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1 Introduction

A homeomorphism A from R? onto R? satisfies the Brown condition if it is
orientation preserving and

deg(id — h,T') # 1

for each Jordan curve I' C R? \ Fix(h). Throughout the paper deg refers
to the Brouwer degree in the plane, I" denotes the bounded component of
R?\ T and Fix(h) is the set of fixed points of h.

Brown observed in [2] that the above condition is sufficient to guarantee
that the homeomorphism A produces trivial dynamics. This is a remarkable
result showing that, for certain maps in low dimension, it is possible to un-
derstand the global dynamics just by computing the degree. In this context
trivial dynamics means that the limit set of every bounded orbit is a con-
nected and compact set contained in Fix(h). When the set of fixed points is
totally disconnected this implies the convergence of the orbit but if Fix(h)
contains a non-degenerate continuum then one cannot discard the existence
of orbits accumulating around the continuum. Indeed this can happen even
for C* diffeomorphisms. The purpose of the present paper is to show that
the result by Brown can be sharpened in the analytic setting.
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Theorem 1 Assume that the homeomorphism h satisfies the Brown’s con-
dition and it is a real analytic mapping of R%. Then, for each p € R?, the
sequence {h"(p)}n>0 is either divergent or convergent to a fized point. More
precisely, either ||h"(p)|| — co or h™(p) — q with q € Fix(h) as n — +oo.

To get some insight on this result we discuss its applicability in simple
examples. The Brown’s condition is satisfied by the translation hj(z,y) =
(z+1,y) and also by the hyperbolic linear map ha(z,y) = (%x, 2y). For the
first map the degree vanishes on any region while for the second this degree
can take the values —1 and 0. For the map h; all orbits are divergent while
the map ho shows that convergent and divergent orbits can coexist. The
rotation h3(z,y) = (y, —z) and the contraction hy(z,y) = (3z, 3y) are not
in the conditions of the Theorem. In both cases the degree is 1 whenever the
origin belongs to I". Despite this fact the map hy has trivial dynamics. This
shows that the Brown’s condition is only a sufficient condition and cannot
characterize the trivial dynamics.

The proof of the Theorem will be obtained by combining the theory de-
veloped by Brown in [2] with some ideas taken from the paper with Campos
and Dancer [3]. After proving the main result we will illustrate its applica-
bility with some examples. First we will consider a class of area preserving
maps related to the difference equation

Tngl — 2Zp + Tn—1 = ¢(zy), n € Z, (1)

where ¢ is an analytic function. In this family of equations it is possible
to give a simple characterization of those with trivial dynamics. This can
be obtained as a consequence of Theorem 1 and a criterion for the stability
of parabolic fixed points which is due to Simé [12]. The second application
will be concerned with the differential equation

i = F(t,z, &), 2)

where the function F' is analytic, bounded and periodic in time.

2 Proof of Theorem 1

2.1 Free homeomorphisms on surfaces

Let M be a connected, metric space which is locally homeomorphic to R?,
so that M becomes a two-manifold. A subset D of M is called a disk if it



is homeomorphic to D = {z € C: |z| < 1}. Following [2] we say that a
homeomorphism f from M onto itself is free if

f(D)ND=0 = f7(D)n f4D) =0

for each disk D in M and integers p # q.

Free homeomorphisms are preserved under conjugation and so this is a
topological notion. Also it is not hard to prove that the above intersec-
tion condition is valid not only for disks but for general continua. More
precisely, if we are given a compact and connected set C in M and a free
homeomorphism f then

fONC=0 = fFC)NfIC)=0, p#q.

This is the content of the first Lemma in [2].

Given a point p in M the omega limit set L, (p, f) is defined as the
set of points ¢ € M which are limits of sequences f°(™(p), where o(n)
is a sequence of integers going to +o0o. Lemma 3.4 in [2] says that if M
is compact then L (p, f) is contained in Fix(f). It now follows from the
general theory of discrete dynamical systems that L, (p, f) is non-empty,
compact and connected. The connectedness is a consequence of Lemma 2.7
in [7] or Proposition 2.5 in [4].

Theorem 5.7 in [2] is a deep result saying that if M = R? and f : R = R2
satisfies the Brown’s condition then f is free. In particular this applies to
the map h = f of Theorem 1. Consider the Riemann sphere S? = R U {co}
and extend h to b : S? = §? with A(co) = co. The point of infinity is
fixed and so any disk in the sphere satisfying h(D) N D = 0 is indeed a disk
in the plane. This implies that also A is free as a homeomorphism of the
sphere. Given a point p € R?, the set L, (p, iL) is a continuum contained in
Fix(h) = Fix(h)U{oo}. The proof of Theorem 1 will consist in showing that
it is indeed a singleton. At this point the analyticity becomes important, for
it is possible to construct examples of C®° diffeomorphisms which are free
and have non-degenerate continua as limit sets. More details on this type
of construction can be found in Examples 3.1 and 3.2 of [4].

We finish this discussion about free homeomorphisms with an observa-
tion about Theorem 5.7 in [2]. It can be extended to free embeddings of
the plane. This means that the map from R2 into R? is continuous and
one-to-one but not necessarily onto. The detailed proofs will appear in [11].
With this result it is possible to extend Theorem 1 to embeddings.



2.2 Connected subsets of analytic sets

A subset A of R? is analytic if it can be described by an equation @(z,y) =0
where ® : R? — R is real analytic. A p-arc will be a vertical segment {a} X I
or a set of the type {(z,a(z)) : = € I'}, where I is a compact non-degenerate
interval and a : I — R is real analytic.

Lemma 2 Assume that A is an analytic proper subset of R? and C is a
connected subset of A which contains at least two points. Then C contains
a p-arc.

Proof. We fix two points p # ¢ in C and, for simplicity of the notation,
assume that p = (0,0). The real versions of the Weierstrass Preparation
Theorem and Puiseux’s Theorem (Theorems 6.1.3 and 4.2.8 in [8]) lead to
the local description of A around p. Indeed it is possible to find an open
neighbourhood NNV of p and a finite number of subsets 1, ..., with

ANN=mU.. .Uy, Ny ={p}ifi#j.

Moreover each set «; is either a vertical segment {0} x J; or a Puiseux branch
of the type y = ¢;(|z|*/*), z € J;,k > 1, with J; = [0,6] or | — 6,0] and
®; : J; — R analytic. The neighbourhood N can be chosen arbitrarily small
and so we can assume that ¢ ¢ N.

We claim that one of the branches «; must be contained in C. This will
be sufficient to prove the Lemma. If we assume by contradiction that none
of the subsets 7; is contained in C' then we can find points ¢;. i =1,...,7,
lying in ; \ C. The closed sub-arc of +; joining p and ¢; will be denoted by
pg;. From its definition it is clear that the set C1 = C N [pgi U ... Upg,] is
simultaneously closed and open with respect to the relative topology of C.
Since ¢ is not in Cy we have arrived at a contradiction with the connectedness
of C.H

Let us go back to the proof of Theorem 1. The set of fixed points of A
is analytic since it can be expressed as

Fix(h) = ®~1(0)
with
O(z,y) = (z — hi(z,y))* + (y — ha(z,y))%

If Fix(h) = R? then A is the identity and the Theorem holds trivially. From
now on we assume that h # id and so Fix(h) is a proper subset of the
plane. If L,(p,h) were a non-degenerate continuum then the connected
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components of L, (p, h A) \ {00} could not be single points. This would allow
us to apply Lemma 2 with A = Fix(h) and C one of the components of
L,(p,h) \ {oo} The conclusion is that if L,(p, k) is not a singleton then
Lu(p,h) = Ly,(p, h) \ {oo} must contain a p-arc.

2.3 Free homeomorphisms and limit sets
The proof of Theorem 1 will be complete after proving the following result.

Proposition 3 Assume that h is an analytic homeomorphism of R? and
that, for some p € R, the set Ly (p,h) contains a p-arc. Then h is not free.

Proof. It follows along the proof of Theorem 1 in [3]. First of all we notice
that it is not restrictive to assume that the p-arc is of the type y = a(z),z €
I = [a,b]. Otherwise this arc would be a vertical segment and we could
replace h by 77! o hor, where  is a rotation of 90 degrees. Notice that the
Brown’s condition is invariant under conjugacy. Next we extend « to a C®
function & : R — R and consider the C* diffeomorphism of R?,

Y(z,y) = (z,y — a(x)).

The strip [a, b] X R is invariant under ¢ and the arc y = a(x) is mapped onto
the horizontal segment [a,b] x {0}. The map g = 9 ohot~! is conjugate to
h and so [a,b] x {0} is contained in L, (ps, g), where p, = 1(p). From now
on we shall work with g instead of A. This new map is not always analytic in
the whole plane but it is analytic on [a,b] X R and this will be sufficient for
the remaining arguments. Any point in [a, b] x {0} is fixed under g = (g1, g2)
and so
91(z,0) =z, g2(z,0) =0 if z € [a,]].

For some 1 > 0 we have the identity
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when z € [a,b], |y| < n. If all the functions Tg—(:c 0) were identically zero
on [a,b] the identity principle would imply that 91(z,y) = z on [a,b] x R.
This is not possible since the vertical lines {z} x R would be invariant and so
the orbit {g"(p«)} could not accumulate along the whole horizontal segment.

Once we know that some of these derivatives is not zero we select the
first integer © > 1 such that B(z) = %%‘;—‘{%(m,O) is not identically zero on
[a,b]. We are lead to the expansion

91(z,y) = = + B(z)y* + R(=z,y)y**"



were R is analytic on [a,b] X R. By restricting the size of the interval, say
[a1,b1] C [a,b], we can assume that B does not vanish at any & in [as, by).
We can also select € > 0 such that if (z,y) is a point in the rectangle
[a1,b1] x [—€, €] then

0
%(l‘,y)>0 and gi(z,y) =z ©y=0. ®3)

We say that a point ¢, = (,0) € [a1,b1] x {0} is in £F if it can be
approached by the orbit {g"(p.)} from above. More precisely we define
R = [a1,b1]%]0, €] and say that g, is in £ if there is a sequence of in-
tegers o(n) — oo such that the sequence g°(™(p,) remains in R+ and
converges to gx. The set L7 is defined in the same way if one replaces Rt
by R~ = [a1,b1] x [—€,0[. The segment Jas,b1[x{0} is covered by £+ U L~
and so we can find a smaller interval [ag, b2] C [a1,b1] such that either £T
or L7 is dense in [ag,bs] x {0}. It is not restrictive to assume that £+
is the dense set. Otherwise we would replace g by § = ¥~1 0 g o ¥ with
¥(z,y) = (2, —y). This change does not affect to the condition (3).

From now on we assume that £ is dense and, according to the condition
(3), we distinguish two cases:

0

= (@,y) >0 if (2,1) € [a, ba]x]0, .

We employ the notation p, = ¢"(p«) and find n large enough so that p, =
g™(p«) and ppi1 = g™ (p,) lie in [ag, bo] x]0, €]. This is possible because £+
is dense in [ag, ba] x {0} and g satisfies

Casel: gi(z,y) > =,

91(z,y) =z +O0(W"), ga(z,y) =O0(y)

around [ag, bo] x {0}. With the notation p, = (zy,y), we use that we are
in the case 1 and deduce that

az < Tp < Tpy1 < bo.

The density of £* allows us to find m > n + 1 such that the point Pm =
g™ (p4) lies in [az, ba]x]0, €] and

Ty < Ty, < Tn+1-

We consider the arc v = y,U~, where -y, is the horizontal segment connecting
Pn t0 (T, Yn) and 7y, is the vertical segment from (Z,,, yn) to pr. Some of
these segments can degenerate to a point. We claim that g(y)Ny = 0. Indeed



7 is contained in [ag, bp]x]0, €] and so the conditions assumed in the case 1
hold along . From the positivity of %’% we deduce that g; is increasing along
¥n and so g(vp) is contained in {z > zp41}. From g1(z,y) > = we deduce
that g(vy) is contained in {& > z,,}. The arcs v and g(7) are separated by
the line z = z,,, and so they cannot intersect.

The point pp, is in vy N g™ "(y) and this implies that g is not free.
The proof is complete for the case 1 because the property of being free is
topological and so h cannot be free.
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The line of reasoning is the same. Now

Case2:  gi(z,y) <z, —=(z,9) >0 if (z,y) € [as, b2]x]0, €].

T+l < Ty, < Ty

and the horizontal segment ~, goes from p,, to (zm,y,) while the vertical
segment 7, goes from (Zm,yn) t0 pm. The line of separation is again z =
|

The dynamics around a segment of fixed points has been considered in [5]
and also in [3], Section 2. The results in those papers assume some additional
conditions on the derivatives at the fixed points and are not applicable to
the general situation considered in the proof of the above Proposition.

3 A family of area preserving maps

We start with the difference equation (1) from the introduction, where the
function ¢ : R — R is real analytic. After the change y,, = 41—z, we are
lead to the study of the analytic area preserving diffeomorphism

Jm=z+y
A n=y+é(z+y).

The fixed points of h are the zeros of ¢ or, more precisely,

Fix(f) = ¢7(0) x {0}.

We are going to discuss the Brown’s condition for this family. Assume that
I is a Jordan curve contained in R? \ Fix(h). If ¢ = 0 then Fix(h) is the
z-axis and I lies in one of the half planes y > 0 or y < 0. This implies that
the degree of id — h on I' must vanish and so the Brown’s condition holds.



Assume now tpat ¢ is not identically zero and &1,...,&, are the zeros of ¢
with (&,0) € I then

n
deg(id — h,T) = Zai

i=1
where o; = 1 [resp. —1] if ¢ is decreasing in a neighbourhood of & [resp.
increasing] and o; = 0 if ¢ reaches a maximum or minimum at &. This
is a consequence of the general properties of the degree and the reduction
of dimension via the Implicit Function Theorem (see [9] or [10], page 223).
From here we deduce that the Brown’s condition holds if and only if ¢
satisfies one of the following conditions

o There exists &, € R such that (£ — &,)¢(£) > 0 for each £ € R
o $(&) >0 for each £ € R
e $(§) <0 for each £ € R.

In any of these cases the Theorem 1 applies and one has trivial dynamics.
It is also possible to understand more details of the local dynamics around
the fixed points using the theory of invariant manifolds. The fixed points
can be hyperbolic or parabolic. In the first case the Hartman-Grossmann
Theorem applies and in the second one can apply the results by Fontich in
[6]. It is also interesting to notice that for the family of mappings of this
section the Brown’s condition is sharp. Indeed, if ¢ has a decreasing zero
one can apply Simd’s stability criterion for parabolic fixed points (see [12])
and conclude that there is KAM dynamics around this point. This of course
excludes the possibility of trivial dynamics in a global sense.

4 Periodically forced Newtonian equations

The Brown’s condition is automatically satisfied by orientation preserving
homeomorphisms which can be approximated by mappings without fixed
points. Indeed if h, is a sequence of continuous maps from R? into R2
converging to h uniformly on compact sets, then

deg(id — by, T) = deg(id — h,T),

where I' is a Jordan curve in R? \ Fix(h) and n is large enough. This is a
consequence of the invariance of the degree under small perturbations. Now,
if we assume that Fix(h,) = 0 for each n, then this degree always vanishes.



We are going to apply this observation to the study of the dynamics
of the differential equation (2) from the introduction. We shall rewrite the
equation in the form

i = F(t,u,u) + s (4)

where F : R x R? — R is continuous and T-periodic in ¢ and s € R acts as
a parameter.
We shall assume that F' is bounded, say

|F(t,u,v)] < M for each (t,u,v) € R x R?.

In this case it is well known that there exists a non-empty interval Ip C
[-M, M] such that the existence of a T-periodic solution for (4) is equivalent
to

s € Ip.

This is a consequence of a result in [1] on upper and lower solutions. The
original result was presented for elliptic equations but it adapts easily to
periodic problems. More information on this point can be found in the recent
paper [13]. The interval Iz can be open, closed or half-open, depending on
the nonlinearity F. In some exceptional situations Ir can even degenerate
to a point.

To apply the results on analytic homeomorphisms we must assume that
F is analytic with respect to (u,v). This means that, given (ug,vp) € R?,
there exists § > 0 such that if |u — ug| + |v — vg| < 6 and ¢ € R then F can
be expressed as

[e.¢]

F(t,u,v) = > omm(t)(u—uo)"(v — vo)™,

m,n=0

where o, m is continuous and T-periodic in ¢.
The Poincaré map associated to (4) is defined as

Py : (u(0),4(0)) = (u(T), w(T))

where u(t) is an arbitrary solution. The previous assumptions imply that P,
is an orientation preserving analytic diffeomorphism of the plane. Moreover
the dependence with respect to s is continuous and if s, — s then F;,
converges to Ps; uniformly on compact sets. If s € Ir then P; has no fixed
points and so we can deduce that P; satisfies the Brown’s condition as soon
as s is not in the interior of Ir. At this point we have in mind the remarks
made at the beginning of this Section. After an application of Theorem 1



we conclude that if s is not in the interior of Iy then every solution u(t) of
(4) satisfies either
|u(nT)| + |u(nT)| — co

or
(u(nT),w(nT)) — fixed point of Py

asm — +o00, n € Z. From the equation we observe that the second derivative
of u is bounded by M and we are lead to the following conclusion.

Corollary 4 Assume that F is in the above conditions. Then if s & Ir
every solution is divergent and if s € OIF every solution is divergent or
asymptotically T -periodic.

By a divergent solution we understand that |u(t)|+|1(¢)| — oco. The solution
u(t) is asymptotically T-periodic if there exists a T-periodic solution ¢(t)
such that |u(t) — ¢(t)| + |u(t) — ¢(t)] — 0 as t — 4-o0.
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