Ten Mathematical Essays on Approximation in Analysis and Topology 217
J. Ferrera, J. Lépez-Gémez, F. Ruiz del Portal, Editors
(© 2004 Elsevier B.V. All rights reserved

The stability of the equilibrium:
a search for the right approximation
R. Ortega

Depto. de Matemdtica Aplicada, Universidad de Granada,
18071-Granada, Spain

Abstract
10 be done....

Key words: Include them,

1. Introduction

In some textbooks in Mechanics, the phenomenon of parametric resonance is illustrated
with the pendulum of variable length. After a change of the time variable, this class of
pendula is modeled by the equation

6+ a(t)singd =0 1

where
a(t) = ge(t)°
and £(¢) > 0 is the length at an instant ¢. It is traditional to assume that « is periodic,
say of period T' > 0. This model leads to suggestive examples of resonance because the
equilibrium @ = 0 becomes unstable if a(t) oscillates in an appropriate way. Although the
system has only one degree of freedom !, the study of the stability of
60=0

is not elementary. This probably explains why it is customary to substitute the original
equation by its linear approximation

6+ a(t)d = 0. )

L or one and a half if the dependence on time is counted
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The main theme of these notes will be the validity of this procedure. It will turn out that the
linearization principle leads to the right conclusions in most cases, but there are exceptions.
Sometimes the equation (2) can be unstable while the equilibrium 6 = 0 is stable for (1).
In contrast, we shall find that the third order approximation (of Duffing type)

b+ a(t)s — ;31—'a(t)03 —0 3

is faithful. This means that the equilibrium § = 0 is stable for (1) if and only if the same
holds for (3). It must be noticed that the positivity of a is crucial for this result. Indeed,
if a(t) can change sign, probably none of the approximations obtained by truncating the
expansion of the sine function is faithful.

The idea of replacing a complicated equation by an approximation is central in Stabil-
ity Theory. The first Lyapunov’s method is the simplest instance. It can be applied to our
equation to prove instability in the easiest cases but it does not help in the proofs of sta-
bility. This is so because the notion of asymptotic stability (considered in Lyapunov’s first
method) is strange to Hamiltonian mechanics. The study of the stability of the equilibrium
requires sophisticated techniques (KAM theory) which use the information on nonlinear
approximations. We refer to [2,6] for the perturbative case, where

a(t) = w? +eB(t),

and to [26,23] for the general case. On the other hand, the results on instability also use
nonlinear approximations but are of a more elementary nature. Already in [15], Levi-Civita
obtained instability criteria using the quadratic approximation. His results were presented
for abstract mappings and applied to the study of a three body problem. The basic technique
in [15]is a detailed analysis of the dynamics around the equilibrium and it could be adapted
to the pendulum of variable length. Also, it would be possible to employ Lyapunov func-
tions as in [32]. In these notes we shall show how to obtain instability criteria using a less
standard approach. Topological degree will be employed to reduce instability proofs to the
computation of certain indexes (localized versions of the degree). The rest of these notes
is organized in six sections. The notion of stability and its connection with the dynamics
of planar mappings is discussed in §2. The next section, §3, analyzes the linearized equa-
tion and the symplectic group Sp(R?). In particular, the conjugacy classes in this group
are found. The basic facts about degree theory are collected in §4. The degree is useful to
define the index of the equilibrium of our differential equation, as shown in §5. Some links
between stability and index can be found in §6. Finally, in §7, several characterizations of
the stability of the equilibrium of the pendulum are presented. They are obtained in terms
of the index, the third approximation or the conjugacy classes of Sp(R?). The notes are
concluded with some discussions about equations with more degrees of freedom.

2. Perpetual stability and discrete dynamical systems

We shall work with the class of differential equations
6= 1(t,6) @
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where f is defined around 6 = 0, say f : R x (—¢,€) — R with € > 0. The function f
satisfies

f(t0)=0 VteR
and so & = 0 is an equilibrium of the equation. In addition, f is continuous, T-periodic in
t and there is uniqueness for the initial value problem associated to (4).

Given a point
(00"*}0) € (—69 €) X Rv
the solution satisfying )
9(0) = 00 and 0(0) =wWo
will be denoted by 8(%; 6o, wp). In general one cannot say that this solution is defined in the
whole real line but it is at least defined in a large interval for small values of |6p| and |wp|.

The equilibrium § = 0 is said to be stable if given any neighborhood of the origin in
R?, say U, there exists another neighborhood V such that if (60,wo) belongs to V, then the
solution 6(¢; 8, wo) is defined in (—oo, co) and

(6(t; 60, w0),6(t; 60, wo)) €U VEER.
This is the notion of perpetual stability, often employed in Hamiltonian dynamics (see

Chapter 3 of [32]). The reader who is familiar with stability theory will notice that it means
Lyapunov stability for the future and the past. Two simple examples are the equations

6+6=0 and §—6=0.
The equilibrium is stable only for the first.

Let us now consider the difference equation
€nt1 = M (&) )
where
M:DCR 5 R
is a one-to-one and continuous mapping defined in an open set D. It is also assumed that
the origin lies in D and it is a fixed point of M. Given an initial condition §, € D, the
solution
{gn}nel, én = Mn(EO)’
is defined on some subset I of Z. The fixed point £ = 0 is said to be stable if for each
neighborhood U(0), there exists another neighborhood V(0) such that if & € V then {¢,}
is defined in Z and
& EU VneLZ.
To practice with this definition the reader can consider the linear mappings M defined by
the matrices

cos © sin© cosh® sinh©
' R[G] = ’ Hy[0] = y ©#0.
—sin® cos® sinh® cosh®

In the first case £ = 0 is stable while in the second it is unstable.
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There is of course a complete analogy between the definitions of stability for the con-
tinuous and discrete situations. Now we are going to immerse the study of stability for
differential equations in the theory of difference equations. This is a central idea in dynam-
ical systems that goes back to Poincaré.

The mapping .
P(00, wo) = (G(T, 00, wo), G(T, 90, wo))

is well defined in a neighborhood of
00 =wp=0

and, due to the uniqueness for the initial value problem, it is one-to-one and continuous.
Moreover, the iterates P™ are obtained by evaluating the solutions at time ¢ = n7T'. This
property is crucial to prove that the equilibrium @ = 0 is stable for (4) if and only if the
fixed point 8y = wy = 0 is stable for the mapping M = P. The mapping P is usually
called the Poincaré map associated to the equation (4) and it has an important property: it
preserves area and orientation. For smooth equations this is equivalent to the identity

det P’(e(),wo) =1

and it is a consequence of Liouville’s theorem in Hamiltonian mechanics. The general case
can be treated with the techniques in [31], Chapter IX.

To finish this section we notice that the notion of stability is invariant under changes of
variables. For example, if ¢ is a local homeomorphism fixing the origin, the change

§=¢(n)
transforms
Env1 = M(&)
into
M1 = M*(n,)
with

M*=¢" oMoy,
and the stability of £ = 0 and = 0 are equivalent.

3. The linear equation and the symplectic group

The linear equation .
0+ a(t)6 =0, ©)
where a(t) is continuous and T-periodic, is called Hill’s equation and there are many
studies about it. The book by Magnus and Winkler [20] is a classical reference. After
passing to a first order system

. 0 0
E=awe  e=|"), 4= 1,
w —-a(t) 0
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we find the matrix solution X (t) satisfying
X0)=1I

(1 is the 2 x 2 identity matrix). The Poincaré map associated to (6) is linear, namely

8 8
Pl )=("]), L=xm.
Wo Wo

We present two examples. For the harmonic oscillator (o = 1) and a fixed period T, L is
the rotation R[T"] defined in the previous section. For the repulsive case (a = —1), L is the
matrix H [T.

Liouville’s theorem implies that the matrix solution X (¢) always satisfies
det X (¢) = 1.

This property motivates our interest in the symplectic group. The group of 2 x 2 matrices
with nonzero determinant will be denoted by GI(R?). The subgroup of GI(R?) composed

by the matrices satisfying
det L =1

is the symplectic group, denoted by Sp(R?). Given a matrix L in Sp(R?), the eigenvalues

M1, H2 satisfy
pape =1

and one can distinguish three cases:
o elliptic: py =z, || =1, m #+1
® hyperbolic: p1, 2 € R, 0 < |p1]| < 1 < |uq]
e parabolic: iy = ps = %1

The conjugacy classes in the group Sp(R?) can be described according to this classifica-
tion. For an elliptic matrix L there exists @ € Sp(R?) such that Q—1LQ is a rotation

Q'LQ =R[O], © € (0,7)U (r,2r).

A hyperbolic matrix is conjugate to a matrix in one of the two families

Ha[6)] +cosh©® sinh © 0 € (0,00)
+ = ’ ,00).
sinh © +cosh®

Finally, a parabolic matrix will be conjugate to one of the six matrices

1 +1
I,-I,P,,P_,—P,,—P_ where Py = ( )
0 1

All these facts can be proven from the theory of Jordan canonical forms. In fact that theory
can be seen as the classification of the conjugacy classes in GI(R?). There is a more subtle
point which does not follow from Jordan canonical form. From the point of view of the
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group GI(R?), the rotations R[O] and R[27 — ©] are conjugate. This is not true in the
symplectic group, for if @ € GI(R?) satisfies
Q'R[O]Q = R[2m — 6]
then
det @ < 0.

In view of this property we can say that the angle © is a symplectic invariant. Similar
situations appear in the parabolic case for the matrices P, and P_ (or —P4 and —P_).
More details and geometric insights about this group can be found in the paper by Broer
and Levi [5]. The reader can deduce from the previous discussions that the origin 8=0is
stable for (6) if and only if the monodromy matrix X (T') is elliptic or parabolic with

X(T) = 1.

Hill’s equation is invariant under translation and rescaling of time. This means that the
change
t=As+71), z=2(s),
with A > 0 and 7 € R, transforms the Hill’s equation in another equation of the same type,
namely

20,
a? +a (8)0 =0 @)
with
a*(s) = Xa(A(s + 7).
The new period is T
T = —.
A

We have made reference to this class of changes because they have a remarkable property,
they are sufficient to arrive at the canonical form of monodromy matrices. More precisely,

Proposition 1. Given a(t), continuous and T-periodic, there exists T € R and X > 0 such
that the monodromy matrix associated to (7) is one of the matrices:

e R[O)], © € (0,7) U (m,2n) (elliptic case)
e H.[O], © # 0 (hyperbolic case)
e I,—I,P,,P_,—P.,—P_ (parabolic case).

The proof of this result can be seen in [25], Proposition 8, for the elliptic case and in
[23], Lemma 2.1, for the parabolic case. Recently Yan and Zhang have found in [33] new
applications of this result in the elliptic case. For the reader interested in details a proof in
the hyperbolic case is presented.

Proof. Assume that the eigenvalues are p; and pp. We find Floquet solutions associated
to these eigenvalues. These are non-trivial solutions satisfying

o(t+T) = me(t), YE+T) =P



The stability of the equilibrium: a search for the right approximation 223

The product
I = gy
is T-periodic and so there exists 7 € R with
I(r) = 0.
The linear independence of ¢ and 4 implies that () and () do not vanish. We select
p(r) =9(r) =1

and define . 4

u=glp+¥), v=5(-9).
Then

u(r)=1, wv(r)=0, 4(r)=0, and o(r)#0.
Here one uses the definition of 7. From now on we shall assume
o(7) > 0.
If this derivative is negative we exchange the roles of ¢ and 1. The function
u? -2 =11

is T-periodic and so
uw(r+T)Y? —v(r+T)2=1.

From .
II(r+T) =0,

we find that
W+ T)u(r+T) — (1 + T)v(r + T) = 0.

The Wronskian formula implies that
(7 +Tu(r + T) — a(r + T)v(r + T) = o(7).
From these equations one obtains
Wr+T)=o(r)o(r+T), o(r+T)=do(r)u(r+T).

After the change
s=t+r,

the monodromy matrix takes the form Q1M Q with

s wr+T) o(r+T) . = o(r)/? 0 '
o(7+T) u(r+T) 0 o(r)~/?
We notice that M is of the type H[O] with

u(T +T) = +cosh©, v(7 +T) =sinh ©.

The matrix @ is eliminated with a change of scale. O



224 R. Ortega

4. Degree theory and index of zeros

Let us fix 2, bounded and open subset of R?, d > 1. The degree is defined for continuous
mappings from {2 into R? which do not vanish on the boundary. More precisely, given

FeC(@,R%), F(&+#0 VEeon, (8)

we can assign to it an integer which will be denoted by deg(F, ). Among many other
properties of degree we mention:

o Existence. If deg(F, Q) # 0 then F'(£) = 0 has at least one solution in Q.
e Invariance by homotopy. If
F:Qx[0,1]2 R, F=F(EN),
is continuous and F (-, \) satisfies (8) for each A € [0, 1], then
deg(F(-,A), Q) is independentof .
e Excision. If K is a compact subset of (2 and F(¢) # 0 for £ € K, then
deg(F, Q) = deg(F,Q\ K).
In the properties of existence and excision it was assumed that F' satisfied (8). There are
many books about degree theory and we refer to [18] or [30] for more details.

Given an open set 4 C R? and F' € C(U, R?), let us assume that &, € U is an isolated
root of F'(¢) = 0. This means that

F(E*) =0
and, for some § > 0,
F(E)#0 if0< |6 - & <.

We define the index of F' at &, by
ind[Fa f*] = deg(F, Bs (MR

where Bs(&,) is the ball of radius & centered at &,. The property of excision shows that this
ball could be replaced by any small neighborhood of &,.

In dimension one (d = 1), the index can only take the values +1 and 0. Namely,

ind[F,&] =1 if F(¢& —6) <0< F(& +96),

ind[F,&] = —1 if F(& —68) > 0> F(& +4)

and
ind[F,&] =0 otherwise.

In dimension two (d = 2) the index can take any integer value. The prototypes are (in
complex notation) z + 2™ for positive index n and z — Z" for index —n. The simplest
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procedure to compute the index is by linearization. Given F € C1(l, R4) and ¢, € U with
F(&) = 0, if the Jacobian matrix F’(¢,) is non-singular then

ind[F, &] = sign{det F' (&)}

The linearization technique is also useful for degenerate zeros (det F’ (&) = 0) as long as
the Jacobian matrix is not identically zero. In such a case the computation of the index is
not direct, but at least one can reduce the dimension. This idea can be found in the book
[11]. Next we describe the simplest situation.

Assume thatd = 2 and F' = (F1, F3) is a C* mapping with

5B (0,0) 0.

Fl(0,0) = F2(0,0) =0 and 8&2

We can apply the Implicit Function Theorem to
Fi(6,6)=0
and solve in &;, say
& = p(&).
Define the function
®(&1) = Fa(61,0(&1))
and assume that & = 0 is an isolated zero of this function. Then
SL=6=0
is an isolated zero of F and
indg2[F,0] = —¢ indg[®, 0]
where oF
% 1
o = sign{ —(0,0)}.
gn{e (0,0))
To exercise with the properties of degree we sketch a proof. Assume that we are in the case
oF;
0&,
and, for A € [0, 1], consider the system of equations

AFi(&1,&) + (1= ) (& — (&) =0,
AR (6,6) + (1= X)®(&) =0.

This is well defined in a neighborhood of the origin and the only solutions of the first
equation are {& = ¢(&1). This is a consequence of the uniqueness of the implicit function
since

(0,0) >0

8F1(0,0,)) . OF
0% AZ2(0,0) + (1-A) > 0.
%, 6)52( )+ (1=X)

Once the first equation is solved, we substitute into the second and deduce that this last

equation becomes equivalent to
: ®(&) =0.
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In consequence the only solution of the system is & = & = 0 because £ = 0 was isolated
for & = 0. The invariance by homotopies leads us to the computation of the index for

(&1,8) = (&2 — 9(&), ®(&1)).

When &'(0) # 0 the computation of this index can be done by linearization. In the case
®'(0) = 0 the reader could try a proof or read more about the computation of indexes in
[12].

We finish this section with an example on how to compute the index using the third
approximation. Consider a planar and smooth mapping F' with Taylor expansion

(1,&2) > (kéx + aff + BETE2 +761E5 + 86 + -+, ab] + bE16s + ct163 +dE5 +- ).

Then, if £k # 0 and a # 0,
ind[F, (0,0)] = —sign(ka).

To prove this we first solve F7 = 0 and find
& =p(&1) = 0(&).

Thus,
8(&1) = €} +0(&}).

5. The index of an equilibrium

Again we consider the differential equation
6= 1(t9), ©
in the same conditions as in Section 2. The equilibrium 6 = 0 is isolated (period T') if there
exists & > 0 such that the equation (9) has no T-periodic solutions satisfying
0<[6()|+16(8)| <6, ViteR
As an example consider the equation
6+6=0,

then 6 = 0 is isolated (period T') if T' is not a multiple of 2. In general, if § = 0 is isolated
(period T'), the origin of R? is an isolated root of the equation

where I is the identity and P is the Poincaré map. We define the index of = 0 as
y7r(0) =ind[ — P,0].

The differential equation is periodic in time and we have fixed the period as T'. The mul-
tiples nT', n > 2, are also admissible as periods of (9) and so one can consider iterated
indexes

Yn7(0) = ind[I — P",0]

when 6 = 0 is isolated (period nT').
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To understand this definition one must recall that the Poincaré map for period nT is just
the iteration
Pr=Po(m...o P

Also, we notice that if y,7(0) is well defined then the same happens for vz (0) if & is
a divisor of n. In this section we shall concentrate on the first index yr(0) and describe
some methods to compute it. To this end we shall assume that the force f(t, ) is smooth
in . This will be understood in the following sense: the partial derivatives g—e,’;(t, ) exist
everywhere in R X (—¢, €) and the functions
of
(t’ 0) = W(t, 0)
are continuous for each n > 1. The first approximation to (9) is

f+a(t)d=0, at)= %(t, 0). (10)

The general theory of differential equations says that P is smooth and the matrix P’(0) is
precisely the monodromy matrix X (7°) which was defined in Section 3. If X (T') is elliptic,
hyperbolic or parabolic with

P = po = -1,
the index can be computed by linearization. Namely,

7r(0) = sign{det (I — X(T))} = sign{(1 - p1)(1 — p2)},
where 1, p2 are the eigenvalues of X (T°), often called the Floquet multipliers. The com-
putation of the index in the degenerate case
= pe =1

is more delicate and requires information on nonlinear approximations. Assume now that

(9) can be expanded as .
0+ a(t)d + c(t)f? +--- =0,

where c(t) is notidentically zero. From now on, the dots in an expansion will refer to terms
with an order higher than the order of those explicitly mentioned. The nonlinear expansion
of P up to the order p is

6o s X(T) 6o + o H (80, wo) + - -
wo Wy — BOOH(G(),OJO) +---
T
p71 ), CO@1(B)60+da(Bwo)” " di
and ¢ (t), $2(t) are the solutions of the linear equation (10) satisfying
6100 =d2(0) =1,  $1(0) = $2(0) = 0.

The way to obtain this formula is rather standard but we outline a proof. First we observe
that the solution of

where
H (90, wo) =

S§+a(t)d=b@), 8(0)=45(0)=0,
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is ;
50 = [ 16:@)6a(6) = 62 (b(e)da
Since the solution of (9) satisfies
0(t; 60,wo) = ¢1(t)00 + B2 (t)wo + - -+
we can apply the previous formula with
6(t) = 6(¢; 60, wo) — #1(£)60 — P2 (t)wo

and
b(t) = —c(t)8(t; 6o, wo)? + - -

to obtain
6(t; 60, wo) = ¢1(t)6o + d2(t)wo
¢
= /0 [P1(8)P2(2) — dr(t)P2(8)]c(8)(41(8)00 + P2 (8)wo)Pds + - -

A similar formula is valid for the derivative and the conclusion follows for ¢t = T'.

Once we have a nonlinear expansion of P, we can employ the methods of the previous
section to compute the index. Let us assume first that X (T°) is one of the matrices Py, P_.

The function
F=I—P, F=F(00,U)0),

satisfies F
1 —
B0 (0,0) = F1.

By solving F; = 0 one obtains
wo = p(60) = O(6F)-
Hence,
®(60) = F2(6o, ¢ (60)) = Be, H (60, (60)) + - -

T
=( /0 c(t)br ()7L dE)6E + -

Assume now that the integral appearing in the previous formula is not zero, then g = 0 is
isolated for @ and so @ = 0 is isolated (period T"). Moreover,

0 if p is even
vr(0) = T i .
vsign{ / c(t)gr (t)PH1dt} if pis odd.
0
Here

V=

1 ifX(T)=P;,
-1 ifX(T)=P_.
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The computation of the index when
X(T)=1I

is based on different ideas. Assume that the origin is the only critical point of H, we shall
prove that @ = 0 is isolated (period T") and

7r(0) = ind[V H, 0].
To prove this statement we notice that, since X (T') is the identity, the map
F=I-P

has the form
F=JVH +R,

0 -1
J =
1 0
and B = R(fo, wo) is a remainder of order higher than p. Consider the system of equations

JVH(G(),&)O) + )\R(GQ,W()) =0, AE [0, 1].

We are going to prove that, in a small neighborhood of the origin, there are no solutions
different from

where

00 =Wy = 0.
This is done by a contradiction argument. Assume that there is a sequence of solutions
§n = (0071) wOn), )\n € [01 1],

with
& #0 and |&,| — 0.
Define ¢
n
=7
" el
and extract a convergent subsequence, say
nn — Tl*, )\n — A*.

Dividing the equations by |&,[? and passing to the limit we conclude that 7]« 1s a critical
point of H. This is impossible because |7.] = 1 and 0 was the only critical point. The
invariance by homotopies implies that
vr(0) = ind[JVH,0].
It remains to prove that
ind[JVH, 0] = ind[VH, 0].
To do this we notice that J has positive determinant and so J and I are in the same com-
ponent of GI(R?). Let Jx be a continuous arc in GI(R?) joining I and J. The equation
JIAVH =0
is equivalent to VH = 0 and this homotopy proves the identity between the two indexes.
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We sum up the discussions of this section. If the Floquet multipliers are different from
1, the index yr(0) can be computed from the variational equation (10). In the critical case
M1 = po = 1 one can use the first nonlinear approximation to compute the index in many
cases.

6. Stability and index

The connections between stability and index are delicate and some interesting questions
remain unanswered. For an autonomous system

& = X(z), zeR?

having 2 = 0 as an isolated and stable equilibrium, we would like to know the index of the
vector field X . For dimension d = 2 it is known that

ind[X, 0] = 1.

For dimension d > 3 the index can be any integer (at least for C* vector fields). We refer
to the interesting book by Krasnosel’skii and Zabreiko [12] for more information. See also
the papers by Erle [9] and Bonati and Villadelprat [4]. In the recent paper [4] there is a
construction which contradicts some of the assertions in [12].

Given a T'-periodic equation
z=X(tx), z € R?

having z = 0 as an isolated (period 7") and stable equilibrium, the interest is in the index
7 (0). For dimensions d > 3, the construction for the autonomous case can be adapted and
so the index can take any value (see [27] for more details). In [10] Krasnosel’skii stated
that the index is always 1 in dimension d = 2. He also said that this fact could be proved
easily, but he did not present the proof. Dancer and I found a proof which probably cannot
be called elementary. It is based on the arc translation lemma due to Brouwer. In particular
we adapted the proof of this lemma given by M. Brown in [7]. Our equation (9) can be
transformed, in the usual way, into a periodic system in R?, Hence, as a consequence of
the results in [8] we have,

Theorem 2. Assume that 6 = 0 is an equilibrium of (9) which is isolated (period T') and
stable. Then yr(0) = 1.

Equations of period T' are also of period nT, n > 2. We are lead to the following
consequence,

Corollary 3. Assume that 6 = 0 is an equilibrium of (9) which is isolated (period nT,
n > 2) and stable. Then ~v,7(0) = 1.
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This result is of practical value. It allows to obtain instability criteria via degree theory.
In fact, if one of the indexes is different from 1, we can say that @ = 0 is unstable. As an
example consider the equation

§+0+c(t)6=0 (11)
and assume that ¢(t) has period
L
=5
The linearization (6 + 6 = 0) has monodromy matrices (for periods T*, 27" and 37),

X(T) = R[%”], X(2T) = R[%I], X(3T) = Rj2n] = I.

This implies that, for periods T" and 27, it is possible to compute the index by linearization.
Namely, § = 0 is isolated (period 27") and

r(0) = sign{det (I — X(T))} = 1,
Yer(0) = sign{det (I — X(27))} = 1.

To compute the third index we must employ the discussions about the degenerate case in

Section 5. Since
X3 =1I

and
$1(t) = cost, #2(t) =sint,
for period 3T the function H becomes
27
H(6,wp) = % / c(t) (8o cost + wp sin t)3dt.
0

In complex notation, _
€ = 6o + iwy, & = 6o — iwo,

equals
- 1 /% L
HED =5 [ cloee™ + Eeyrae

24 J,

The function c(t) has period 2% and this implies that
27 .
/ c(t)e™dt = 0.
0

Some computations lead to

(733 + 7&3)

| =

H(§) =

where

27
Y= / " e(t)esitat. (12)
0

The derivative

1 .
HE: '2-(Hgo +2Hw0)
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is g'yfz and so, if y # 0, the only critical point of H is the origin. It follows that § = 0 is
isolated (period 3T") and

y37(0) = ind[VH, 0] = —2.
The conclusion is that & = 0 is unstable as soon as the quantity defined by (12) does not
vanish.

This example shows that the linearization procedure is not valid for a general equation
of the type (9). In this example # = 0 was stable for the linearization and unstable for
the original equation. The reader who is familiar with hamiltonian dynamics will have
recognized the phenomenon of resonance at the roots of the unity. In this case it was the
third root

2ni
w=e¢e 3
and we refer to [32,19] for more details.
7. The pendulum of variable length
Consider again the equation .
0 +a(t)sind =0 (13)

where a(t) is continuous, T-periodic and positive. We shall compute the second index
727(0). Let us start with the linearization principle. If ; and p2 are the Floquet multipliers
of the linearized equation (period T'), the eigenvalues of

X(2T) = X(T)?
are u? and p2. In the elliptic case,
P = [z, 1 # £1,
and
7127(0) = sign{(1 — ) (1 - p3)} = sign|1 — | = 1.

In the hyperbolic case,

1] <1< |pel
and

127 (0) = sign{(1 — p3)(1 - p3)} = -1.

In the parabolic case

M = po = =1,
we notice that X (27") must be conjugate in Sp(R?) to one of the matrices I, P, P_.
Going back to the methods of computation in the degenerate case and considering the third
order approximation

0+ a(t)d — %a(t)03 =0 (14)

we obtain an expansion of the Poincaré map like in Section 5, with

1 2T
H(B0,0) = ~ o /0 a(t) (1 (£)00 + o (o) dt.
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Since H has a strict maximum at the origin & = 0, we can use Euler’s theorem for homo-
geneous functions to deduce that

§-VH() =4H(§) <0  VE#0.

This inequality implies that £ = 0 is the only critical point of H and so we can discuss the

case
X(2T) =1.

More precisely, 8 = 0 is isolated (period 27") with
Y2r(0) =ind[VH,0] = 1.
Here we have used a typical property of the index for gradient operators (see [12] or [1]).

Let us now assume that X (27") is conjugate to P or P_. We apply the proposition in
Section 3 and find a change of independent variable

t=As+7)

such that the equation (13) becomes
a9 * a*(s) 3 _ (o) 12
E+a(s)0—70 +---=0, a*(s) = Ma(A\(s + 1))

and the monodromy matrix X*(27T*) of the linearization is precisely Py or P_. This
transformation in time does not alter the index of 8 = 0. For if P* is the Poincaré map of
the new equation, then
L7'P*L=P

with

L(6,wo) = (6o, Awp).
The commutativity theorem for degree shows that the indexes of I — P and I — P* coincide.
Incidentally we notice that the stability of # = 0 is also preserved. We apply once again
the discussions of Section 5 and conclude that

-
7r(0) = vsign{-g; [ a*(s)61(s)"do} = v

with v = 1if X (2T) ~ P, and v = —1 if X (2T") ~ P_.

At this point the reader may think that the computation of other indexes Y& (0) could
lead to more instability criteria. However this is not the case, as can be seen after computing
all indexes. The next step is to discuss the stability of § = 0. This can be done but the
techniques which are required go beyond the scope of these notes. The details can be
seen in [26,23], the second paper in collaboration with Niiiez. Summing up the previous
discussions and the results in these papers one obtains

Theorem 4. The following statements are equivalent:
(i) 6 =0 is stable for (13)
(ii) 8 = 0 is isolated (period 2T') and Y2r(0) =1



234 R. Ortega

(iii) 6 = 0 is stable for the Duffing equation (14)
(iv) the monodromy matrix X (2T') is conjugate in Sp(R?) to R[@)], for some © € R, or
to P_.

We notice that the assertion (iv) is the answer to the question posed in the introduction
of these notes. The linearization procedure is valid for the pendulum of variable length

excepting when
X(@2T)~ P_.

In this situation @ = 0 is stable for the original equation (13) but unstable for the lin-
earization. The analysis leading to Theorem 4 is not exclusive of the pendulum and can
be applied to other equations. The crucial property is that the coefficient of the cubic term
has a sign. Other results about stability using the third approximation can be found in
[28,16,17,22,24,29,34,13,14].

A natural question about Theorem 4 is its possible extension to more degrees of freedom.
To fix the ideas consider the system

61
0+ A0+a(t)SO6)=0, 6=
On
where A is the N x N tridiagonal matrix, coming from the discretization of the Laplacian,
(21 0...0 0)

1 -21...00
01 -2...00

00 0..-21
\ 0 0 0...1—2)

and
sin 01

5(6) =
sinf

Itis not clear if the approach in these notes can be extended. In principle one cannot expect
a result like Theorem 2 because we are in more dimensions and the index of a stable
equilibrium can be any number. However, our system is analytic and Hamiltonian and we
are in a rather special situation. Is there a version of Theorem 2 applicable to this example?
In any case it is probable that one can obtain instability criteria for the third approximation
using Lyapunov functions. The stability is more delicate. Probably the notion of perpetual
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stability is too demanding as to obtain reasonable results. There is the notion of formal
stability, associated to the Birkhoff normal form [3], which seems easier to study. This
formal stability implies (via KAM theory) the notion of stability introduced by Moser in
his conference in ICM Berlin 99 [21]. We finish these notes by recalling Moser’s definition
of stability in measure: instead of requiring that all orbits of a certain neighborhood are
bounded for all times, one asks that most orbits (in the sense of measure) are bounded.
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