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Abstract In a central force system the angle between two successive passages of
a body through pericenters is called the apsidal angle. In this paper we prove that
for central forces of the form f (r) ∼ λr− (α+1) with α < 2 the apsidal angle is a
monotonous function of the energy, or equivalently of the orbital eccentricity.
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1 Introduction

The angle between two successive passages of a body in a central force system through
pericenters is called the apsidal angle�. Its behaviour has attracted both physicists and
mathematicians attention since 1687whenNewton stated its precession theorem (Book
I, Philosophiæ Naturalis Principia Mathematica): for orbits close to the circular ones,
a force proportional to 1/rα+1 leads to � = π/

√
2 − α. An important and immediate

consequence of this result is that experimental measurements of the apsidal angle
close to central orbits may give the exponent of the force law. In 1873 Bertrand [1]
published a note in Comptes Rendus to prove that among all central field of forces
in the Euclidean space there are only two exceptional cases (the harmonic oscillator
and the Newtionian potential) in which all solutions close to the circular motions are
also periodic. The equivalence of Bertrand’s theorem in terms of the apsidal angle is
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that � remains constant and commensurable with 2π . Indeed this only happens when
α = 1 (the inverse-square Newton’s law) and when α = − 2 (the linear oscillator). In
force laws with exponent α � 2 bounded orbits no longer exist (see [3]) so the study
of the apsidal angle can be restricted to α < 2.

Let us consider a central field of forces in the plane

ẍ + V ′(‖x‖) = 0, x ∈ R
2

where V : (0,+∞) → R is a smooth function. It is well-known that the previous
system is integrable in the Liouville sense with two first integrals in involution: the
energy of the system h = 1

2‖ẋ‖2 + V (‖x‖) + �2

2‖x‖2 and the angular momentum
� = ‖x ∧ ẋ‖. The apsidal angle of an unbounded orbit with energy h and angular
momentum � can be written as

� =
∫ r+

r−

�dr

r2
√
2(h − V (r)) − �2

r2

,

where r = ‖x‖ and r± are the distances of the apsis from the center of force and
correspond to the solutions of h−V (r)− �2

2r2
= 0. We point out that circular motions

correspond to local minima of V (r)+ �2

2r2
. In the specific case of a power-law potential

of the form V (r) = − 1
α
r−α the previous equality yield to the function

�α(h, �) =
∫ r+

r−

�dr

r2
√
2

(
h + 1

α
r−α

) − �2

r2

. (1)

Here there is only one radius that yields to circular motion, r∗ = �
2

2−α . The previous
expression is only valid when the energy h and the angular momentum � produce
bounded orbits on the system r̈ + r−α−1 − �2r−3 = 0.

At this point it is common to introduce the orbital eccentricity e = (r+ −r−)/(r+ +
r−) in order to study the behaviour of�α(h, �) in terms of e. Indeed both energy h and
angularmomentum � can be expressed as functions of r±. This allows the apsidal angle
to depend only on e. It should be mentioned that the integral in (1) cannot be solved
in closed form (except for the cases α = 1 and α = − 2, for which remains constant).
Expressions in terms of elliptic functions are also given when α = − 1,− 2

3 ,
1
2 ,

2
3

(see [8]). Recently, an analytic proof of the monotonicity of the apsidal angle as
a function of the orbital eccentricity has been given by Castelli [2], showing that
it decreases for any α ∈ (− 2, 1). In this work we propose a shorter proof of this
monotonicity for the values α ∈ ( 12 , 1) and we also proof that the apsidal angle is
monotonous increasing for any α ∈ (1, 2). On account of the duality given by the
relation

�α̂ = 2 − α

α
�α (2)

with (2 − α)(2 − α̂) = 4 (see [4]), we additionally obtain the monotonicity of the
apsidal angle for any α ∈ (−∞,− 2

3 ). Consequently, on account of the result in [2],
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the monotonicity of �α for any α < 2 is proven. The key point on the proof is
the interpretation of the apsidal angle as the period of an abstract oscillator. Such
interpretationwas also fruitful in [6]whengiving a shorter proof ofBertrand’s theorem.
In this occasion we shall use the Schaaf’s monotonicity criterion for the time function
of potential systems (see Theorem 2.1). We prove the following.

Theorem 1.1 For any � �= 0 and any α ∈ (−∞,− 2
3 ) ∪ (1/2, 2) the apsidal angle

�α(h) is a monotonic function of the energy with �′
α(h) < 0 if α ∈ (− 2,− 2

3 ) ∪
(1/2, 1) and �′

α(h) > 0 if α ∈ (−∞,− 2) ∪ (1, 2).

We point out that for any fixed angular momentum � �= 0, the angular eccentricity
e is an increasing function of the energy. Indeed using the implicit function theorem
with the equality h + 1

α
r−α± − �2

2r2±
= 0 one have that

r ′±(h) = r±(h)α+3

r2± − �2r±(h)α
,

which implies r ′−(h) < 0 and r ′+(h) > 0 due to r−(h) <
(

1
�2

) 1
α−2

< r+(h). Thus

e′(h) = 2
(
r−(h)r ′+(h) − r ′−(h)r+(h)

)
(
r+(h) + r−(h)

)2 > 0.

Consequently the result in Theorem 1.1 can be also stated with the apsidal angle �α

depending on the orbital eccentricity, as the author in [2] does.

2 Proof of Theorem 1.1

Wewill proof Theorem 1.1 by using the theory of planar potential oscillators. Consider
a potential differential system ẍ +V ′(x) = 0 where V is an analytic function on some
interval I that contains x = 0. We suppose V ′(0) = 0 and V ′′(0) > 0, so the
origin is a non-degenerated center. This means that in the phase space (x, ẋ) there is
a neighbourhood of the origin such that all orbits passing through this neighbourhood
are closed. The largest neighbourhood with this property is called period annulus and
its projection on the x-axis will be denoted by J . The main tool we shall use in order
to prove Theorem 1.1 is the following Schaaf’s monotonicity criterion for potential
centers (see [7]).

Theorem 2.1 (Schaaf’s criterion) Let ẍ + V ′(x) = 0 be an analytic potential dif-
ferential system with a non-degenerated center at the origin and consider its period
function T (h) parametrized by the energy. Then T ′(h) > 0 for all h ∈ (0, h0) in case
that

(I1) 5V (3)(x)2 − 3V ′′(x)V (4)(x) > 0 for all x ∈ J with V ′′(x) > 0, and
(I2) V ′(x)V (3)(x) < 0 for all x ∈ J with V ′′(x) = 0.
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On the other hand, T ′(h) < 0 for all h ∈ (0, h0) in case that

(D) 5V (3)(x)2 − 3V ′′(x)V (4)(x) < 0 for all x ∈ J with V ′′(x) � 0.

The crucial idea is that the apsidal angle can be interpreted as two-dimensional
oscillator and so Theorem 1.1 follows as a corollary of the previous result. For any
� �= 0, the differential equation r̈ + r−α−1 − �2r−3 = 0 produce bounded orbits for

α > 0 when h ∈ (
α−2
2α �

2α
α−2 , 0

)
. Moreover, on account of the symmetry with respect to

� = 0 one can restrict to � > 0. We consider the Clairaut’s change of variable ρ = �
r

on the expression (1). Then the apsidal angle for � > 0 rewrites

�α(h) =
∫ ρ+

ρ−

dρ√
2(h − W�,α(ρ))

(3)

where W�,α(ρ) := 1
2ρ

2 − �−α

α
ρα and ρ± = �/r∓. We point out that expression in (3)

coincides with the value of the period of the solution of the oscillator ρ̈+W ′
�,α(ρ) = 0

at the energy level ρ̇2

2 +W�,α(ρ) = h. The key point to apply Schaaf’s criterion to the
potential differential system ρ̈ +W ′

�,α(ρ) = 0 is that, as one can easily verify, we can
write the “test functions” as

5W (3)
�,α(ρ)2 − 3W ′′

�,α(ρ)W (4)
�,α(ρ) = �− 2αρ2α−6Pα(�αρ2−α),

W ′
�,α(ρ)W (3)

�,α(ρ) = �− 2αρ2α−4Qα(�αρ2−α),

W ′′
�,α(ρ) = �−αρα−2Rα(�αρ2−α),

with

Pα(z) = (α − 2)(α − 1)2(2α − 1) + 3(α − 3)(α − 2)(α − 1)z,

Qα(z) = (α − 2)(α − 1) − (α − 2)(α − 1)z,

Rα(z) = − (α − 1) + z.

Accordingly we have the following result.

Lemma 2.2 The conditions (I1), (I2) and (D) of Schaaf’s monotonicity criterion
applied to the potential system ρ̈ + W ′

�,α(ρ) = 0 are equivalent to

(I′1) Pα(z) > 0 for any z ∈ ϕ(J ) with Rα(z) > 0,
(I′2) Qα(z) < 0 for any z ∈ ϕ(J ) with Rα(z) = 0,
(D′) Pα(z) < 0 for any z ∈ ϕ(J ) with Rα(z) � 0,

respectively, where ϕ(ρ) := �αρ2−α .

At this point we recall that on account of the identity (2), it is enough to proof
Theorem1.1 for anyα ∈ (1/2, 2). The projection on the x-axis of the period annulus of
the center of system ρ̈ +W ′

�,α(ρ) = 0 is the intervalJ = (0, f (�, α))with f (�, α) =
(2�−α/α)

1
2−α . Hence ϕ(J ) = (

0, 2
α

)
. Let us define Lα := {z ∈ ϕ(J ) : Rα(z) > 0}. If
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α ∈ (1/2, 1) then Lα = ϕ(J ). By Lemma 2.2 and the previous discussion, condition
(D) in Theorem 2.1 is equivalent to requiring that the linear polynomial Pα is negative
on the interval Lα = (

0, 2
α

)
. We point out that Pα(0) = (α − 2)(α − 1)2(2α − 1) < 0

and Pα(2/α) = α−1(α − 2)2(α − 1)(9 + α + 2α2) < 0 for all α ∈ (1/2, 1). Thus
the requirement (D) holds if α ∈ (1/2, 1) and so by Theorem 2.1 the first assertion
in Theorem 1.1 is proved. On the other hand, if α ∈ (1, 2) then Lα = (

α − 1, 2
α

)
. In

this case the linear polynomial Pα satisfies Pα(α − 1) = 5(α − 2)2(α − 1)2 > 0 and
Pα(2/α) > 0 for all α ∈ (1, 2). Thus by Lemma 2.2 (I1) is satisfied if α ∈ (1, 2).
Finally, since Rα(z) = 0 if and only if z = α−1 and Qα(α−1) = (1−α)(α−2)2 < 0
for all α ∈ (1, 2) then (I2) is satisfied in this case. Consequently, by Theorem 2.1 the
second assertion in Theorem 1.1 holds and the result is proved.

Remark 2.3 The period function of a slightly different potential of the form V ′
p,q(x) =

x p − xq , p, q ∈ R with p > q was studied in [5]. We want to emphasize that the
similarity ofW ′

�,α(ρ) = ρ − �αρα−1 with V ′
1,α−1(x) suggest that Theorem 1.1 can be

interpreted as a corollary of [5, Theorem A]. ��
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