Periodic motions of fluid particles induced by a prescribed
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Abstract

By means of a generalized version of Poincaré-Birkhoff theorem, we prove the
existence and multiplicity of periodic solutions for a hamiltonian system modeling
the evolution of advected particles in a two-dimensional ideal fluid inside a circular
domain and under the action of a point vortex with prescribed periodic trajectory.
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1 Introduction and main result

We consider the motion of a two-dimensional ideal fluid in a circular domain of radius
R > 0 subjected to the action of a moving point vortex whose position, denoted as
z(t), is a prescribed T-periodic function of time. This model plays an important role
in Fluid Mechanics as an idealized model of the stirring of a fluid inside a cylindrical
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tank by an agitator. A fundamental reference for this problem is the seminal paper [1],
where the concept of chaotic advection was coined. Following the classical Lagrangian
representation, the mathematical model under consideration is the planar system
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where the complex variable ( represents the particle transport induced by the so-called
stirring protocol z(t). System is a T-periodically forced planar system with hamil-
tonian structure, where the stream function

¢—=(t)

T

plays the role of the hamiltonian.

The main contribution of Aref in [I] was to show that the flow may experience
regular or chaotic regimes depending on the particular stirring protocol. For instance,
system (|1)) is integrable if z(¢) is constant or z(t) = zp exp(i§2t) but it is chaotic if z(¢) is
piecewise constant (blinking protocol in the related literature). A naive way to measure
the influence of the ideas presented in [1] is to note the more than a thousand citations
of this inspiring paper up to the date. Aref’s blinking protocol is piecewise integrable
and the theory of linked twist maps permits a good analytical study of the underlying
dynamics (see for instance [4, [9]). More recently, other strategies of stirring have been
studied, for instance the figure-eight or the epitrochoidal protocol [§], but only from a
numerical point of view. Our contribution in this paper is to prove that both regular
and chaotic regimes share a common dynamical feature, namely

the existence of an infinite number of periodic solutions labeled by the number of
revolutions around the vortex in the course of a period.

To be precise, let us fix z : R — C a T-periodic function such that |z(t)] < R for all
t. For a periodic solution ¢ of with period kT, the winding number of { is defined as

1 /kT d(¢(t) — 2(1))
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and provides the number of revolutions of ((t) around the vortex point z(¢) in the time
interval [0, kT']. We proceed to state our main result.

Theorem 1.1. Let z : R — C be a T-periodic function of class C*, such that |z(t)] < R
for all t. Then, for every integer k > 1, system has infinitely many kT -periodic
solutions lying in the disk Br(0). More precisely, for every integer k > 1, there exists an
integer j. such that, for every integer j > j; , system has two kT -periodic solutions
C]Sj) (1), C,SJ) (t) such that, fori=1,2,

rotyr(¢) = By
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Moreover, for every k > 1, j > j; andi=1,2,
lim \C,ii). (t) —z(t)| =0, wuniformly in t € [0, kT). (3)
Jj—+o00 J

In particular, for k£ = 1, we find that has infinitely many T-periodic solutions. For
k > 1, we find subharmonic solutions of order & (i.e., kT-periodic solutions which are not
[T-periodic for any [ = 1,...,k —1) provided that j and k are relatively prime integers;

we remark that in this case it is also possible to show that Ql(élj? (1), C,g? (t) are not in the

same periodicity class (namely, C,S.lj)() e CIEQJ)( +[T) for every integer [ =1,...,k —1).

As a final remark, it is worth to point out that the regularity condition on the stirring
protocol plays an important role. In fact, Theoremis not true for a discontinuous z(t)
(e.g. the blinking protocol), because condition (3|) would imply unphysical discontinuous
particle trajectories. The existence and multiplicity of periodic solutions for a general
protocol, as well as their stability properties, remains as an open problem. Intuitively,
a vortex induces a singularity on the angular variable, twisting the flux around it, so
Poincaré-Birkhoff Theorem becomes a natural tool of potential application in more
general contexts like arbitrary boundary domains [6, [10] or the presence of multiple
vortices [2, [B]. Such extension will be the subject of future works.

The rest of the paper is divided in two parts. In Section [2] the Poincaré section is
defined, whereas Section [3] contains the proof of Theorem by an application of a
generalized version of Poincaré-Birkhoff Theorem.

2 Definition of the Poincaré section.
For our purposes, it is convenient to write system as
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In this form, the first term at the right models the action of the vortex whereas the
second term corresponds to the wall influence on the flow. Identifying C with R? and
setting ¢ = (z,y), 2(t) = (a(t),b(t)), we can rewrite system (4 in real notation as
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Let Br C R? be the closed disk centered at the origin with radius R. First, we recall
a well known property of system .

Lemma 2.1. Let ¢ : J — R? be a solution of , with J C R its mazimal interval of
definition. If |((to)| < R for some to € J, then |((t)] < R for every t € J, that is to
say, the disk Bg is invariant for the flow associated to .

Proof. Since Br = {(z,y) € R? | V(z,y) < R?} for V(z,y) = 2% + 42, by standard
result of flow-invariant sets, it is enough to prove that

(Z(t,x,y)|VV(z,y)) =0, foreveryt e [0,T], 2?4+ 9% = R?,

where Z(t,z,y) denotes the vector field of the differential system . With simple
computations, we find indeed

(Zta )YV (ey) = (X(taya+Y(tayy)
¢~ frz()] — e — (1)
R? 2
¢ = ()2 |¢ - Fp(t)]

(1- 52 (1P - oml=00?)

N

- /) €= 20 ]¢ - (o)
= 0.
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From now on, we will study solutions to system belonging to the invariant disk
Br; accordingly, the singularity of the vector field at ¢ = %z(t) (for which |(| > R)
will not play any role. On the contrary, we will take advantage of the singularity at
¢ = z(t). To this aim, it is useful to introduce the change of variable

n=¢—2(t)
and set 7 = (u,v), so that system is transformed into
2
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In the following, given 79 # 0, we will denote by 7(:;n9) the unique solution of (@
satisfying the initial condition 7(0) = 7.

Lemma 2.2. There exists v > 0 such that, if 0 < |no| < r, then the solution n(-;no)
exists on R and satisfies |n(t;no) + z(t)| < R, for every t € R.

Proof. Define
r=R—1]z(0)| > 0.

Then, for 0 < |no| < r, the function ((t) = n(t;n9) + 2(¢) solves (5)) and
[CO)] < |mol + [2(0)] < 7+ |2(0)] = R.
From Lemma we have the a priori bound
In(t;no) + 2(t)| < R, for every t € J, (7)

where J C R denotes the maximal interval of definition of n(t;n9). Our objective is
to show that actually J = R, completing the proof of the lemma. Notice that, in
view of the a priori bound @, we just have to show that n(t;70) cannot reach the
singularity 7 = 0 in finite time. First, we are going to consider the particular case of
2(t) = a(t), b(t)) belonging to the C? class, then the general case is proved by a standard
limiting argument.

Define the function (to simplify the notation, we take advantage here of both real
and complex notation)

K(t,n) = %(m il —In[5(0) (0 + =(0)) — B2} + altyo — bieyu

and set k(t) = K(t,n(t;no)) for ¢t € J. Since K (t,n) is a hamiltonian function for (6],
we have

(VI (t,n(t;m0)) ' (,m0))) = 0,
so that (writing for simplicity n(t;n0) = n(t)),

Kol = |G et

F< (t)(n+ z(t)) R2‘7 >+
’ )(n+ 2(t R2’

23 - ()] + |a(t)u(t) — b(t)u(t)],
m ‘z(t)(n +2(t) — RQ’

a(t)u(t) — b(t)u(t)
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being v(t) = Z'(t)n(t) + 2(z(t)|2'(t)). From the a priori bound (7)) one gets
O+ 2(0) - B = = [50)(0) + =)
R(R - \E(t)|> >0, (8)

so there exists M > 0 (independent on 7)) such that |k'(t)] < M for every t € J. Hence,

v

K (t,n(t)) — K (0,m0)] < Mt],  for every t € J. (9)

Since K (t,n) is unbounded near n = 0, this shows that 7(¢) cannot reach the singularity
in finite time, thus concluding the proof. For the general C! case, one can approach
uniformly z(¢) by C* functions, and the result follows from the continuous dependence
of the solutions of the initial value problem with respect to parameters. ]

Fix now an integer k£ > 1. We can then define the Poincaré map ¥y at time kT as

B\ {0} 3 no = Yi(no) = n(kT;mo).

By the fundamental theory of ODEs, it turns out that Uy is a global homeomorphism
of B, \ {0} onto (B, \ {0}), preserving area and orientation; moreover, from (9) we
see that Wy can be extended (as an area and orientation preserving homeomorphism)
to the whole disc B, by setting W (0) = 0.

3 Proof of the main result.

By Section [2] for any integer k > 1 there exists a well-defined homeomorphism ¥y :
B, — U(B,) preserving area and orientation. Moreover, WU (0) = 0. For the reader’s
convenience, we recall here the generalized version of Poincaré-Birkhoff theorem which
we are going to apply (see [5 [7]).

Generalized Poincaré-Birkhoff theorem. Let 0 < r; < r, and set A = {(z,y) €
R? | 72 < 2? + y? <712}, Let ¥ : B,, — U(B,,) be an area-preserving homeomorphism
with ¥(0) = 0. Assume that, on the universal covering space {(p,0) € R? | p > 0} with
covering projection I1(p,0) = (pcos @, psin®), V|4 has a lifing of the form

\Ij(pv 9) = (R(p, 9)7 0+ V(pa 9))7

being R(p,0),~v(p,0) continuous functions 2mw-periodic in the second variable. Finally,
suppose that, for a suitable j € 7, the twist condition

v(ri,0) > 275 and  (ro,0) < 2mj,  for every 0 € R,

is fulfilled. Then there exist two distinct points (P, 0, (p3), 02 e]ry, 7] x[0, 2]
such that (fori=1,2) W(p®, 00) = (p® 0 4 2775).



To apply this theorem, we therefore write

n(t) = (p(t) cos (1), p(t) sin6(1)),  p(t) > 0,

transforming system @ into

p=1I(tp,0
. ( ) (10)
6 = O(t, p,0),
being
T t)cos — a(t)sinh) (1—%) .
I(t,p,0) =5 o —a(t)cos® — b(t)sin @
‘ pcosf, psin®) + z(t) (1 - IZ?WM
0 in 6 R ;
ot p.0 r (1 p+(a(t)cosd+b(t)sind) (1 - \z(t)|2> N a(t)sin® — b(t) cos
Ay 72 o 2 :
pcos@ psm@)+z()(1—%)’ P
We denote by (p(+; po,6o), 8(+; p,00)) the unique solution to satisfying the initial

condition (p(0),6(0)) = (po,Ho) In view of Lemma such solutions globally exists
(and p(t) £ 0) if po €]0,1].
Define j; > 1 as the smallest integer such that
O(kT;r,00) — 0(0;7,6p) < 2wy, for every Oy € [0,27]. (11)
Fix now an integer j > j}; we claim that there exists r; €]0,r[ such that

Q(k:T; T’j,go) — 0(0;7’]‘,90> > 21y, for every Oy € [0,27T[. (12)

Indeed, arguing similarly as in we see that

’(pcosﬁ,psin@) + 2(t) (1 - ﬁ) ‘2

is bounded away from zero for p €0, 7]; accordingly, we can find ; €10, r[ such that

-
O(t, p,0) > %, for every t € R, p €]0,75], 6 € R. (13)

Using a standard compactness argument (usually referred to as “elastic property”) we
can find r; €]0, 7] such that

po €0,7;] = p(t; po, bo) <75,  for every t € [0,kT1], Oy € [0,27].



Hence follows from , after integrating the second equation in .
In view of and , the Poincaré-Birkhoff fixed point theorem implies the

existence of at least two distinct points (plgl])., 0,(61]).), (,0,(623., 9,(62]).) € lrj,r[ x[0, 2w [ such that,
fori=1,2,

p(kT: o 000 = p(0s i, 010, (KT} 080) = 0005 ), 010) + 275 (14)

Accordingly, 4 4 ' ' |
Gy (8) = (s (6} cos 6 piy sin67)) + =()

is a kT-periodic solution to such that, in view of Lemma ||Ckl;||OO <R.
The second relation in is just a consequence of , using complex notation.

; ; ; (4. (1) p(d)
Indeed, C,Sf; (t) — z(t) = p(t; p,(;)j, OI(CZE.)ewu’pkd’ekvj) so that, with easy computations,
KT d(Gp (1) — (1))
SUORE

1 (d (@) @) . () () .
= 2 /] <dt(log(p(t;pkyj,0kyj)))+z9 (t;pkyj’ekd)) dt = j.

i 1
rOtkT(C]g;) = /J
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This information finally implies, by using a standard compactness argument, that
holds true.
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