi,w) be two couples of frequencies sat-
tsfying (2.1). Then the following statements are equivalent:

(1)  QP(w1,w2) = QP(wi,w3).

(it)  There exists a 2 x 2 matriz A with entries in Z and such that
det A=+£1, (wi,ws)t = A(w,ws)t.

To prove this result we need an algebraic result on subgroups of (R, +)
with two generators. Given w; and wq satisfying (2.1), the subgroup gen-
erated by these two numbers is denoted by

(w1,wz) = {nwy + mwy : n,m € Z}.
The reader is invited to prove the following result.
Lemma 2.2. The condition (it) is equivalent to
(433) (w1, ws) = (W}, w}).

Proof of Proposition 2.1. The implication (i7) = (i) is easy once we
notice that the matrix A~! has also its entries in Z. For instance, given



90 R. Ortega

T € QP(w1,ws) with z(t) = F(wit,wat), we can also represent this function
as z(t) = F*(wit,wit) where F* = FoA~!. This function is doubly periodic
precisely because A™! has integer coefficients.

In view of the previous Lemma we shall now prove () = (#4¢). Since we
can interchange the roles of the frequencies w; and w}, it is sufficient to
prove the implication

QP(wy,w2) C QP(w],w3) = (wi,ws2) C (wy,ws).

By assumption, the real and imaginary parts of the function e*!* belong
to QP(w}f,ws). Let F be a function in C(T?2,CV) with Fourier series

F(91,92) ~ Z Fn,mei(n61+m92)

and such that _
et = F(wit,wit).
Since the system e("01+m82) is complete in L?(T?) it is possible to find
some integers n and m for which Fi m # 0. We now apply Exercise 3 to
the function e1te=dnwi+mwilt ¢4 deduce that
L §—mw;)
lim — [ efimmwi-muiligy £,
T—oo 2T -T #
This implies that w; = nw] + mw3. In the same way one can prove that
also ws is a Z-linear combination of wj and w3. This shows that the group
generated by the omegas is included in the group generated by the omegas*.

For the applications to 27-periodic differential equations, it is convenient
to freeze the first frequency w; = 1 while the second will be simply denoted
by w, where w ¢ Q. The previous proposition implies that the identity

QP(1,w) = QP(L,w")
occurs only in the cases
wtw" €Z or w—w*eZ.

The minimal period (or maximal frequency) is a very useful concept in the
theory of periodic functions. We now define a related concept in the class
QP(1,w). A function z € QP(1,w) belongs to the class M(w) if 27 is the
minimal period of F' with respect to the second variable 65; that is,

F(01,02+P)=F(91,192) V(91,02)€R2 = P € 2nZ.

As an example, consider the functions z;(t) = sin t+0.5sin v/2t and z(t) =
sint + 0.5sin3v/2t. The function z; belongs to M(v/2) while z is in
QP(1,V2) - M(V2).

Ezercise 4. Let xz : R — RY be a continuous function with minimal period
P and assume that w = 2 ¢ Q. Prove z € M(w). d
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Ezercise 5. Prove the equivalence below for a function z € QP(1,w),
TeEMw) <= ¢ QP(,nw),n=2,3,.... d

There are several nonequivalent definitions of quasi-periodic function,
depending on the smoothness imposed on the function F. In the book of
Siegel and Moser [21, Section 36] the function F is real analytic. Neverthe-
less, the previous discussions were inspired by this book.

3 Periodic differential equations. The Poincaré
map

Let us consider the differential equation
z=X(t ), (3.1)

where X : R x R? — R?, (t,z) — X(t,z) is continuous and 2m-periodic
in t. We also assume that there is uniqueness for the associated initial
value problem. Given p € R?, ¢;(p) denotes the solution of (3.1) satisfying
2(0) = p. It is defined in the maximal interval I,. For each t € R we can
define the map

¢ : D CR? = R?, p ¢u(p),

where D, = {p € R?: t € [,}.

The theorem on continuous dependence implies that D; is open and ¢;
is a homeomorphism from D; onto ¢:(D;). The family {¢;:} satisfies the
property

¢t o ¢27r = ¢27r o ¢t = ¢t+27r vt e R.

The map P = ¢o, will be called the Poincaré map of (3.1). It satisfies
P = b2rn, N E Z.

Ezercise 6. Construct examples where the open set D, is disconnected.
Construct another example with Dy, = 0. O

Ezercise 7. Construct an example of a differential equation (3.1) such that
the field X is not locally Lipschitz continuous but there is uniqueness for
the initial value problem. O

The dynamics of (3.1) can be studied through P. Usually the properties of
the differential equation are translated to the language of discrete dynamics
via P. For example, a 2m-periodic solution corresponds to a fixed point,
a subharmonic solution with minimal period 27n corresponds to an n-
periodic point. Let us now assume that z(t) is a solution of (3.1) in the
class QP(1,w). How is this property reflected on the Poincaré map? This
will be the problem of the next section.
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4 Quasi-periodic solutions and invariant curves

4.1 Families of quasi-periodic solutions

Given an autonomous system & = X(z) and a nontrivial periodic solution
~(t), we know that also y(t + ¢) is a periodic solution for each c € R. In a
similar way we shall show that quasi-periodic solutions of a periodic system
appear in families depending on one parameter.

Lemma 4.1. Let z(t) be a solution of (3.1) that belongs to the class
QP(1,w) and let F € C(T?,R?) be the associated function on the torus.
For each c € R define

z.(t) = F(t,wt + c).
Then z.(t) is also a solution of (3.1).
Proof. The periodicity of (3.1) implies that the translates
z(t+2mn), neZ
are also solutions. From the definition of the family {z.} we deduce that
Toarnw(t) = F(t,wt + 2rnw) = F(t + 2mn,w(t + 27n)) = z(t + 27n).

This implies that the functions z3,,. are solutions of the equation. Since w
is not in Q, the sequence {27wn},cz is dense in T!. Using this density and
the theorem on continuous dependence we deduce that all the functions z.
are solutions. O

The next result studies the properties of this family of solutions when
we are in the class M(w). The proof is left as an exercise.

Lemma 4.2. Assume that z € M(w) is a solution of (3.1) and let {z.} be
the associated family. Then,

(3) T¢ =Te, &= c1—cC2 € 27L.
(31)  z(t+ 27) = Teponw(t) VEER.

An interesting fact about the family {z.} is that it allows us to recon-
struct the function F' from it. In fact, if we consider the definition

z.(t) = F(t,wt +¢)
and define the new variables 6, = t,0; = wt 4 ¢ we are lead to the formula

F(01,02) = 6,-we, (61). (41)

The next result shows that quasi-periodicity can be characterized in terms
of properties (i) and (4i).
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Proposition 4.3. Let {z.}ccr be a family of solutions of (3.1), defined
in (—oo, +00) and depending continuously on the parameter; that is, the
function

R x R — R?, (t,c) — z.(t)

is continuous. In addition, properties (1) and (ii) of the previous Lemma
hold. Then z. is in M(w).

Proof. Define F as in (4.1). This function belongs to C(R?,R?) and sat-
isfies
z.(t) = F(t,wt + c).

It remains to prove that it is doubly periodic and that 27 is the minimal
second period. The 2m-periodicity in 8; follows from property (iz). The rest
is a consequence of (7). O

We are now ready to understand the effect of a quasi-periodic solution
on the Poincaré map.

4.2 From quasi-periodic solutions to invariant curves

Given a solution z(¢) of (3.1) that belongs to M(w) and the associated
family {z.}, we define the parametrized curve

Y :R—R?, (c) = z.(0) = F(0,c).
The property (i) and the uniqueness for (3.1) imply that 1 is 2m-periodic
and one-to-one on [0,27). Thus, ' = ¢)(R) is a Jordan curve in the plane.
Moreover,
Piy(c) = Pzc(0) = 2.(27) = Teq2rw(0) = Y(c + 27w).
This identity implies that I is invariant under P, that is

P(r) =T.

This is not the only information given by the previous identity. In fact, if
we parametrize ' with respect to a circle, the mapping

$:T! =T, ¢—9(c)

becomes a homeomorphism and the following diagram is commutative.



94 R. Ortega

In other words, the restriction of the Poincaré map to the invariant curve
is conjugate to a rotation of the circle. Moreover, the frequency of the
quasi-periodic solutions can be recovered from the rotation number.

Ezercise 8. Let T' be a Jordan curve such that P(I') C T. Then T is
invariant under P. [Hint: T! is not homeomorphic to any subset of R]. O

4.3 From invariant curves to quasi-periodic solutions

Let us now see the converse. We start with a Jordan curve in the plane,
I' ¢ R?, which is invariant under P and such that the restriction of the
Poincaré map to I', denoted by Pr, is conjugate to a rotation Ror, for
some w ¢ Q. We shall show that quasi-periodic solutions can be produced
from I'. First we allow the flow to evolve from ' and consider the family
of solutions starting at this curve. The invariance of I' implies that these
solutions are defined in (—oo, +00) and we can define

ze(t) = ¢1(¥(c)), ¢t €R,
where 1 : R — T is the 27-periodic parametrization such that
Pr‘ OE :EORZNQJ'

We shall show that this family satisfies the conditions (z) and (i7) of
Lemima 4.2 and so Proposition 4.3 can be applied to deduce that z. €
M(w). The property (z) is immediate because, by assumption, v is one-to-
one in [0,27). To prove (i¢) we use the commutativity of {¢;} with P and
obtain

Tc(t + 2m) = dry2x(¥(c)) = bt 0 b2 (¥(c)) = ¢:(P o 9(c))

= ¢t (Y(c+ 27w)) = Teqony(t).

To sum up, we can say that finding a solution in M(w) is equivalent to
finding a Jordan curve I' which is invariant under P and such that Pr is
conjugate to Rony -

Ezercise 9. Given w,w* ¢ Q, prove the equivalence

M) = M(w*) <= Rag, is conjugate to Rorer - O

4.4 Invariant cylinders

Given a Jordan curve I' in the plane, the bounded component of R? — T'
will be denoted by R;(T).

Ezercise 10. Let I be a Jordan curve included in D;. Prove that R;(T") C
Dt and ¢t(R1(F)) = R,(d)t(l")) D
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Let us now assume that I' is an invariant curve for P. Since ¢; is a home-
omorphism also I'; = ¢;(I') is a Jordan curve. Moreover,

Fipor =Ty VteR.
Define
C={(z,t) eR*xR: t€R, z € Ri(1)}.

This set is invariant with respect to the differential equation (3.1). That is,
given a solution z(t) of (3.1), such that (z(t), o) € C for some tg, then it
is defined in (—o0, o) and

(z(t),t) e C VteR.

This is a consequence of Exercise 10.

4.5 Some examples
We shall now analyze the quasi-periodic solutions of three equations.

Example 1.

F+wlz=f(t), fEC(TY), w>0,wgQ

This is a continuation of the starting example, where w = /2 and f(t) =
sint. There is a unique 27-periodic solution and the other solutions are in
the class M(w). The Poincaré map has a fixed point that is the center of
a family of concentric ellipses which are invariant under P. Moreover, the
restriction of the Poincaré map to each of these ellipses is conjugate to the
rotation of angle 27w.

Ezercise 11. Discuss the case w € Q. O
Example 2. Let us assume now that w is a smooth function from [0, o)

into R, with
W'(p) >0 Vp>0.

We consider the system
il = _W(p)$2, :t2 = W(p)$17

where p = 22 + zZ. This system is autonomous but we shall look at it as a
2m-periodic system. The nontrivial solutions are

/

z1(t) = py/” cos(w(po)t + ), wa(t) = py/” sin(w(po)t + c)

with pp > 0 and ¢ € R. This system is nonlinear but easy to integrate
because the function p is a first integral. When w(po) ¢ Q the solution
belongs to M(w(po)). The origin is a fixed point of the Poincaré map and
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the circles around this point are invariant. The difference with the previous
example is that the rotation number of each of these curves depends on p.
If we perturb this system and introduce periodic coefficients, in most cases
the first integral will disappear. Also, the foliation of the plane by invariant
curves will be destroyed but still some curves will remain if the perturbation
is not too large. These statements are not rigorous or precise but the reader
can be convinced by herself (or himself?) via numerical experiments.

Example 3.

i+ci = f(t,z), c>0.

This is the general equation of motion in the presence of friction. The force
f will be smooth and 2w-periodic in ¢. We are going to prove that this
equation cannot have quasi-periodic solutions in M(w) for any w ¢ Q. We
do it by contradiction. We know that such a solution would produce an
invariant curve I for the Poincaré map. The region R;(I') would also be
invariant. Due to the friction, the mapping P is area contracting. Thus,

meas(P(R;(I"))) < meas(R;(T)),

and this is not compatible with the invariance of R;(T).

5 Invariant curves of mappings of the annulus

We shall consider a system of polar coordinates in the plane. Every point
in R? — {0} has coordinates (6,7) where § € R and r > 0. Given b > a > 0,
A is the annulus defined by

A={(§,r): 9 eT! a<r<b}.
A universal cover of this annulus is the strip
A={(0,7): 6eR, a<r<b}.
Given a mapping of the annulus
M:A—-R? (8,r)— (61,71)
we can find a lift to A, given by
M:A—R% (8,r)— (61,71).

Both, the mapping and the lift, are denoted by M.
An invariant curve of M is a Jordan curve I' C A, which is homotopic
in A to the circle 7 = a and such that

M() =T.
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Intuitively speaking, to assume that the curve is homotopic to 7 = a just
means that the curve goes around the hole. It is easy to construct examples
of mappings M and curves I' such that M(I') =T but ' can be deformed
to a point in A. They are not considered as invariant curves in the previous
definition. Let us now study some simple mappings in the annulus.

Example 1. Rotations.
(91 =0+ﬁ, Ty =T.

Here 8 € R is the angle of rotation. All circles r = constant are invariant
curves. Moreover, the restriction of M to each of these circles is always
conjugate to Rg.

Example 2. Twist mappings.
0h=0+08+a(r), mm=r
Here « : [a,b] — R is a smooth function with
o (r) >0 Vr€a,b).

Again the circles r = constant are invariant but now the restriction of M to
each of them is conjugate to a different rotation R g (). The monotonicity
of o says that the rotation number is monotone with respect to the radius
r. The name “twist mapping” can be justified by the following geometrical
observation: given a radial segment 8 = constant the map M transforms it
into a twisted arc.

Our goal is to obtain a theorem on the existence of invariant curves for
small perturbations of the twist mapping. However, the next example will
show that we shall have to impose some additional condition.

Example 3. Twisted contractions.
61 :6’+ﬂ+a(r), T1 =(1—6)7‘.

If € > 0 is small this mapping becomes a small perturbation of the twist
mapping. However, it is clear that it has no invariant curves because all
orbits will escape from the annulus in a finite number of iterations.

To exclude mappings like those in Example 3 we shall introduce the
following definition. M has the intersection property in A if

M(T)NT # 0,

for any Jordan curve I' in A which is homotopic to r = a.

The mapping of Example 3 does not satisfy the intersection property.
In fact, circles 7 = constant are transformed in circles of smaller radius.
On the other hand, rotations and twist mappings have this property in
any annulus centered at the origin. To prove this we notice that in these
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cases M can be seen as an area-preserving homeomorphism of the whole
plane with M(0) = 0. Given a Jordan curve I' with 0 € R;(T'), the curve
'y = M(T) also satisfies 0 € R;(I'1). If I and I'; do not intersect then
one of the regions R;(T'), R;(T'1) should be strictly included in the other.
This is not compatible with the area-preserving character of the mapping
because

measR;(T") = measR;('y).

Ezercise 12. Let M be the twist mapping of Example 2. Find a Jordan
curve I in the plane such that M(T)NT = 0. O

Ezercise 13. Assume that M is a homeomorphism from A onto M(A). For
each k =0,1,...,00,w, we say that M has the C*-intersection property if
the previous definition is restricted to Jordan curves of class C*. Prove that
all these properties are equivalent. [Hint: an elegant proof using Riemann’s
theorem on conformal mappings can be seen in [6]]. 0

We are now going to state the Twist Theorem. It guarantees the existence
of invariant curves for small perturbations of the twist mapping having the
intersection property. The perturbation will be small in class C*%.

Theorem 5.1. Let a € C*%[a,b] be a function satisfying
a'(r) >0 Vr € [a,b].

Then there ezists € > 0, depending on b — a and «, such that a mapping
M : A — R? has invariant curves if it satisfies the conditions below,

e M has the intersection property,
e the lift of M can be expressed in the form
61 =0+B+a(r)+¢i1(0,r), r1 =1+ p2(0,7),
with @1, 2 € C4(A),

o |leoillcacay + llp2llcaca) <e.

Remarks. 1. This theorem was proved by Moser in [15] assuming that M
was of class 333. An analytic version of the theorem was presented in [21]
and a version in class C° can be seen in Russmann [19]. The version we
have just stated can be proved using the techniques developed in the two
works by Herman [4, 5].

2. The proof of this theorem gives additional information and implies the
existence of many invariant curves in A. In fact, there exist infinitely many
numbers v in the interval [8 + a(a),8 + a(b)] for which it is possible to
find an invariant curve I' such that Mt is conjugate to R,. That is, the
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diagram below is commutative,

Mr
v 1 T 9
Tl — TI
R,

(As before, Mt denotes the restriction of M to I'. The admissible numbers
v are not in 2rQ and must satisfy some additional properties. See [4].) Here
1 is some homeomorphism.

Ezercise 14. Consider the annulus A = {1 < r < 2} and the mapping
M:A—>R? 6,=0+m r =1+ esin20. ‘

i) Prove that, for small €, this mapping has the intersection property in A.
[Hint: apply Stokes Theorem with the differential form w = rd#)].

ii) Prove that all orbits with 6o € [0,27) — {0, %, m, 3L} escape from the
annulus.

iii) Deduce that M has no invariant curves for small €. This proves that
there is no analogue of the Twist Theorem when a = 0. O

In many applications the mapping M is a perturbation of the small twist
mapping defined by

91 =0+,3+50((7‘). TN =T,

where J is a small parameter. In these cases the previous theorem is not
applicable but one can use the so-called Small Twist Theorem.

Theorem 5.2. Let o € C*[a,b] be a function satisfying
d'(r) >0 Vre€la,b].

Then there exists € > 0, depending on b — a and a, such that a mapping
M : A — R? has invariant curves if it satisfies the conditions below,

e M has the intersection property,

o the lift of M can be ezxpressed in the form

01 =60+ B+ da(r) +dp1(0,7), T1 =1+ dp2(0,7),
for some & € (0,1) and @1,z € C4(A),
e leillcscay + llpzllcsa) <e

Remarks. 1. The proof of this result is similar. Notice that it does not fol-
low directly from the Twist Theorem because the number ¢ is independent
of 6.

2. As § tends to 0 the rotation numbers of the invariant curves will tend to
(3. Again it is possible to find many invariant curves.
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6 The asymmetric oscillator

Let us consider the differential equation
F+azt — bz~ =1+ ep(t), (6.1)

where a and b are positive constants, € is a parameter and the function
p is 2m-periodic. This equation was proposed by Lazer and McKenna as a
simplified version of their model of a nonlinear suspension bridge (see [10]).
When a = b we go back to the linear oscillator and we can have the
classical phenomenon of resonance. As an example consider the equation

T+ x =1+ esint.

In this case it is easy to prove that, for any € # 0, all solutions are un-
bounded. The next result shows that the situation is different for the case

a#b.

Theorem 6.1. Assume that a and b are positive constants with a # b. In
addition, the function p is of class C°(T!). Then there exists € > 0 such
that all the solutions of (6.1) are bounded if |¢| < €*.

Remarks. 1. This theorem was proved in [16] assuming less regularity for
p, namely p € C*. The extra regularity C® will allow us to obtain a simpler
proof. I do not know of an example showing that unbounded solutions can
exist when e is still small but p is not smooth.

2. In [3], J.M. Alonso and I constructed many examples showing that un-
bounded solutions can exist if € is not small and the parameters a, b satisfy

1 1
— +—=€Q. 6.2
e Q (6.2)
I do not know of an example showing that unbounded solutions can exist
when e is large and (6.2) does not hold.

In a recent paper [13], Liu Bin has given a new proof of the theorem. In
the next pages I shall present a proof that combines ideas from [13] and
from [16, 3]. However, the most technical part of the proof (the estimates)
will be obtained by a new procedure. I hope that the reader will find this
procedure rather simple. The proof will follow after several steps.

Step 1. The asymmetric polar coordinates
We start with the autonomous (“homogeneous”) equation
4 azt —bz™ =0. (6.3)

The nontrivial solutions of this equation oscillate and satisfy alternatively
the linear equations £ +axz =0 if £ > 0 and £+ bz =0 if z < 0. They are
periodic, with minimal period

T=—+—,

T
a Vb

B
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and they look more or less like a sinusoidal function with two asymmetric
bumps. It will be convenient to select one particular solution that plays the
role of the “asymmetric cosine”. Let C(t) be the solution of (6.3) satisfy-
ing C(0) = 1,C(0) = 0. Since the equation is autonomous and positively
homogeneous, all solutions can be expressed in the form

z(t) =aC(t+ ), a>0,B8€R.

FEzercise 15. Prove

/T C(t)dt = 2\/5(l - l) O
0 - a b ' )

Next we define the “asymmetric sine” as S(t) = C(t). The conservation of
energy for (6.3) leads to

S(t)é +aC* ()2 +bC~(t)2=a VtER. (6.4)

It is convenient to notice that, for a = b = 1, the functions C and S are
C(t) = cost and S(t) = —sint. In such a case the identity (6.4) becomes
the classical trigonometric identity.

We shall now analyze (6.3) from a geometric perspective. If we look at
the phase portrait in the plane (z,z), we find that the nontrivial orbits
are closed curves obtained by gluing two ellipses. Namely, %i:z + %z2 =
c, ifx >0 and%z’2 + %zz = ¢, if x <0, where ¢; and ¢y are appropriate
constants. The energy

_Ll.o a4 b, _2
E—Qx +2(9:)+2(a:)

is preserved along these orbits. Since the minimal period is always T, the
origin is an isochronous center. We shall use this phase portrait to define
a system of coordinates.

Define

0 9
T = 711/20(5), y = 711/25(5), I>0,0€R,

where v > 0 is a parameter that will be determined later and Q = 27" The
mapping

¥ : T! x (0,00) — R — {0}, (6,]) — (z,v)

is one-to-one and onto. This can be proved using (6.4). Since C is C? and S
is C!, we can say that ¥ is C'. We shall now prove that, for an appropriate
value of v, ¥ will transport the symplectic forms. This means

dz Ady = df A dI,
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or, in the language of jacobians,
det ¥'(0,1) = 1.

This property and the local inverse function theorem imply that ¥ is a C?
symplectic diffeomorphism. A computation and the identity (6.4) lead to

2 ) 2
dondy = 2152y —c(2)$(Lyjdo ndr = Lado nar.
20740 Q7' 20

We define v = ,/%19.

Ezercise 16. Prove that the equations

z=71°C({), y=~1 5(g) I1>0,0€R,
define a C!-diffeomorphism for any o # 0. For which values of o and 7 is

it symplectic?. O

A mechanical interpretation. The variables (6, I) are the so-called “action-
angle” variables for the oscillator (6.3). In this case the action is, up to a
constant, the energy. In fact, using again (6.4),

1

2
yéal
)

2

2, % 42 9-2_ _
y+2(1)+2(z)— =Ql.

The angle ¢ can be interpreted by the formula § = 2T"T(z,y), where 7 is
the time employed by a particle to travel from the point (yI'/2,0) to (z,y).
Of course this motion follows the law (6.3).

The coordinates that we have constructed are important because they re-
duce (6.3) to its simplest possible form. To change variables in this equation
we use that ¥ is symplectic and so the hamiltonian structure is preserved.
The equation (6.3) is equivalent to

b= Hy, =-He Hy)= 20" + 2@+ @)
In the new variables,

0=hr=9Q, I=-hg=0, h(0,I)=H(¥(,I) =0l
Let us now consider the nonautonomous equation

Z+azt —bz” = f(t) (6.5)

with f € C(T!). It is reasonable to expect that the previous change of
variables will simplify it. The hamiltonian
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b

5(33—)2 -z f(t)

a

2

1
H(t,z,y) = 51/2 +S(z7)? +

is transformed into
mua1)=ﬂz-yfv%x%)ﬂn
and we are lead to the system

i—a-—2 ol = 2pregl
It is convenient to notice that this system is not completely equivalent
to (6.5). The reason is that ¥ introduces a singularity at the origin and
so some of the solutions of (6.6), (6(t), I(t)), have a maximal interval of
definition smaller than (—oo, +00). They correspond to the solutions z(t)
of (6.5) passing through z = = 0 at some time ¢.

Finally we define p = /T and (6.6) becomes

d=9~L0t

> 1) (6.7)

Q=

(), b= 558

D=

This system is not hamiltonian. This is not surprising because (6,1) —
(8, p) is not symplectic.

Let P be the Poincaré map associated to (6.7). It is easy to prove that
there is a disk such that P is well defined outside this disk. Let us assume for
a moment that we could prove the existence of a family of Jordan curves
that were invariant under P and surround infinity. They would produce
invariant cylinders in the space (¢; z, ) and the proof of the Theorem would
be essentially complete. In view of this optimistic argument one could try
to apply the Twist Theorem to P. However we shall not follow this idea,
due to the lack of regularity of the equation. Since (6.7) is only C! in 6 we
cannot guarantee that P is of class C* as required in the Twist Theorem.
To overcome this difficulty we notice that if f is smooth, then (6.7) is
smooth with respect to ¢ and p. This fact will motivate us to interchange
the roles of § and ¢. The new independent variable will be 6 while the new
unknowns will be t = ¢(6) and p = p(6). In this way we shall obtain a new
(and smooth) Poincaré map. This trick was employed by M. Levi in [11]
to prove boundedness in a superlinear oscillator. The idea of applying it to
the asymmetric oscillator is due to Liu Bin (see [13]).

Step 2. The successor mapping

Consider the system

Z_; = F(6,t,p), g G(6,1, p), (6.8)



104 R. Ortega

with
Fo.t) = (0= o),
GO.Lp) = FES(EIOR = OO

Let p, > 0 be a positive number such that

> 0.

The functions F' and G are well defined for p > p, and, if f is of class
C™(T?1), they belong to CO™(T! x &,), where

& ={(t,p) eR?: p>p,}.

These functions are also 2m-periodic with respect to ¢ and so we can in-
terpret (t, p) as a system of polar coordinates in the plane. Then we can
consider that the equation (6.8) is defined in the exterior of the disk p < p,
if £, is interpreted as the universal covering of

E,={{,p)eT' xR: p>p}.

Let (t(6), p(0)) be a solution of (6.8) defined in a certain interval I = [y, 61]
and such that p(6) > p, for all  in [. The derivative —g—é is positive and so
the function ¢ is a diffeomorphism from I onto J = [to, t1], where t(6g) = to
and t(0;) = t;. The inverse function will be denoted by 6 = 6(¢). It maps

J onto I. Let us define

2(t) = 100D, te s

It is easy to verify that this function is a solution of the original equation
(6.5). Of course this is not surprising in view of the way we constructed
(6.8). There are some interesting aspects of this solution that we have
constructed. The derivative can be expressed in the form

8(t)

1(t) = 10(6(8))S(

), ted
and the zeros of = correspond to the values of 8 such that C (%) = 0. These
zeros are nondegenerate because S and C do not vanish simultaneously. The
zeros of £ correspond to the values of 6 such that S (%) = 0. In particular,
if z(t) reaches a local maximum at ¢ € (to,¢1), then 6(t2) € 2wZ and
z(t2) = vp(t2).

Let (£(0), p(#)) be the solution of (6.8) satisfying the initial conditions
t(6g) = to,p(6g) = po. It is not hard to show the existence of a number
p* > p. such that if pg > p*, then (¢(6), p(6)) is well defined in [fg, o + 27]
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and remains in &,. The Poincaré map associated to (6.8) will be denoted
by S. The previous property implies that S is well defined on the set

E*={(p): p2p"}

and satisfies S(E*) C E,. The smoothness of S will not be a big problem
because S is of class C™ in E* if f belongs to C™(T?).

Understanding S geometrically. Let us use the notation S : (tp,po) —
(t1, p1)- The mapping S can be defined directly from the original equation.
We consider the solution of (6.5) satisfying

.’E(to) = Ypo, i‘(to) =0.

If po is large enough the function x reaches a local maximum at this instant.
Then t; > to is the next instant where z reaches a maximum and z(t;) =
~vp1. This observation justifies the name of successor mapping for S. See
[18, 1, 7, 16] where variants of the successor mapping were employed in the
study of second order scalar differential equations.

A strategy for the proof. To prove the Theorem we will find a family of
invariant curves of S that surround infinity. To be precise, we shall look
for a sequence of numbers {R,} and a sequence of Jordan curves in E*,
denoted by {I',}, satisfying the conditions

e P <Ry <R <...<Rp..., Ry = 00,
o ['v C An:={(6,p) : Rn <p < Rny1},

e I',, is homotopic to p = constant in A,
o S(T'y) =T

Lemma 6.2. Assume that f € C(T!) and we can find sequences R, and
Ty, in the previous conditions. Then the solutions of (6.5) are bounded.

Proof. The previous assumptions imply that R;(I';,) € R(I'n41) and
R? = (J,5o Ri(Tr). The invariant curves of S produce invariant cylin-
ders for (6.8) in the space (6;t, p). The solutions lying between two of these
cylinders are bounded. From these facts and from the equation itself we can
deduce the existence of a new number p** > p*| such that if (¢(6), p(9)) is a
solution of (6.8) with p(6y) > p** for some 6, then the solution is defined
in the whole line, bounded and such that p(6) > p*, V6 € R. From this
solution we can construct a bounded solution of (6.5).

Now we prove the Lemma. Given a solution z(t) of (6.5) we distinguish
two cases. If

p(t) == #{%z‘(t? + -g-z+(t)2 + gz“(t)z}
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remains always below the number p**, then the solution is obviously boundéd\.'i
On the other hand, if for some ¢ the function p(t) is above p**, then z will\J
correspond to a solution of (6.8) living between two invariant cylinders and
so p will be uniformly bounded in R. 0O

Ezercise 17. Prove that, in the conditions of the previous lemma, the
solutions of (6.5) are equi-bounded; that is, given a constant v, > 0 we can
find another constant v* > «, such that

inf |z(t)] + [2(t)] < v« = suplz(t)] +[2(t)] < s
¢ teR

for any solution z(t). O

Exercise 18. Consider the equation (6.5) where f is an arbitrary function
in C(T!). Let z(t) be a solution and let M, denote the set of instants
to € R where z reaches a local maximum. Prove that z(t) is bounded if
and only if one of the conditions below holds:

(i) sup{z(to) : to € M} < o0,

(i1) M, =0.

[Compare with proposition 4.2 in [16]]. O

Ezercise 19. Let I' C E* be a Jordan curve such that S(I') =T" and such
that the following diagram is commutative,

S
v o1 T v
™ — T!
R21ra

where o ¢ Q. We want to produce a family of quasi-periodic solutions of
(6.5).
Let 7 = 7(s), p = p(s) be a lift of 1. We can assume

7(s +2m) = 7(s) +2m, p(s+2m) = p(s).

(If 7(s + 2m) = 7(s) — 27 we replace a by —a).

Let z(t; 7, p) denote the solution of (6.5) satisfying z(7) = vp, z(r) = 0.
Prove

() 3t m(s), p(s)) = 3t (s + 2mas), p(s + 2mar)),

(ii) z(t;7(s + 2m), p(s + 2m)) = z(t — 2m;7(s), p(s)),

(iii)1 z¢(t) = z(t; 7(ac), p(ac))) is a family of quasi-periodic solutions in
M(3) O

Step 3. Applying the Twist Theorem

Intersection property
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Lemma 6.3. Let I' be a Jordan curve in E* that is homotopic to p = p*.
Then
ST)NT #0.

Proof. In R3 we consider a system of cylindrical coordinates defined by
teT!, p>0, eR,
where the associated cartesian coordinates are
X =pcost, Y =psint, Z=20.

Let A be the vector field in R3 described, in cylindrical coordlnates by the
equations

2
a=1, A= TS0, A=0- Lo

Using the standard formula for cylindrical coordinates,

. 18 104, | 8A
diva = 25 (pAe) + ~ 5 + g

we conclude that divA = 0 for p # 0. For p = 0 the field has a singularity
but it is rather weak. Around the singularity A satisfies

Ax =0(1), Ay = O(1), 4z =0(). (6.9)
Define I') = S(I'). Since S is a topological mapping, I'; is a Jordan curve
in E, that is homotopic to p = p.. Let us consider the flow in R3 given by
t = Ay, p= A, 0= Ag. If we start with the curve T x {0}, lying in the
plane Z = 0, and allow the flow to evolve up to Z = 2w, then we arrive
at 'y x {27} via a smooth cylinder. The domain enclosed by this cylinder
in {0 < Z < 2n} will be denoted by D. The boundary of D is composed
by the cylinder itself and the two faces R;(I') x {0} and R;(T1) x {2x}.
The outward normal vector to 8D satisﬁes A n = 0 on the cylinder. Also,
= (0,0,-1) [resp. n = (0,0,1)] at R;(I') x {0} [resp. R;(I'1) x {2n}].
leen a small € > 0 we apply the Dlvergence Theorem to the vector field
A on the domain

D.={(X,Y,Z)eD: X*+Y?>¢ 0< Z < 2n}.

Letting € go to 0 and using (6.9) one obtains

0:/ divA = A-n:/ Ag — Ap.  (6.10)
D aD Ri(Ty)x {27} R:(T") x {0}

If we assume for a moment that the conclusion of the Lemma does not hold
and I' and I'; do not intersect, since they are both homotopic to p = p*
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in E,, either R;(I';) C R;(T) or R;(T') C R;(I'1). Assume for example that
the first inclusion holds. We reach a contradiction with the identity (6.10)
because

2
/ Ao Ao =/ (-2 F(t)}pdpdt > 0. O
Ri(1)x {0} Ri(T1)x {2n) Ri(D)-Ri(Ty) 2P

Inversion and change of scale. To apply the Twist Theorem we need a fixed
annulus and, for this reason, we perform the change of variables

! € (0.5,2.5]

r=—, 7T .5,2.5],

8p’
where § > 0 is a parameter. As § — 0 the annulus r € [1,2] is mapped onto
the annulus around infinity p € [%, %] In this way we introduce a small
parameter in the system (6.8). It becomes

dt _ 6y]—1

% = [0 - SFSOCH)I 61

%= —0%g fOS(HIQ - SF FOC(HI
The Poincaré map Mj is well defined in the annulus 7 € [1,2] for small 4.
Moreover, the previous Lemma implies that M;y satisfies the intersection
property. In order to apply the Twist Theorem we also need some esti-
mates. To obtain these estimates we are going to consider that (6.11) is
a differential equation depending on a parameter and we shall apply the
following consequence of Peano’s Theorem.

Differentiability with respect to parameters. For the moment we shall con-
‘sider a general differential equation depending on one parameter of the

type 3
z
E@ = F(0,z,9), (6.12)

where the function
F:[0,27] x D x [0,A] = RN, (8,2,8) — F(8,2,9)

is of class CO¥*+1:*+1 for some v > 0. Here D is an open and connected
subset of RY and A > 0. The solution of (6.12) satisfying 2(0) = zo will
be denoted by z(6; zp,d). The general theory of differential equations says
that z is of class CO¥*+1:¥+1 in its three arguments whenever it is defined.
The following result is a consequence of this fact.

Proposition 6.4. Let K be a compact subset of D such that for every
20 € K and 6 € [0,A] the solution z(0;20,0) is well defined in [0, 2n].
Then, for each (6;29,0) € [0,2n] x K x [0,A], the expansion below holds,

2(0; z0,6) = 2(0; 20,0) + g%(e; 20,0)0 + R(6; 20,0)0
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where the remainder R satisfies
[1R(O; -,)llcviky — 0, 6—0,
uniformly in 0 € [0, 2x].

This result is a consequence of the regularity of the solution together
with the following Lemma.

Lemma 6.5. Let ¢ be a function in CO¥+1v+1([0, 27] x K x [0, A]). Then

0(0:2,6) = 9(0:2,0) + 22(0;2,0)6 + R(6; 2 8)6

with R satisfying the same conditions as R in Proposition 6.4.

Proof. It is a consequence of the identity
Oy - L 9y Oy
; = ¢(0;2,0)+—==(6; 2z,0)d+d —(6; —-—(6; .0
p(0;z,0) = p(6; 2, )+8<5( ;2,0)0+ /0{66(0,.2,53) 35(0’2’0)}d3

Ezercise 20. Let z(0; 29, 9, €) be the solution of

dz
&~ F0,28,0), 2(0) =,

where
F:[0,27] x D x[0,A] x [-1.1] = RN, (8,2,6,¢) — F(0,z,6,¢€)

is of class COv*+1Lv+1.0 for some v > 0. Assuming that z(6; 29,6, €) is well
defined in [0, 27] if 29 € K, § € [0, 4], € € [-1,1], then

z(0; 20, 6, €) = z(0; 20,0, ¢€) + %(0;%,0,6)5 + R(6; z0,0,€)d
where the remainder R satisfies
[|IR(®; - ,6,6)llcvxy =0, &—0,
uniformly in 6 € [0, 27], € € [-1,1]. O

The estimates. We are going to apply the previous Proposition to the sys-

tem (6.11). For § = 0 this system becomes % =2, % = 0. Then

6
t(6;to0,70,0) = to + oL 7(6;t0,70,0) = 7.

The derivatives with respect to the parameter will be denoted by £(8) =
%(0; to,70,0) and n(0) = ‘—g%(ﬁ;to,ro,O). They satisfy

{ §§ = 2—§ysr0f2(t0 + %)GC(%)G, £(0) =0,
B =~z (to + §S(E), n(0) =0.
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In consequence,

o e, 06
§0) = gm0 [ Tt IOG)0, n(6) =~ 3 [ oS

If we apply Proposition 6.4 to the system (6.11) with A sufficiently small
and K = {(t,r) € R? : 0 < ¢t < 27, 1 <7 < 2}, then we are lead to the !
following result.

Proposition 6.6. Assume that f € C"*!(T!). Then the Poincaré map
Mg of (6.11) satisfies the expansion

t1 =to + T + 6&(2m) + o(9),
r1 = 7o + 61(27) + 0(6),

and the remainders o(8) are understood in the C™ sense.

Remark. This proposition is also true if one only assumes f € C™(T"). See
Proposition 6.1 in [17]. It is possible to prove this result using a refinement
of Proposition 6.4.

Proof of Theorem 6.1. Let us now assume that f(t) = 1+ep(t) withp €
C5(T?) and |e| < 1. The numbers p, and p* employed in the construction
of the Successor mapping can be chosen independent of €. Let My be the
Poincaré map of (6.11) when f = 1+ ep. We can also find another number
independent of ¢, A > 0, such that if |¢] < 1 and § € [0, A], then My is well
defined in the annulus A : 1 < r < 2. We want to prove the existence of
€* > 0 such that if || < €*, then M} has invariant curves in A for small 4.
Once we have proved this, the Theorem will follow from Lemma 6.2.

To find the invariant curves of M§ we are going to apply the Small Twist
Theorem. The intersection property is an easy consequence of Lemma 6.3.
To obtain the estimates we can employ Exercise 20 to obtain a variant of
Proposition 6.6 that is valid for f = 1 + ep. More precisely, Mj has the
expansion

2
(S) (S)
t1 =to+ T + da(re) + 5{6292 / p(to + 5)C(§)d6 + Ry (to,70;9,¢€)},

2
m =g +o{~ 6393/ p(to+ 5 )S( )de+Rz(to,ro,6e)}

with
y T
a(ro) = 75( [ Cleyatyry
and
HRi('i ';6’ 5)||C4(K) ¥ 07 6 — 0’ 1= 172’

uniformly with respect to € € [—1,1]. Exercise 15 implies that o has a non-
vanishing derivative and therefore the Small Twist Theorem is applicable
whenever ¢ € [0, A] and € is small enough. O
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Remark. More results on the boundedness problem for asymmetric oscil-
lators can be found in [16, 3, 13]. Other nonlinear oscillators with linear
growth have been studied in [20, 2, 9, 17, 12]. The paper of Markus Kunze
in these lectures notes [8] also deals with semilinear oscillators and contains
a new application of Proposition 6.4.
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