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Abstract

We consider the family of dehomogenized Loud’s centers Xμ = y(x − 1)∂x + (x + Dx2 + Fy2)∂y , 
where μ = (D, F) ∈R

2, and we study the number of critical periodic orbits that emerge or disappear from 
the polycycle at the boundary of the period annulus. This number is defined exactly the same way as the 
well-known notion of cyclicity of a limit periodic set and we call it criticality. The previous results on the 
issue for the family {Xμ, μ ∈ R

2} distinguish between parameters with criticality equal to zero (regular 
parameters) and those with criticality greater than zero (bifurcation parameters). A challenging problem not 
tackled so far is the computation of the criticality of the bifurcation parameters, which form a set �B of 
codimension 1 in R2. In the present paper we succeed in proving that a subset of �B has criticality equal to 
one.
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1. Introduction and statement of the result

In the present paper we study the local bifurcation diagram of the period function associ-
ated to a family of quadratic centers. By local we mean near the polycycle at the boundary of 
the period annulus of the center. In the literature one can find different terminology to clas-
sify the quadratic centers but essentially there are four families: Hamiltonian, reversible QR

3 , 
codimension four Q4 and generalized Lotka–Volterra systems QLV

3 . According to Chicone’s 
conjecture [2], the reversible centers have at most two critical periodic orbits, whereas the cen-
ters of the other three families have monotonic period function. In this context critical periodic 
orbits play exactly the same role as limit cycles in the celebrated Hilbert’s 16th problem (see 
for instance [6] and references therein). What is more, from the point of view of the techniques, 
results and notions involved, Chicone’s conjecture is the counterpart for the period function to 
the question of whether quadratic polynomial differential systems have at most four limit cycles, 
i.e., H(2) = 4. Both problems are far from being solved and pose challenging difficulties. There 
are many papers proving partial results related to Chicone’s conjecture and there is much ana-
lytic evidence that it is true. In this direction, and without being exhaustive, let us quote Coppel 
and Gavrilov [4], who showed that the period function of any Hamiltonian quadratic center is 
monotonic, and Zhao [18], who proved the same property for the Q4 centers. There are very few 
results concerning the QLV

3 centers. In the middle 80s several authors [7,14,17] showed indepen-
dently the monotonicity of the classical Lotka–Volterra centers, which constitute a hypersurface 
inside the QLV

3 family, and more recently the same property has been proved in [16] for two 
other hypersurfaces. With regard to reversible quadratic centers, it is well known that they can be 
brought by an affine transformation and a constant rescaling of time to the Loud normal form

{
ẋ = −y + Bxy,

ẏ = x + Dx2 + Fy2.

It is proved in [5] that if B = 0 then the period function of the center at the origin is globally 
monotone. So, from the point of view of the study of the period function, the most interesting 
stratum of quadratic centers is B �= 0, which can be brought by means of a rescaling to B = 1, 
i.e.,

Xμ

{
ẋ = −y + xy,

ẏ = x + Dx2 + Fy2,
(1)

where μ := (D, F) ∈ R
2. This paper is addressed to study the period function of the center at 

the origin in this two-parametric family. More precisely, for a given μ̂ ∈ R
2, we are concerned 

with the number of critical periodic orbits of Xμ with μ ≈ μ̂ that emerge or disappear from the 
polycycle �μ̂ of Xμ̂ at the boundary of its period annulus as we move slightly the parameter. We 
refer to this number as the criticality of the polycycle, Crit

(
(�μ̂,Xμ̂),Xμ

)
, see Definition 2.1. 

(Again this is the counterpart to the notion of cyclicity of a limit periodic set, see for instance 
[15].) Then we say that μ̂ ∈ R

2 is a local regular parameter if Crit
(
(�μ̂,Xμ̂),Xμ

) = 0 and that 
it is a local bifurcation parameter if Crit

(
(�μ̂,Xμ̂),Xμ

)
� 1. The initial work on this issue is 

[11] and, since our result is closely related to the ones obtained there, next we explain them 
succinctly. With this aim, let �U be the union of dotted straight lines in Fig. 1, whatever its color
is. Consider also the bold curve �B . (Here the subscripts B and U stand for bifurcation and 
unspecified respectively.) Then, following this notation, [11, Theorem A] shows that the open 
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Fig. 1. Bifurcation diagram of the period function at the polycycle according to [11] and, in color, the subsequent im-

provements due to [10,12,13,16], where μ� = (−F�, F�) with F� ≈ 2.34. The curve that joins 
(
− 3

2 , 3
2

)
and 

(
− 1

2 ,1
)

is 
the graphic of an analytic function D = G(F ). (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

set R2 \ (�B ∪ �U) corresponds to local regular parameters and that the ones in �B are local 
bifurcation parameters. The authors also conjecture that any parameter in �U is regular, except 
for the segment {0}× [

0, 1
2

]
in the vertical axis, that should consist of bifurcation parameters. The 

proof of the result in [11] is based on the explicit computation of the first non-vanishing term of 
the asymptotic expansion of the derivative of the period function. One of the major difficulties 
to tackle �U lies in the necessity that this expansion is uniform with respect to μ in order to 
show that some parameter is regular. There have been however some progress in the study of the 
parameters in �U :

• From the results in [10,16] it follows that the parameters in blue are indeed regular. In these 
papers the authors determine a region M in the parameter plane for which the corresponding 
center has a globally monotonic period function. The parameters that we draw in blue are 
inside the interior of M , which prevents the bifurcation of critical periodic orbits.

• By [12, Theorem C] it follows that the parameters in green are regular as well. In that paper 
the authors give an asymptotic expansion of the Dulac time (time of the Dulac map) of an 
unfolding of a saddle-node. The techniques used in [11] enable only to study an unfolding 
of a hyperbolic saddle.

• Theorem B in [13] shows that the parameters in red, more precisely the segment {0}× [ 1
4 , 1

2

]
, 

are bifurcation values of the period function at the polycycle. To this end, after blowing up the 
polycycle, the authors show that any neighborhood of a parameter μ̂ ∈ {0}× [ 1

4 , 1
2

]
contains 

two parameters, say μ+ and μ−, such that the derivative of the period function near the 
polycycle is positive for Xμ+ and negative for Xμ− .
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Beyond the dichotomy regular vs bifurcation, a challenging problem not tackled so far is the 
study of the criticality of the local bifurcation parameters, i.e., to compute the exact number of 
critical periodic orbits that bifurcate from the polycycle. The present paper is addressed to this 
problem.

Besides studying the local problem explained above, the authors in [11] obtained a num-
ber of results concerning the global behavior of the period function of (1). The combination 
of all these results with the ones obtained by Chicone and Jacobs [1], lead them to formu-
late a very precise conjecture for the bifurcation diagram of the (global) period function. 
According to this conjecture, the criticality of the polycycle should be equal to one for any 
μ ∈ �B \ {(0, 0), (− 3

2 , 32 ), (−2, 2)}, whereas it should be equal to two for the three remaining 
parameters. Note that �B is the union of some explicit straight segments and a curve that joins 
the points 

(− 3
2 , 3

2

)
and 

(− 1
2 ,1

)
, which can be proved to be the graphic of an analytic function 

D = G(F ), see Proposition 3.1. Our main result shows that the criticality in a portion of this 
curve is exactly one. For the sake of completeness we also reprove some results already obtained 
in [11]. The next statement gathers these results and we stress that it concerns the parameters 
inside

� := {(D,F ) ∈ R
2 : F > 1,D < −1/2,D + F > 0}. (2)

Accordingly, see Fig. 1, the above mentioned curve is inside �. On the other hand, if (D, F) ∈
� ∩ �B then (F − 2)(D − G(F )) = 0.

Theorem A. Let us consider the period function of the center at the origin of the differential 
system (1) for μ ∈ �. Then the open set � \ (�B ∪ {F = 3/2}) corresponds to local regular 
values of the period function at the outer boundary of the period annulus. On the other hand, 
the parameters in �B are local bifurcation values of the period function at the outer boundary of 
the period annulus. Moreover Crit

(
(�μ̂,Xμ̂),Xμ

) = 1 for any μ̂ = (D̂, F̂ ) with D̂ = G(F̂ ) and 
4
3 < F̂ < 3

2 .

Fig. 2 displays the phase portrait of (1) for the parameter values under consideration in The-
orem A. We remark that the new result, and the main goal of this paper, is the last assertion. 
To prove Theorem A we apply the tools developed in [8,9], which provide sufficient conditions 
in order that Crit

(
(�μ̂,Xμ̂),Xμ

)
� n. The underlying idea of these conditions is to guarantee 

that the derivative of the period function can be embedded in an extended complete Chebyshev 
system of dimension n + 1 in a neighborhood of the polycycle. This is a completely different 
approach from the previous works [11–13], which rely on the use of normal forms near the sin-
gularities of the polycycle. At this respect let us point out that we recover all the results in [11]
regarding the dichotomy regular vs bifurcation in the subset � except for the regularity of the 
segment in {F = 3

2 }. At these parameters, the asymptotic expansion of the period function has a 
logarithmic term, which forces the use of the so-called Roussarie–Ecalle compensator in order to 
guarantee the necessary uniformity with respect to μ (see [11, Theorem 3.6]). The tools we have 
developed so far do not allow to deal with this scenario. Let us also remark that the tools in [8,9]
are in fact addressed to potential differential systems, which is not the case of (1). We avoid this 
problem by appealing to [5, Lemma 14], that gives a class of integrable differential systems that 
can be brought to a potential system by means of an explicit coordinate transformation. Luckily 
the differential system under consideration (1) is inside this class.
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Fig. 2. Phase portrait of (1) in the Poincaré disc for μ = (D, F) ∈ � with D < −1 (left) and D > −1 (right), where for 
convenience we place the center at (0, 0) on the left of the centered invariant line {x = 1}. The polycycle �μ at the outer 
boundary of the period annulus is the same in both cases: two hyperbolic saddles at infinity and the heteroclinic orbits 
between them. The invariant hyperbola Cμ is in boldface type.

For the sake of completeness, let us finish this section by quoting some other results about the 
period function of (1). Thus, by applying mainly techniques based on Picard–Fuchs equations 
for algebraic curves, Yulin Zhao et al. proved in [19–22] that system (1) has at most one critical 
periodic orbit for any μ = (D, F) with F ∈ { 1

4 , 3
4 , 3

2 ,2
}
. On the other hand, R. Chouikha showed 

in [3] the monotonicity of the period function for the parameters in the straight lines F + 2D = 1
and F = −1 and some other segments inside D = 1

2 , D = 0, F = 1 and F = 2.
The paper is organized in the following way. In Section 2 we introduce the related definitions 

and we explain the previous results obtained in [8,9] that we shall use in the proof of Theorem A, 
which is carried out in Section 3.

2. Definitions and previous results

A singular point p of an analytic vector field X = f (x, y)∂x + g(x, y)∂y is a center if it has a 
punctured neighborhood that consist entirely of periodic orbits surrounding p. The largest punc-
tured neighborhood with this property is called the period annulus of the center and henceforth 
it will be denoted by P . From now on ∂P will denote the boundary of P after embedding 
it into RP2. Clearly the center p belongs to ∂P , and in what follows we will call it the in-
ner boundary of the period annulus. We also define the outer boundary of the period annulus 
to be � := ∂P \ {p}. Note that � is a non-empty compact subset of RP

2. In case that X is 
polynomial then, by means of the Poincaré compactification, it has a meromorphic extension X̂
to infinity and the outer boundary turns out to be a polycycle of X̂. The period function of the 
center assigns to each periodic orbit in P its period. Since the period function is defined on the 
set of periodic orbits in P , in order to study its qualitative properties usually the first step is to 
parametrize this set. This can be done by taking an analytic transverse section to X on P , for 
instance an orbit of the orthogonal vector field X⊥. If {γs}s∈(a,b) is such a parametrization, then 
s 	−→ T (s) := {period of γs} is an analytic map that provides the qualitative properties of the pe-
riod function that we are concerned about. In particular the existence of critical periods, which 
are isolated critical points of this function, i.e. ŝ ∈ (a, b) such that T ′(s) = α(s− ŝ)k +o

(
(s− ŝ)k

)
with α �= 0 and k � 1. In this case we shall say that γŝ is a critical periodic orbit of multiplic-
ity k of the center. One can readily see that this definition does not depend on the particular 
parametrization of the set of periodic orbits used.

Our aim in this paper is to study the bifurcation of critical periodic orbits from the outer 
boundary of the period annulus. As any bifurcation phenomenon, this occurs in case that X
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depends on a parameter, say μ ∈ � ⊂ R
d . Thus, for each μ ∈ �, assume that Xμ is an analytic 

vector field on some open set Uμ of R2 with a center at pμ. Following the notation introduced 
before, we denote by �μ the outer boundary of its period annulus Pμ. Concerning the regularity 
with respect to μ, we assume that {Xμ}μ∈� is a continuous family, i.e., that the map (x, y, μ) 	−→
Xμ(x, y) is continuous in {(x, y, μ) ∈ R

d+2 : (x, y) ∈ Uμ, μ ∈ �}. In the following definition 
dH stands for the Hausdorff distance between compact sets of RP2.

Definition 2.1. Consider a continuous family {Xμ}μ∈� of planar analytic vector fields with a 
center and fix some μ̂ ∈ �. Suppose that the outer boundary of the period annulus varies contin-
uously at μ̂ ∈ �, meaning that for any ε > 0 there exists δ > 0 such that dH (�μ, �μ̂) � for all 
μ ∈ � with ‖μ − μ̂‖ � δ. Then, setting

N(δ, ε) = sup{# critical periodic orbits γ of Xμ in Pμ with dH (γ,�μ̂) � and ‖μ − μ̂‖ � δ},

the criticality of (�μ̂, Xμ̂) with respect to the deformation Xμ is Crit
(
(�μ̂, Xμ̂), Xμ

) :=
infδ,ε N(δ, ε).

In the previous definition Crit
(
(�μ̂, Xμ̂), Xμ

)
may be infinite but if it is not, then it gives 

the maximal number of critical periodic orbits of Xμ that tend to �μ̂ in the Hausdorff sense as 
μ → μ̂.

Definition 2.2. We say that μ̂ ∈ � is a local regular value of the period function at the outer 
boundary of the period annulus if Crit

(
(�μ̂, Xμ̂), Xμ

) = 0. Otherwise we say that it is a local 
bifurcation value of the period function at the outer boundary.

We shall next state the results from [8,9] that we shall use in the proof of Theorem A. These 
papers are concerned with analytic potential differential systems

Yμ

{
ẋ = −y,

ẏ = V ′
μ(x),

depending on a parameter μ ∈ � ⊂ R
d . Here, for each fixed μ ∈ �, Vμ is an analytic function 

on a certain real interval Iμ that contains x = 0. We shall also use the vector field notation Yμ =
−y∂x +V ′

μ(x)∂y to refer to the above differential system. We suppose V ′
μ(0) = 0 and V ′′

μ(0) > 0, 
so that the origin is a non-degenerated center and we shall denote the projection of its period 
annulus Pμ on the x-axis by Iμ = (x�(μ), xr(μ)). Thus x�(μ) < 0 < xr(μ). The corresponding 
Hamiltonian function is given by Hμ(x, y) = 1

2y2 +Vμ(x), where we fix that Vμ(0) = 0, and we 
set the energy level of the outer boundary of Pμ to be h0(μ), i.e. Hμ(Pμ) = (0, h0(μ)). Note 
then that h0(μ) is a positive number or +∞. In addition we define

gμ(x) := x

√
Vμ(x)

x2 = sgn(x)
√

Vμ(x),

which is clearly a diffeomorphism from (x�(μ), xr(μ)) to (−√
h0(μ), 

√
h0(μ)) due to Vμ(0) =

V ′
μ(0) = 0 and V ′′

μ(0) > 0. In order to state the above mentioned results appropriately, it is nec-
essary to introduce a number of definitions:
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Definition 2.3. We say that the family of potential analytic differential systems {Yμ}μ∈� verifies 
the hypothesis (H) in case that:

(a) For all k � 0, the map (x, μ) 	−→ V
(k)
μ (x) is continuous on {(x, μ) ∈R × � : x ∈ Iμ},

(b) μ 	−→ xr(μ) is continuous on � or xr(μ) = +∞ for all μ ∈ �,
(c) μ 	−→ x�(μ) is continuous on � or x�(μ) = −∞ for all μ ∈ �,
(d) μ 	−→ h0(μ) is continuous on � or h0(μ) = +∞ for all μ ∈ �.

Definition 2.4. Let f be an analytic function on (a, b). We say that f is quantifiable at b by α
with limit � in case that:

(a) If b ∈ R, then limx→b− f (x)(b − x)α = � and � �= 0.
(b) If b = +∞, then limx→+∞ f (x)x−α = � and � �= 0.

We call α the quantifier of f at b. We shall use the analogous definition at a.

Definition 2.5. Let {fμ}μ∈� be a continuous family of analytic functions on (a(μ), b(μ)). As-
sume that b is either a continuous function from � to R or b(μ) = +∞ for all μ ∈ �. Given 
μ̂ ∈ � we shall say that {fμ}μ∈� is continuously quantifiable in μ̂ at b(μ) by α(μ) with limit 
�(μ̂) if there exists an open neighborhood U of μ̂ such that fμ is quantifiable at b(μ) by α(μ)

with limit �(μ) for all μ ∈ � and, moreover,

(a) If b(μ̂) < +∞, then lim(x,μ)→(b(μ̂),μ̂) fμ(x)(b(μ) − x)α(μ) = �(μ̂) and �(μ̂) �= 0.
(b) If b(μ̂) = +∞, then lim(x,μ)→(+∞,μ̂) fμ(x)x−α(μ) = �(μ̂) and �(μ̂) �= 0.

For the sake of shortness, in the first case we shall write fμ(x) ∼b(μ) �(μ)(b(μ) − x)−α(μ) at μ̂, 
and in the second case fμ(x) ∼+∞ �(μ)xα(μ) at μ̂.

Definition 2.6. Let f0, f1, . . . , fk−1 be analytic functions on an open interval I of R. Then

W [f0, f1, . . . , fk−1](x) = det
(
f

(i)
j (x)

)
0�i,j�k−1

=

∣∣∣∣∣∣∣∣∣

f0(x) · · · fk−1(x)

f ′
0(x) · · · f ′

k−1(x)
...

f
(k−1)
0 (x) · · · f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣
is the Wronskian of (f0, f1, . . . , fk−1) at x ∈ I .

Definition 2.7. Given ν1, . . . , νn ∈R, we consider the linear ordinary differential operator

Dνn : C ω
(
(0,1)

) −→ C ω
(
(0,1)

)
defined by

Dνn[f ](x) := (x(1 − x2))
n(n+1)

2
W

[
ψν1, . . . ,ψνn, f

]
(x)∏n ,
i=1 ψνi
(x)
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where ψν(x) := 1
1−x2

(
x√

1−x2

)ν

and, for shortness, we use the notation νn = (ν1, . . . , νn). In 

addition we define Dν0 := id for the sake of convenience.

Definition 2.8. Let f be an analytic function on [0, 1). Then, for each n ∈N we call

Nn[f ] :=
1∫

0

f (x)√
1 − x2

(
x√

1 − x2

)2n−2

dx

the n-th momentum of f , whenever it is well defined.

We are now in position to state [9, Theorem B], which constitutes the main ingredient in 
the proof of Theorem A. In its statement, the assumptions requiring the existence of functions 
ν1, ν2, . . . , νn and that N1 ≡ N2 ≡ . . . ≡ Nj−1 ≡ 0 must be considered void for n = 0 and j = 1, 
respectively. Moreover, for a given function f , we use the notation P[f ](x) := f (x) + f (−x).

Theorem 2.9. Let {Yμ}μ∈� be a family of potential analytic systems verifying (H) such that 
h0(μ) < +∞ for all μ ∈ �. Assume that there exist n � 0 continuous functions ν1, ν2, . . . , νn in 
a neighborhood of some fixed μ̂ ∈ � such that the family

{
(Dνn(μ) ◦P)

[
z
√

h0(μ)(g−1
μ )′′(z

√
h0(μ))

]}
μ∈�

(3)

is continuously quantifiable in � at z = 1 by ξ(μ). For each i ∈ N, let Ni(μ) be the i-th mo-
mentum of (Dνn(μ) ◦P)

[
z
√

h0(μ)(g−1
μ )′′(z

√
h0(μ))

]
, whenever it is well defined. The following 

assertions hold:

(a) If ξ(μ̂) > 1
2 , then Crit

(
(�μ̂, Yμ̂), Xμ

)
� n.

(b) If ξ(μ̂) < 1
2 , let m ∈ N be such that ξ(μ̂) + m ∈ [ 1

2 , 3
2

)
. Then Crit

(
(�μ̂, Yμ̂), Xμ

)
� n in 

case that
(b1) either N1 ≡ N2 ≡ . . . ≡ Nj−1 ≡ 0 and Nj(μ̂) �= 0 for some j ∈ {1, 2, . . . , m},
(b2) or N1 ≡ N2 ≡ . . . ≡ Nm ≡ 0 and ξ(μ̂) + m /∈ { 1

2 ,1
}
.

Finally, if the following conditions are verified, then the family (3) is continuously quantifiable 
at z = 1 by ξ(μ) = − min

{(
α�

β�

)
(μ), 

(
αr

βr

)
(μ)

} − 1
2

∑n
i=1 νi(μ) − n(n+1)

2 + 1:

(i) {h0(μ) − Vμ}μ∈� is continuously quantifiable at x�(μ) by β�(μ) and at xr(μ) by βr(μ)

with limits b�(μ) and br(μ), respectively,

(ii) setting Rμ := (V ′
μ)2−2VμV ′′

μ

(V ′
μ)3 , the function

x 	−→ V ′
μ(x)−

n(n+1)
2 W

[(
Vμ

h0(μ) − Vμ

) 1
2 ν1(μ)

, . . . ,

(
Vμ

h0(μ) − Vμ

) 1
2 νn(μ)

,

(h0(μ) − Vμ)Vμ

1
2 Rμ

]
(x)
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is continuously quantifiable at x�(μ) by α�(μ) and at xr(μ) by αr(μ) with limits a�(μ)

and ar(μ), respectively,

(iii) and either α�

β�
(μ) �= αr

βr
(μ) or, otherwise, 

(
ar(br)

− αr
βr + (−1)

n(n+1)
2 a�(b�)

− α�
β�

)
(μ) �= 0.

As we already mentioned, the idea behind this result is to give conditions in order that the 
derivative of the period function can be embedded in an extended complete Chebyshev system 
of dimension n + 1 in a neighborhood of the polycycle. More specifically, denoting the period 
of the periodic orbit of Yμ inside the energy level {Hμ(x, y) = h} by Tμ(h), these conditions 
guarantee that

lim
z−→1

(1 − z)νn(μ)W
[
ψν1(μ)(z), . . . ,ψνn−1(μ)(z), T

′
μ(z2h0(μ))

] = ��(μ),

uniformly in μ ≈ μ̂, and that ��(μ̂) �= 0. At this respect, the following observation will enable 
us to avoid some cumbersome computations.

Remark 2.10. From the proof of Theorem 2.9 in [9] for the particular case n = 0 it follows that

T ′
μ(h)

(h0(μ) − h)γ (μ)
−→ ��(μ) as (h,μ) −→ (h0(μ̂), μ̂),

where

⎧⎨
⎩

γ (μ) = 1
2 − ξ(μ) and ��(μ) = C(μ)δ(μ) in cases (a) and (b2),

γ (μ) = 1 − j and ��(μ) = C(μ)Nj (μ) in case (b1),

with C(μ) > 0 for all μ ≈ μ̂, and

δ(μ) =

⎧⎪⎪⎨
⎪⎪⎩

ar(br)
− αr

βr if αr

βr
<

α�

β�
,

ar (br )
− αr

βr + a�(b�)
− α�

β� if αr

βr
= α�

β�
,

a�(b�)
− α�

β� if αr

βr
>

α�

β�
.

We shall also apply the following technical result (see [9, Lemma 3.12]).

Lemma 2.11. Let f be an analytic function on [0, 1), ν1, ν2, . . . , νn ∈R and � ∈N. Let us assume 
that Dνn−1 [f ] is quantifiable at 1 by ξ . If ξ < 3/2 − �, then

N�

[
Dνn[f ]] = cn(1 − 2� − νn)N�

[
Dνn−1 [f ]],

where c1 := 1 and cn := ∏n−1
i=1 (νn − νi) for n � 2.
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3. Proof of Theorem A

We point out that in this section � refers to the parameter subset as defined in (2). It is well 
known, see for instance [11], that if F /∈ {0, 1, 12 } then the differential system (1) has a first 
integral given by

Hμ(x, y) = (1 − x)−2F

(
1

2
y2 − qμ(x)

)
, (4)

where qμ(x) = a(μ)x2 + b(μ)x + c(μ) with

a = D

2(1 − F)
, b = D − F + 1

(1 − F)(1 − 2F)
and c = F − D − 1

2F(1 − F)(1 − 2F)
.

Its corresponding integrating factor is κ(x) = (1 − x)−2F−1. In addition, the line at infinity L∞, 
the conic Cμ = { 1

2y2 − qμ(x) = 0} and the line {x = 1} are invariant curves of (1). If μ ∈ � then 
Cμ is a hyperbola that intersects y = 0 at

x = p1(μ) := −b − √
b2 − 4ac

2a
and x = p2(μ) := −b + √

b2 − 4ac

2a
,

with 0 < p1(μ) < p2(μ). Moreover, see Fig. 2, for these parameter values, the outer boundary of 
the period annulus of the center at the origin consists of the branch of the hyperbola Cμ passing 
through the point (p1, 0) and the line at infinity L∞ joining two hyperbolic saddles. The next 
result gathers some relevant facts proved in [11] that we shall use later on.

Proposition 3.1. For each μ ∈ � and s ≈ 0 positive, let P(s; μ) be the period of the periodic 
orbit of (1) passing through the point 

(
p1(μ) −s, 0

)
. If F ∈ (1, 32 ) then lims→0+ P ′(s; μ) = �(μ)

uniformly on compact subsets of �, where

�(μ) = −1/
√

2a

(p2 − p1)(1 − p1)

⎧⎨
⎩2 −

1∫
0

(
u2(1−F)

(
1 − p2

1 − p1
(u − 1) + 1

)2F−1

− 1

)
du

(1 − u)3/2

⎫⎬
⎭ .

Moreover, the set {μ ∈ � : �(μ) = 0} is the graph of an analytic function D = G(F ) defined for 
F ∈ (

1, 3
2

)
and satisfying the following properties:

(a) −F < G(F ) < − 1
2 for all F ∈ (

1, 3
2

)
,

(b) lim
F→ 3

2
G(F ) = − 3

2 , and

(c) limF→1 G(F ) = − 1
2 .

Proof. The first assertion follows from (a) in [11, Theorem 3.6] and the properties of the set 
{�(μ) = 0} from [11, Proposition 3.11]. �

Note in particular that {�(μ) = 0} is an analytic curve inside � that joins the parameters 
μ = (− 3

2 , 3
2

)
and μ = (− 1

2 ,1
)
. Recall at this point that the differential system (1) has a first 

integral which is quadratic in y, see (4), and that its corresponding integrating factor depends 
only on x. Taking advantage of this, by applying [5, Lemma 14] it follows that the coordinate 
transformation
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(u, v) = (
φ(1 − x), (1 − x)−F y

)
, where φ(z) := z−F − 1

F
,

brings the differential system (1) to the potential system

{
u̇ = −v,

v̇ = (Fu + 1)
(
(Fu + 1)− 1

F − 1
)(

D(Fu + 1)− 1
F − D − 1

)
.

(5)

Evidently this differential system has a non-degenerated center at the origin. The projection on 
the u-axis of its period annulus is the interval Iμ := (− 1

F
,ur(μ)

)
, where

ur(μ) := (1 − p1(μ))−F − 1

F
.

This interval is precisely the image by x 	−→ φ(1 −x) of 
(−∞, p1

)
. Let H(u, v) = 1

2v2 +Vμ(u)

be the Hamiltonian function of the potential system (5) with Vμ(0) = 0. Setting z = φ−1(u) =
(Fu + 1)−1/F for shortness, one can check that

Vμ(u) = h0(μ) − z−2F V0(z,μ) with V0(z,μ) = D
2−2F

z2 + 1+2D
2F−1 z − D+1

2F
,

V ′
μ(u) = z−F V1(z,μ) with V1(z,μ) = (z − 1)(D(z − 1) − 1),

V ′′
μ(u) = V2(z,μ) with V2(z,μ) = D(F − 2)z2 − (2D + 1)(F − 1)z + F(D + 1),

V
(3)
μ (u) = zF V3(z,μ) with V3(z,μ) = −2D(F − 2)z2 + (2D + 1)(F − 1)z,

V
(4)
μ (u) = z2F V4(z,μ) with V4(z,μ) = 2D(F 2 − 4)z2 − (2D + 1)(F 2 − 1)z.

(6)

Here h0(μ) := F−D−1
2F(F−1)(2F−1)

turns out to be the energy level of the outer boundary of the center 
at the origin for all μ ∈ �.

In view of the properties explained above, the family of potential systems (5) with μ ∈ �

satisfies the hypothesis (H) in Definition 2.3. Moreover, since this family is conjugated to (1), in 
order to prove Theorem A we can apply Theorem 2.9 to (5). Our task now is to quantify all the 
functions involved in its application. This is the aim of the following lemmas.

Lemma 3.2. Let us take μ ∈ �. If 
(
fμ ◦ φ

)
(z) ∼+∞ �(μ)zα(μ) then fμ(u) ∼− 1

F
�(μ)(Fu +

1)−α(μ)/F .

Proof. Note that φ−1(u) = (Fu + 1)−1/F −→ +∞ as u tends to −1/F , uniformly on compact 
subsets of �. Let us fix μ̂ = (D̂, F̂ ) ∈ �. Then

lim
(u,μ)→(−1/F̂ ,μ̂)

fμ(u) (Fu + 1)
α(μ)
F

= lim
(u,μ)→(−1/F̂ ,μ̂)

(
fμ ◦ φ

)
(φ−1(u))

(φ−1(u))α(μ)
= lim

(z,μ)→(+∞,μ̂)

(
fμ ◦ φ

)
(z)

zα(μ)
= �(μ̂)

and this shows the result. �
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Lemma 3.3. For all μ ∈ � the following holds:

(a) h0(μ) − Vμ(u) ∼− 1
F

D
2−2F

(Fu + 1)2−2/F ,

(b) V ′
μ(ur(μ)) �= 0 and h0(μ) − Vμ(u) ∼ur (μ) V ′

μ(ur(μ))(ur(μ) − u).

Proof. From (6), h0(μ) − (
Vμ ◦ φ

)
(z) = z−2F V0(z, μ) ∼+∞ D

2−2F
z2−2F . Then by apply-

ing Lemma 3.2 the assertion in (a) follows. The analyticity of Vμ at u = ur , together with the 
fact that V ′

μ(ur) �= 0 due to V1(1 − p1(μ), μ) = p1(μ)(Dp1(μ) + 1) �= 0, easily imply (b). So 
the result is proved. �
Lemma 3.4. If μ ∈ � then V ′

μ(u)2 − 2Vμ(u)V ′′
μ(u) is strictly positive at u = ur(μ).

Proof. Since V (ur) = h0, we must prove that V ′
μ(ur)

2 − 2h0(μ)V ′′
μ(ur) > 0 for all μ ∈ �. To 

this end, on account of (6), we write V ′
μ(u)2 −2h0(μ)V ′′

μ(u) = z−2F V1(z, μ)2 −2h0(μ)V2(z, μ), 
with z = φ−1(u) and where V1, V2 ∈R[z, μ]. Clearly it suffices to show that

L(z,μ) := z−2F V1(z,μ)2 − 2h0(μ)V2(z,μ) > 0

at z = φ−1(ur(μ)) = 1 − p1(μ) = 1 + b + √
b2 − 4ac

2a

for all μ ∈ �. (Here recall that a, b, c ∈ R(μ) are the coefficients of the quadratic polynomial qμ

in the first integral (4) and that h0 ∈ R(μ) is the energy of the outer boundary.)
We claim that if L(1 − p1(μ̂), μ̂) = 0 for some μ̂ = (D̂, F̂ ) ∈ � then the derivative of D 	−→

L(1 − p1(μ), μ) is strictly negative at μ = μ̂. To show this note first that L(1 − p1(μ̂), μ̂) = 0
implies

(1 − p1(μ̂))−2F = 2h0(μ̂)V2(1 − p1(μ̂), μ̂)

V1(1 − p1(μ̂), μ̂)2 . (7)

Moreover the derivative of L(1 − p1(μ), μ) with respect D is

d

dD
L(1 − p1(μ),μ) = z−2F

(
2V1(z,μ)∂zV1(z,μ) − 2FV1(z,μ)2

z

)∣∣∣∣
z=1−p1(μ)

∂D

(
1 − p1(μ)

)

+ z−2F ∂D

(
V1(z,μ)2

)
− 2∂D

(
h0(μ)V2(z,μ)

)∣∣∣
z=1−p1(μ)

.

The substitution of (7) in the above expression evaluated at μ = μ̂ gives us an expression of 
d

dD
L(1 − p1(μ̂), μ̂) which is algebraic in D̂ and F̂ . This is the key point in the proof. In doing 

so, with the help of an algebraic manipulator one can verify that

d

dD
L(1 − p1(μ̂), μ̂) = r1(μ̂)

√
η(μ̂) + r2(μ̂)

r3(μ̂)
√

η(μ̂) + r4(μ̂)
with η(μ) := (

b2 − 4ac
)
(μ) and some ri ∈R[μ].

Moreover
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r1(μ̂)2η(μ̂) − r2(μ̂)2

= (1 − 2F̂ )7(D̂ − F̂ + 1)D̂4(D̂ + 1)3(F̂ + D̂)(5F̂ D̂ − 3F̂ 2 + 3F̂ − D̂) �= 0

and

r3(μ̂)2η(μ̂) − r4(μ̂)2 = −4D̂6F̂ 3(2F̂ − 1)9(F̂ + 1)3(D̂ + 1)3 �= 0

for all (D̂, F̂ ) ∈ �. This proves that d
dD

L(1 − p1(μ̂), μ̂) is well defined and non-vanishing for 
all μ̂ ∈ �. Finally, since d

dD
L(1 − p1(μ̂), μ̂) < 0 at μ̂ = (−0.6, 1.3), the claim follows.

The claim implies that, for each fixed F ∈ (1, 3/2), the map D 	−→ L(1 − p1(μ), μ) has at 
most one zero for D ∈ (−F, −1/2). This fact, on account of

L(1 − p1(μ),μ)|μ=(−F,F ) = 1

F 2 > 0 and

L(1 − p1(μ),μ)|
μ=(− 1

2 ,F )
= FF (F − 1)1−F + 2 − 3F

4F 2(F − 1)
> 0

for all F ∈ (1, 3/2), shows the validity of the result. �
The following result gives the quantifier of the function u 	−→ (h0(μ) −Vμ(u))Rμ(u), where

Rμ := (V ′
μ)2 − 2VμV ′′

μ

(V ′
μ)3 , (8)

at the endpoints of the interval Iμ = (− 1
F

,ur(μ)
)
.

Lemma 3.5. The following holds:

(a) If μ̂ ∈ � \ {F = 2} then (h0(μ) − Vμ(u))Rμ(u) ∼− 1
F

(F−2)h0(μ)
D(F−1)

(Fu + 1)
2
F

−1 at μ̂.

(b) If μ̂ ∈ � then (h0(μ) − Vμ(u))Rμ(u) ∼ur (μ) Rμ(ur(μ))V ′
μ(ur(μ))(ur(μ) − u) at μ̂.

Proof. To prove (a) let us fix μ̂ ∈ � \ {F = 2}. Taking (6) into account, and with the help of an 
algebraic manipulator, one can verify that

(h0(μ) − Vμ(u))Rμ(u) = V0(z,μ)z−F fμ(z)

V 3
1 (z,μ)

∣∣∣∣∣
z=φ−1(u)

,

where fμ(z) := V1(z, μ)2 + 2V2(z, μ)
(
V0(z, μ) − h0(μ)z2F

)
is the sum of 7 monomials of the 

form c(μ)zn1+n2F with ni ∈ Z for i = 1, 2, and c(μ) a well defined rational function at μ = μ̂. 
In addition, the monomial with the largest exponent for μ ≈ μ̂ is D(1+D−F)(F−2)

F (F−1)(2F−1)
z2+2F . Accord-

ingly

fμ(z) ∼+∞
D(1 + D − F)(F − 2)

z2+2F at μ̂.

F(F − 1)(2F − 1)
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On the other hand, taking (6) into account once again, V0(z, μ) ∼+∞ D
2−2F

z2 and V1(z, μ) ∼+∞
Dz2 at μ̂. Consequently

V0(z,μ)z−F fμ(z)

V 3
1 (z,μ)

∼+∞
(F − D − 1)(F − 2)

2DF(F − 1)2(2F − 1)
zF−2 at μ̂,

and by applying Lemma 3.2 we get that

(h0(μ) − Vμ)Rμ(u) ∼−1/F

(F − D − 1)(F − 2)

2DF(F − 1)2(2F − 1)
(Fu + 1)

2
F

−1 at μ̂.

Since h0(μ) = F−D−1
2F(F−1)(2F−1)

, this proves (a). To show (b) note that V ′
μ(u)2 − 2Vμ(u)V ′′

μ(u)

does not vanish at u = ur(μ) by Lemma 3.4, and that h0(μ) − Vμ(u) ∼ur (μ) V ′
μ(ur(μ)) ×

(ur(μ) − u) by (b) in Lemma 3.3. This proves the result. �
In order to state our next result let us define

�μ(u) := 1

V ′
μ(u)

W

[(
Vμ

h0(μ) − Vμ

) 1
2 ν(μ)

, (h0(μ) − Vμ)V
1
2

μ Rμ

]
(u),

where Rμ is the function in (8) and ν : � → R is a continuous function to be determined. Note 
that �μ is the function in (ii) of Theorem 2.9 for the particular case n = 1. Let us advance that 
ν is to be chosen in such a way that the family (3) is continuously quantifiable at z = 1, so that 
we can apply Theorem 2.9.

Proposition 3.6. Let us fix μ̂ = (D̂, F̂ ) ∈ �. Then the following holds:

(a) If F̂ �= 2 and ν(μ̂) �= F̂−2
F̂−1

then �μ(u) ∼− 1
F

a(μ)(Fu + 1)
4+ν−F(3+ν)

F at μ̂, where

a(μ) := −(F − 2)(F − 2 − ν(F − 1))(−D)
ν
2 (F − 1)ν− 5

2 F
ν+1

2 (F −D − 1)
ν+3

2 (4F − 2)
ν−3

2 .

(b) If ν(μ̂) �= −2 then �μ(u) ∼ur (μ) b(μ)(ur(μ) − u)− ν
2 at μ̂, where b(μ) := − ν+2

2 Rμ(ur) ×
h

ν+1
2

0 V ′
μ(ur)

− ν
2 .

Proof. Let us fix μ̂ = (D̂, F̂ ) ∈ �. A computation shows that

�μ = ψμ

2V
1
2

μ (V ′
μ)5

(
Vμ

h0(μ) − Vμ

) ν(μ)
2

, (9)

where, omitting the dependence on μ for the sake of shortness,

ψμ := 4V 2(V − h0)V
′V ′′′ − (V ′ 2 − 2V V ′′)

(
V ′ 2(h0(ν − 1) + 3V ) + 6(h0 − V )V V ′′) .
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Taking (6) into account, and with the help of an algebraic manipulator, one can show that 
ψμ(u) = fμ(z) where z = φ−1(u) = (Fu + 1)−1/F and fμ is the sum of 25 monomials of the 
form c(μ)zn1+n2F with ni ∈ Z and c(μ) a well defined rational function at μ = μ̂. In particular, 
the monomial with largest exponent for μ ≈ μ̂ is c(μ)z6−2F with

c(μ) := − (F − 2)(F − 2 − ν(F − 1))D3(1 + D − F)2

2F 2(F − 1)3(1 − 2F)2 .

Accordingly, if F̂ �= 2 and we choose any ν such that ν(μ̂) �= F̂−2
F̂−1

, we get that fμ(z) ∼+∞
c(μ)z6−2F at μ̂. Thus, due to ψμ(u) = fμ(z) with z = φ−1(u) = (Fu + 1)−1/F , by applying 
Lemma 3.2 we can assert that

ψμ(u) ∼− 1
F

c(μ)(Fu + 1)2−6/F at μ̂.

On the other hand, from (6) and applying Lemma 3.2 again, we get Vμ(u) ∼− 1
F

h0(μ) =
F−D−1

2F(F−1)(2F−1)
and V ′

μ(u) ∼− 1
F

D(Fu + 1)1−2/F at μ̂. Taking these three quantifiers into ac-

count, together with the quantifier for h0(μ) − Vμ(u) given by (a) in Lemma 3.3, from (9) we 

can assert that �μ(u) ∼− 1
F

a(μ)(Fu + 1)
4+ν−F(3+ν)

F at μ̂ with

a(μ) = −(F − 2)(F − 2 − ν(F − 1))(−D)
ν
2 (F − 1)ν− 5

2 F
ν+1

2 (F − D − 1)
ν+3

2 (4F − 2)
ν−3

2 .

This shows (a). Let us turn now to the proof of the claim in (b). Since lim(μ,u)→(μ̂,ur (μ̂)) Vμ(u) =
h0(μ̂), by using Lemma 3.4 and (b) in Lemma 3.3 we obtain that

ψμ(u) ∼ur (μ) (ν + 2)
(

2Vμ(ur)V
′′
μ(ur) − V ′

μ(ur)
2
)

V ′
μ(ur)

2h0 at μ̂,

provided that ν(μ̂) �= −2. On account of this, exactly the same ingredients yield to

�μ(u) ∼ur (μ) −ν + 2

2
Rμ(ur)h

ν+1
2

0 V ′
μ(ur)

− ν
2 (ur − u)−

ν
2 at μ̂,

as we desired. This concludes the proof of the result. �
Proof of Theorem A. We begin by showing that any μ̂ = (D̂, F̂ ) ∈ � \ (�B ∪�U) is a local reg-
ular value of the period function at the outer boundary. This will follow by applying Theorem 2.9
with n = 0. With this aim in view let fμ(z) be twice the even part of the function

z 	−→ z
√

h0(μ)
(
g−1

μ

)′′ (
z
√

h0(μ)
)
. (10)

Note that fμ(z) is precisely the function in (3) for n = 0 because Dν0 = id by definition. 
That being said, we first apply the second part of Theorem 2.9, which requires the quanti-
fiers of h0(μ) − Vμ and (h0(μ) − Vμ)V

1/2
μ Rμ at the endpoints of 

(− 1
F

,ur(μ)
)
. In this re-

gard Lemma 3.3 shows that the family {h0(μ) − Vμ}μ∈� is continuously quantifiable in μ̂

at u = − 1 by β�(μ) = 2−2F with limit b�(μ) = DF
2− 2

F and at u = ur(μ) by βr(μ) = −1

F F 2(1−F)
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with limit br(μ) = V ′
μ(ur(μ)). On the other hand, from Lemma 3.5 it follows that the family 

{(h0(μ) − Vμ)V
1/2
μ Rμ}μ∈� is continuously quantifiable in μ̂ at u = − 1

F
by α�(μ) = 1 − 2

F

with limit a�(μ) = (F−2)h0(μ)
3
2 F

2
F

−1

D(F−1)
and at u = ur(μ) by αr(μ) = −1 with limit ar(μ) =

Rμ(ur(μ))V ′
μ(ur(μ))h0(μ)

1
2 . Thus α�

β�
(μ) = 2−F

2(F−1)
and αr

βr
(μ) = 1, and by applying the sec-

ond part of Theorem 2.9 with n = 0 we get that {fμ}μ∈� is continuously quantifiable at z = 1
by

ξ(μ) = −min

{
2 − F

2(F − 1)
,1

}
+ 1 =

{
0 if 1 < F � 4

3 ,
3F−4

2(F−1)
if F > 4

3 .

Here it is to be pointed out that in order to cover the case F = 4
3 we checked that ar

br
(μ) +

a�

b�
(μ) �= 0 for all μ = (D, 43 ). Indeed, note that ar

br
(μ) = Rμ(ur(μ))h0(μ)

1
2 , which is strictly 

positive by Lemma 3.4 and the definition of Rμ in (8). On the other hand, if F = 4
3 then a 

computation shows that a�

b�
(μ) = 4h0(μ)

3
2

3D2 > 0. Accordingly we have ar

br
(μ) + a�

b�
(μ) > 0 for all 

μ = (D, 43 ).

If F̂ > 3
2 then ξ(μ̂) > 1/2, and by applying (a) in Theorem 2.9 we have Crit

(
(�μ̂, Xμ̂),

Xμ

) = 0. Note also that in this case, as it is explained in Remark 2.10, the sign of the derivative of 

the period function near the outer boundary is given by a�(μ) = (F−2)h0(μ)
3
2 F

2
F

−1

D(F−1)
, that changes 

at F = 2. Using Bolzano’s Theorem, this easily implies that Crit
(
(�μ̂, Xμ̂), Xμ

)
� 1 for all 

μ̂ = (D̂, 2) ∈ �.
If F̂ ∈ (1, 32 ) then 0 � ξ(μ̂) < 1

2 , and so we need to apply (b) in Theorem 2.9, which lead us 
to the computation of N1(μ), the first momentum of fμ. For the sake of shortness, to this end 
we take advantage of the results in [8,11]. (Let us remark however that, although is a lengthly 
computation, it could be done without appealing to these results.) In doing so we get

N1(μ) =
1∫

0

fμ(z)√
1 − z2

dz = √
h0(μ)

1∫
−1

z
(
g−1

μ

)′′ (√
h0(μ)z

)
√

1 − z2
dz

=√
h0(μ)

π
2∫

− π
2

(
g−1

μ

)′′ (√
h0(μ) sin θ

)
sin θdθ = lim

h→h0(μ)

T ′
μ(h)√

2h0(μ)
,

where the first equality follows from Definition 2.8, the second one using that fμ(z) is twice the 
even part of the function in (10) and the last one by Corollary 3.12 in [8]. Note also that the first 
integral above is convergent thanks to ξ(μ) < 1/2. We take now advantage of Proposition 3.1, 
which shows that if F ∈ (1, 32 ) then lims→0+ P ′(s; μ) = �(μ). Recall that P(s; μ) refers to the 
period of the periodic orbit of (1) passing through the point 

(
p1(μ) − s, 0

)
and so it is clear 

that P(s; μ) = Tμ(ζ(s; μ)), where s 	−→ ζ(s; μ) is an orientation reversing diffeomorphism. 
(Actually ζ(s; μ) = Vμ

(
φ(1 −p1 + s)

)
but this is not relevant for our purposes.) Hence N1(μ) =

−C(μ)�(μ), where C(μ) is positive and �(μ) is the coefficient given in Proposition 3.1. In 
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particular N1(μ) = 0 if and only if D = G(F ). Thus, if μ̂ ∈ � \ �B then N1(μ̂) �= 0 and so, 
by applying (b1) in Theorem 2.9 with j = 1, we get that Crit

(
(�μ̂, Xμ̂), Xμ

) = 0 as desired. 
Exactly as before, the fact that Crit((�μ̂, Xμ̂), Xμ) � 1 for any μ̂ ∈ �B is because N1(μ), and 
then the derivative of the period function, changes sign as we cross the curve D = G(D).

It only remains to be proved that Crit((�μ̂, Xμ̂), Xμ) � 1 for any μ̂ ∈ �B with F̂ ∈ ( 4
3 , 32 ). 

To this end we shall apply Theorem 2.9 with n = 1, and so we need first to choose a convenient 
function ν1(μ) in such a way that the family {Dν1(μ) ◦ fμ}μ∈� is continuously quantifiable at 
z = 1. With this aim in view recall that {fμ}μ∈� is continuously quantifiable at z = 1 by ξ(μ) < 1

2
for the parameter values under consideration. Therefore we can apply Lemma 2.11 with n =
� = 1, which shows that N1

[
Dν1 ◦ fμ

] = −(ν1 + 1)N1[fμ] for any ν1 ∈ R. Accordingly, if we 
define ν1(μ) = −1 for all μ then the first momentum of Dν1 ◦ fμ is identically zero. With this 
choice for ν1(μ) we turn to the quantification of {Dν1(μ) ◦ fμ}μ∈� at z = 1 by means of the 
second part of Theorem 2.9. To do so we need the quantifiers of h0(μ) − Vμ and

u 	−→ 1

V ′
μ(u)

W

[(
Vμ

h0(μ) − Vμ

)− 1
2

, (h0(μ) − Vμ)V
1
2

μ Rμ

]
(u),

at the endpoints of 
(− 1

F
,ur(μ)

)
. To obtain the ones of the later we apply Proposition 3.6 with 

ν = −1, which shows that it is continuously quantifiable at u = − 1
F

by α�(μ) = 2F−3
F

and at u =
ur(μ) by αr(μ) = − 1

2 . As we already used, Lemma 3.3 shows that the family {h0(μ) − Vμ}μ∈�

is continuously quantifiable at u = − 1
F

by β�(μ) = 2−2F
F

and at u = ur(μ) by βr(μ) = −1. In 
this case α�

β�
(μ) = 2F−3

2(1−F)
and αr

βr
(μ) = 1

2 , and by applying the second part of Theorem 2.9 with 
n = 1 we can assert that {Dν1(μ) ◦ fμ}μ∈� is continuously quantifiable at z = 1 by

ξ(μ) = −min

{
2F − 3

2(1 − F)
,

1

2

}
+ 1

2
=

{
3F−4

2(F−1)
if F > 4

3 ,

0 if F ∈ (1, 4
3 ).

In particular, ξ(μ) ∈ (0, 12 ) for all F ∈ ( 4
3 , 32 ). Thus, by applying (b2) in Theorem 2.9 with 

n = m = 1, due to N1
[
Dν1 ◦ fμ

] ≡ 0, we can assert that Crit
(
(�μ̂, Xμ̂), Xμ

)
� 1 as desired. �

Let us conclude the paper by making some comments regarding the difficulties we have 
encountered in the study of the criticality of other parameters in �B apart from the ones con-
templated in Theorem A. As we already mentioned, we apply the tools developed in [8,9] to 
bound the criticality of a polycycle �μ̂ in a family of potential systems Yμ = −y∂x + V ′

μ(x)∂y . 
In short, they apply to two different settings: either the energy h0(μ) of the potential function 
Vμ at the polycycle is finite for all μ ≈ μ̂ or h0(μ) = +∞ for all μ ≈ μ̂. (For each one of these 
situations we have a specific result with its own hypothesis to be verified, see respectively Theo-
rems B and A in [9].) We cannot treat the case in which in any neighborhood of μ̂ there are μ1
and μ2 with h0(μ1) < +∞ and h0(μ2) = +∞. This is precisely what happens in the segments 
{μ ∈ �B : (F + D)D = 0}. On the contrary we can apply the mentioned theorems to the rest 
of the parameters in �B , but the technical hypothesis are not verified for different reasons. In-
deed, for {F = 1

2 } the first integral (4) has a pole and this makes {h0(μ) − Vμ}μ not quantifiable. 
The application of Theorem 2.9 with n = 1, 2 for μ̂ ∈ {F = 2} yields to ξ(μ̂) = 1

2 . Finally, if 
μ̂ ∈ {D = − 1

2 } then ξ(μ̂) < 1/2, m = 1 and N1 ≡ 0, which is far from being understood and 
poses additional difficulties.
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