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Abstract

In this paper it is studied a Hill’s equation, depending on two parameters e ∈ [0, 1) and Λ > 0,
that has applications to some problems in Celestial Mechanics of the Sitnikov-type. Due to the
nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in
the (e,Λ)-plane presents unusual resonance tongues emerging from points (0, (n/2)2), n = 1, 2, ...
The tongues bounded by curves of eigenvalues corresponding to 2π-periodic solutions collapse into
a single curve of coexistence (for which there exist two independent 2π-periodic eigenfunctions),
whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature
related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a
global point of view in the whole range of e ∈ [0, 1). Indeed, it is found an interesting behavior of
the tongues: almost all of them concentrate in a small Λ-interval [1, 9/8] as e → 1−.

We apply the stability diagram of our equation to determine the regions for which the equilibrium
of a Sitnikov (N + 1)-body problem is stable in the sense of Lyapunov and the regions having
symmetric periodic solutions with a given number of zeros. We also study the Lyapunov-stability
of the equilibrium in the center of mass of a curved Sitnikov problem.

1 Introduction

In this paper we are going to study the following biparametric equation and its applications

ẍ+
Λ

r3(t, e)
x = 0, Λ > 0, e ∈ [0, 1), (1)

hereafter referred as linear Sitnikov equation, where r(t, e) is the distance between the focus of a keplerian
ellipse of eccentricity e and semi-major axis equals 1 and any of its points, it is defined by

r(t, e) = 1− e cosu(t, e), t = u(t, e)− e sinu(t, e), (2)

where u(t, e) is the associated eccentric anomaly.
Equation (1) is relevant in several problems in Celestial Mechanics, mostly related to the well known

Sitnikov problem. See for example [21], [3], [29]. The classical Sitnikov problem is the elliptic restricted
3-body problem of the lowest dimension, it consists of a massless particle moving under the gravitational
influence of two primaries of equal mass that are orbiting around their center of mass. The massless
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particle is confined to the straight line perpendicular to the plane of the primaries through the center of
mass. When we linearize this classical problem near the equilibrium we obtain equation (1) with Λ = 8.
Some papers that applied the properties of the linearized equation to the nonlinear problem were [20],
[18] and [26]. There are several variations of the Sitnikov problem. We are going to apply our results
to two of them. On one hand, in [27] it is formulated a generalization of the Sitnikov problem: N ≥ 2
primaries of equal masses in elliptic coplanar orbits instead of only two. The circular case has been
treated in [4], and the elliptic one in [28], [11] and [30]. The linearization near the equilibrium of this
(N + 1)-Sitnikov problem coincides with equation (1) for certain discrete values of Λ that only depend
on N . This allows us to determine the regions of the (e,Λ)-plane for which the equilibrium is stable
in the sense of Lyapunov, and, the regions for which there exist symmetric periodic solutions with a
given number of zeros. On the other hand, the paper [12] considers a massless particle confined to a
circumference instead of a straight line, as in the classical problem. Again, equation (1) is the linear
equation near the equilibrium in the center of mass of the two primaries. In this case Λ is proportional
to the radius of the circumference, so, here Λ is a continuous parameter. In this paper we find out the
points (e,Λ) for which the equilibrium is Lyapunov-stable.

The linear Sitnikov equation is an example of the Hill’s equation

ẍ+ a(t)x = 0, (3)

where a(t) is a periodic function. The case of even Hill’s equation a(−t) = a(t) is especially considered
due to further symmetry properties. We will say that an ODE, like (3), is stable if and only if every
solution of it is bounded, otherwise it is unstable. Our principal theorem gives a full description of
the structure of stability/instability regions of equation (1) in the plane of parameters e,Λ. Instability
regions of a biparametric Hill’s equation are usually called resonance tongues.

There is a vast literature that deals with the resonance tongues in the (α, β)-plane of the case a(t) =
α+ βp(t), which is a generalization of the well known Mathieu’s equation. The classical Mathieu case,
for which p(t) = cos t, presents resonance tongues emanating from the points ((n/2)2, 0), n = 1, 2, ...,
see [31]. Some papers, such as [1], [5], [6] and [13], deal with alternative versions or perturbations of
the Mathieu’s equation. It turns out that similar resonance tongues appear with a new feature, the
boundaries of a certain tongue cross each other creating, the commonly named, instability pockets.

It is remarkable that in our case resonance tongues behave considerably different than what has
been found so far: some tongues vanish and the rest have no pockets. Equation (1) is a biparametric
even Hill’s equation, with Λ as multiplicative parameter, just like β, and e as nonlinear parameter,
instead of the additive parameter α. It is important to mention that in the (α, β)-plane standard theory
of periodic eigenvalues can be applied for horizontal lines (β constant) and if, furthermore, p(t) > 0,
standard theory can also be applied for vertical lines (α constant). See [19], [10], or the more recent book
[7]. However, in our (e,Λ)-plane, standard theory can only be applied for vertical lines (e constant),
since r(t, e) > 0, whereas for horizontal lines (Λ constant) a more complicated behavior is shown, as one
can see in [20] and [18] for the specific value Λ = 8.

Under the change of variable t = t(u) = u − e sinu, where u is the eccentric anomaly, the linear
Sitnikov equation (1) can be converted into

(1− e cosu)x′′ − e sinu x′ + Λx = 0, (4)

where x′ = dx/du. This is an example of the so-called Ince’s equation. The most interesting topic
related to this equation is the coexistence problem, i.e. existence of two independent periodic solutions
with the same period. See [19] Chapter 7. Its applications to the linearization of the Sitnikov problem
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was first studied in [20], also, as it was pointed out in [18], the numerical computation of periodic
eigenvalues of (1) is much faster using the form (4). In this paper we extend for all Λ > 0 the results of
[20] concerning coexistence, which turn out to be the key to understand the structure of our particular
resonance tongues.

This paper is organized as follows. In Section 2 the stability diagram (Figure 1) of the linear Sitnikov
equation and its resonance tongues are described, mostly based on Theorem 1. The proof of it is carried
out in Section 3. In Section 4 we apply our results to the (N + 1)-Sitnikov problem, see [28] and [11],
and to the curved Sitnikov problem, see [12].

2 Stability diagram of the linear Sitnikov equation

Theorem 1 In the (e,Λ)-plane of parameters there exist three families of functions Λ↓
n, Λ

↑
n and Λn,

with n = 1, 2..., analytic in e ∈ [0, 1) and such that the equation (1) has a non-trivial 2π-periodic solution
if and only if Λ = Λn(e), and, it has a non-trivial 4π-periodic (not 2π-periodic) solution if and only if
Λ = Λ↓

n(e) or Λ = Λ↑
n(e)

They have the following properties

i) For e = 0 they satisfy

Λ↑
n(0) = Λ↓

n(0) = (n− 1/2)
2
, Λn(0) = n2,

whereas for each value e ∈ (0, 1), they are arranged as monotone increasing sequences

Λ↓
1(e) < Λ↑

1(e) < Λ1(e) < ... < Λ↓
n(e) < Λ↑

n(e) < Λn(e) < ..., (5)

and, furthermore, periodic solutions corresponding to Λ↓
n(e) or Λ↑

n(e) have 2n− 1 zeros in [0, 2π)
and the corresponding to Λn(e) have 2n zeros in the same interval.

ii) If Λ = Λn(e) then every solution is 2π-periodic (coexistence), whereas if Λ = Λ↓
n(e) or Λ = Λ↑

n(e)
then there exists an unbounded solution.

iii) The instability regions of (1) are bounded and defined by

Rn = {(e,Λ) : Λ↓
n(e) ≤ Λ ≤ Λ↑

n(e)}. (6)

iv) The function Λ1(e) equals 1 identically, additionally, for each n ≥ 2

1 ≤ lim inf
e→1−

Λn(e) ≤ lim sup
e→1−

Λn(e) ≤ 9/8,

moreover,

lim
n→∞

(

lim inf
e→1−

Λn(e)

)

=
9

8
.

The stability diagram in Figure 1 was first published in [11], in order to study the linear stability
of the equilibrium in the (N + 1)-Sitnikov problem. There, the approach was local: perturbing the
associated integrable hamiltonian for e = 0 and expanding the functions Λ↓

n, Λ
↑
n and Λn, n = 1, 2, 3, for
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Figure 1: Left: Stability diagram of the linear Sitnikov equation. Unstable regions (shaded regions) are
limited by parabolic unstable lines Λ↓

n and Λ↑
n. The blue ones correspond to even 4π-periodic solutions,

orange ones to odd 4π-periodic solutions and green ones to 2π-periodic solutions in coexistence. Right:
Zoom in of some unstable regions.
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small e. Theorem 1 characterizes, from a global approach, the underlying structure of the diagram and
shows that there are interesting asymptotic phenomena as e → 1.

The ordering in i) is a sequence of periodic eigenvalues for a fixed value of e. Standard theory of
periodic eigenvalues can be applied since Λ/r(t, e)3 > 0, see [10]. However, the sequence (5) has addi-
tional information that comes from theory of Ince’s equation, that is, information about the coexistence
problem. As we will see in Lemma 1, there is coexistence for 2π-periodic solutions for every value of e
and 4π-periodic solutions cannot be in coexistence for e ∈ (0, 1).

From standard theory of periodic eigenvalues of the even Hill’s equation we know that the 4π-
periodic solutions associated to the curves Λ↓

n(e) or Λ↑
n(e) must be either odd or even. Moreover, the

symmetry is preserved along each curve and, additionally, for each n, periodic solutions corresponding
to Λ↓

n has the opposite symmetry than those corresponding to Λ↑
n. Figure 1 shows that there is no direct

correspondence between the type ↑ or ↓ and the symmetry of periodic solutions. For instance, for n = 1
odd periodic solutions correspond to Λ↑

1, while for other values of n they correspond to curves of type ↓.
In the Mathieu-type problems m is the order of the resonance tongue that arises from the point

(α, β) = ((m/2)2, 0), m = 1, 2, ... Simmilarly, in our case, the resonance tongue of order m is the tongue
that emerges from the point (e,Λ) = (0, (m/2)2). Thus, point iii) claims that there only exist resonance
tongues of odd order m = 2n− 1 and are limited by the graphs of Λ↓

n or Λ↑
n, whereas those tongues of

even order m = 2n collapse into the curves of coexistence Λn. Furthermore, the ordering in i) implies
that the remaining resonance tongues have no pockets. This is remarkable because, as far as we know,
it has not been studied a Hill’s equation with vanishing tongues.

Regarding point iv), it is interesting that the vanishing tongue collapsed in Λ1 is constant and equals
1 for all e. Actually, it is easy to find the general 2π-periodic solutions explicitly in the variable u, thanks
to the form of Ince’s equation (4). Note also that the sequence (5) implies that analogous expressions
to those of point iv) also hold for Λ↓

n and Λ↑
n.

There are another features for which we did not find an analytical proof and are suggested by Figure
1. For example, it looks like Λ↓

1(e) → 0 and Λ↑
1(e) → 1 as e → 1−. It means that under Λ = 1 there

might be only one transition from stability to instability, except for the value Λ = 1/4, which might be
of instability for all e ∈ [0, 1).

Also, it seems that all the curves are strictly decreasing or increasing for e 6= 0, this problem is
complicated because e is a nonlinear parameter.

If we call δn(e) = Λ↑
n(e)− Λ↓

n(e) the width of the tongue of order 2n− 1, then, according to [11], as
e → 0

δ1(e) =
3

4
e+O(e3), δ2(e) =

45

1024
e3 +O(e5), δ3(e) =

525

1048576
e5 +O(e7),

for n ≥ 4 it becomes more and more complicated, so, a similar estimate for all n, like that was made in
[17], has not been possible to accomplish. However, considering that close to e = 0 the solutions of the
equation (1) behave as solutions of the Mathieu equation

ẍ+ Λ(1 + 3e cos t)x = 0,

according to [17], the width of the m-resonance tongue is of the order O(emΛm) as e → 0. In our case
there are only tongues of odd order m = 2n − 1, then, δn(e) should be at least of the order O(e2n−1)
because Λ↓

n(e) and Λ↑
n(e) are of the order O(1).

It is also remarkable that for n ≥ 2 the resonance tongues remain very thin even for small values
of n and large values of e, actually, almost all the tongues concentrate in Λ ∈ [1, 9/8] as e → 1−. In
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contrast, in other stability diagrams with a non-bounded additive parameter α the resonance tongues
expand for values of α large enough. In the right panel of Figure 1 we can see that for such a large
value of the eccentricity as e = 0.8 tongues have to be magnified very much in order to observe clearly
the instability region.

3 Proof of Theorem 1

This proof is carried out in four steps.

3.1 Existence of Λ↓
n, Λ

↑
n and Λn

Let x = x(t, e,Λ) be a solution of (1). It will be 2π-periodic in t if and only if it satisfies the periodic
boundary conditions

x(0, e,Λ) = x(2π, e,Λ), ẋ(0, e,Λ) = ẋ(2π, e,Λ), (7)

respectively, it will be 4π-periodic1 in t if and only if it satisfies

x(0, e,Λ) = −x(2π, e,Λ), ẋ(0, e,Λ) = −ẋ(2π, e,Λ). (8)

Since Λ/r3(t, e) > 0 we can apply Theorem 3.1 in [10], Chapter 8. It states that the corresponding
periodic eigenvalues of the equation (1), given a value of e, satisfy the following sequence

−∞ < Λ+
0 (e) < Λ−

1 (e) ≤ Λ−
2 (e) < Λ+

1 (e) ≤ Λ+
2 (e) < Λ−

3 (e) ≤ Λ−
4 (e) < ..., (9)

where Λ+
i (e), i ≥ 0, are eigenvalues corresponding to (7) and Λ−

i (e), i ≥ 1, are eigenvalues corresponding
to (8). One of the strict equalities meets for eigenvalues of type ” + ” (or ” − ”) if and only if there
exist two independent 2π-periodic solutions (or 4π-periodic solutions). Furthermore, solutions with
eigenvalue Λ = Λ+

0 (e) has no zeros in the interval [0, 2π), while solutions with eigenvalue Λ = Λ+
2i−1(e)

or Λ+
2i(e), i ≥ 1, have 2i zeros and solutions with eigenvalue Λ = Λ−

2i−1(e) or Λ
−
2i(e), i ≥ 1, have 2i− 1

zeros.
For e = 0 the general solution of (1) is

x(t, 0,Λ) = A cos(
√
Λt) +B sin(

√
Λt), A,B ∈ R, (10)

it will be 2π-periodic if and only if Λ = n2, n = 1, 2..., consequently,

Λ+
0 (0) = 0, Λ+

2n−1(0) = Λ+
2n(0) = n2,

notice that we have taken into account that for e = 0,Λ < 0, there is no periodic solution. Similarly,
x(t, 0,Λ) will be 4π-periodic solutions if and only if Λ = (n− 1/2)2, n = 1, 2..., that is to say,

Λ−
2n−1(0) = Λ−

2n(0) = (n− 1/2)2.

For Λ = 0 the general solution is

x(t, e, 0) = c1 + c2t, c1, c2 ∈ R,

1From now on with 4π-periodic we mean also not 2π-periodic, unless otherwise indicated.
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since for c2 = 0 the periodic conditions (7) are satisfied, then, we can identify Λ+
0 (e) ≡ 0.

In order to obtain the sequence (5) we need to prove that for the eigenvalues of type + (resp. of type
−) the symbols ≤ in (9) must be replaced by = (resp. by <). As we mentioned before, this problem
is equivalent to the problem of coexistence, that is, existence of two independent 2π-periodic solutions
(resp. 4π-periodic solutions).

This goal follows directly from the following lemma, that will be proved at the end of this part.

Lemma 1 The 4π-periodic solutions of (1), with e ∈ (0, 1), are never in coexistence, whereas their
2π-periodic solutions are in coexistence for all e ∈ [0, 1).

This lemma allows us to rewrite the sequence (9) as

0 < Λ−
1 (e) < Λ−

2 (e) < Λ+
1 (e) = Λ+

2 (e) < Λ−
3 (e) < Λ−

4 (e) < Λ+
3 (e) = Λ+

4 (e) < ...,

and define

Λn(e) := Λ+
2n−1(e) = Λ+

2n(e), Λ↓
n(e) := Λ−

2n−1(e) 6= Λ↑
n(e) := Λ−

2n(e),

and, as a result, solutions associated with Λn(e) have 2n zeros in [0, 2π), whereas solutions associated
with Λ↓

n(e) and Λ↑
n(e) have 2n− 1 zeros in [0, 2π).

Proof of Lemma 1.
This proof is based on the fact that, as we mentioned in the Introduction, the linear Sitnikov

equation (1) can be converted into an Ince’s equation with a change of variable t = t(u) =
u− e sinu, where u is the eccentric anomaly, it turns out to be

I(x, e,Λ) := (1− e cosu)x′′ − e sinu x′ + Λx = 0,

where x′ = dx/du. In our case we are going to make use of Theorems 7.1 and 7.3 in [19] that
deal with the coexistence problem of an Ince’s equation.

In general, for every Ince’s equation

4(1 + a cosu)x′′ + 2b sinux′ + (c+ d cosu)x = 0,

there are associated two polynomials

Q(µ) = 2aµ2 − bµ− d/2, Q∗(µ) = a(2µ− 1)2 − b(2µ− 1)− d,

such that (Theorem 7.1 in [19]) if there exist coexistence of 2π-periodic solutions (resp. 4π-periodic
solutions) then there exists an integer µ such that Q(µ) = 0 (resp. Q∗(µ) = 0).

The parameters corresponding to our equation are

a = −e, b = −2e, c = 4Λ, d = 0,

so, the Ince’s polynomials are in our case

Q(µ) = −2eµ(µ− 1), Q∗(µ) = −e(2µ− 1)(2µ− 3),

then, for e 6= 0, the coexistence is only possible for 2π-periodic solutions.
For the special case Λ = 1 we easily find the following two independent 2π-periodic solutions

in coexistence
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cosu− e, sinu,

but for values Λ 6= 1 we need the following.
We know that there exists the sequence of periodic eigenvalues (9) with their respective eigen-

functions, we are interested in the 2π-periodic eigenfunctions, whose eigenvalues are Λ+
i (e).

Now, according to Theorem 7.3 in [19], if there exists a 2π-periodic symmetric solution, with
Fourier series

k
∑

n=0

An cosnu, Ak 6= 0, or

k
∑

n=1

Bn sinnu, Bk 6= 0,

where k is greater than largest non-negative integer root of Q(µ), then there is coexistence of
2π-periodic solutions.

In our case the largest non-negative integer root ofQ(µ) is 1. In addition, by direct substitution
we check that our 2π-periodic eigenfunctions cannot have any of the following forms

x̂1(u) = A0 +A1 cosu, A1 6= 0, x̂2(u) = B1 sinu, B1 6= 0,

since for e 6= 0

I(x̂1, e,Λ
+
i (e)) = (Λ+

i (e)− 1)A1 cosu+ eA1 + Λ+
i (e)A0 6= 0,

I(x̂2, e,Λ
+
i (e)) = (Λ+

i (e)− 1)B1 sinu 6= 0,

then, our 2π-periodic eigenfunctions must have a Fourier series with more non-vanishing terms,
which implies that 2π-periodic solutions are in coexistence, and this is independent of the value
of e.

3.2 Periodic solutions and stability

Let x1 and x2 be the normalized solutions of (1), i.e. solutions generated by the initial conditions

x1(0, e,Λ) = 1, ẋ1(0, e,Λ) = 0, x2(0, e,Λ) = 0, ẋ2(0, e,Λ) = 1,

then, x1 is always an even solution and x2 an odd solution.
Equation (1) is an even Hill’s equation, since Λ/r3(e, t) is an even function in t. Normalized solutions

play a special role in this case because they satisfy, not indicating dependence on e and Λ explicitly, the
relations

x1(2π) = 2x1(π)ẋ2(π)− 1 = 2ẋ1(π)x2(π) + 1

x2(2π) = 2x2(π)ẋ2(π)

ẋ1(2π) = 2x1(π)ẋ1(π)

ẋ2(2π) = x1(2π),

(11)

and
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ẋ1(π, e,Λ) = 0 ⇔ x1 is 2π-periodic
x2(π, e,Λ) = 0 ⇔ x2 is 2π-periodic
x1(π, e,Λ) = 0 ⇔ x1 is 4π-periodic
ẋ2(π, e,Λ) = 0 ⇔ x2 is 4π-periodic.

(12)

Moreover, if there exists a 2π-periodic (resp. 4π-periodic) solution, then, at least one of the nor-
malized solution is 2π-periodic (resp. 4π-periodic). From this statement follows that the 4π-periodic
solutions associated to Λ↓

n(e) or Λ↑
n(e) are proportional either to x1 or to x2, and then, they are sym-

metric.
All the information about stability of a Hill’s equation, such as (1), can be formulated in terms of a

monodromy matrix like

Φ(2π, e,Λ) =

(

x1(2π, e,Λ) x2(2π, e,Λ)
ẋ1(2π, e,Λ) ẋ2(2π, e,Λ)

)

,

where Φ(t, e,Λ) is the fundamental matrix of (1) such that Φ(0, e,Λ) = 1. Here, 1 is the identity
matrix. Every fundamental matrix Φ(t, e,Λ) associated to a Hill’s equation, such as (1), satisfies that
detΦ(t, e,Λ) = detΦ(0, e,Λ) = 1, according to the Abel-Liouville formula. Particularly, it is satisfied
by the monodromy matrix Φ(2π, e,Λ). This is equivalent to say that Φ(2π, e,Λ) belongs to, Sp(2,R),
the symplectic group of 2× 2 matrices, so it has the form

Φ(2π, e,Λ) =

(

α+ δ β + γ
−β + γ α− δ

)

, α2 + β2 = 1 + γ2 + δ2, (13)

where α, β, γ, δ are real-valued functions of (e,Λ). Moreover, for an even Hill’s equation, Φ(2π, e,Λ)
belongs to a three-dimensional subset of Sp(2,R) defined by δ = 0. This subset is a subgroup of
Sp(2,R) and represents a γ-axis one-sheeted hyperboloid in the (α, β, γ)-space.

The stability criterion for Hill’s equation coincides with the standard classification of Sp(2,R) ma-
trices.

Definition 1 If Φ(2π, e,Λ) has the form (13), then it is

• Elliptic stable if |α(e,Λ)| < 1

• Parabolic if α(e,Λ) = ±1

– Parabolic stable if Φ(2π, e,Λ) = ±1

– Parabolic unstable if Φ(2π, e,Λ) 6= ±1

• Hyperbolic unstable if |α(e,Λ)| > 1.

Considering (11) and (12), Φ(2π, e,Λ) is parabolic with α(e,Λ) = +1 (resp. with α(e,Λ) = −1) if
and only if there exists a non-trivial 2π-periodic (resp. 4π-periodic) solution. It will be parabolic stable
if and only if there is coexistence and it will be parabolic unstable if and only if there is not. Then,
the points (e,Λ) of the type (e,Λn(e)), e ∈ [0, 1), and (0, (n − 1/2)2) correspond to parabolic stable
equations. Similarly, the points of the type (e,Λ↓

n(e)) and (e,Λ↑
n(e)) for e 6= 0 correspond to parabolic

unstable equations.
In addition, from Theorem 2.1 in [19] we know that, for each e ∈ [0, 1), the equation is hyperbolic

unstable in the open interval between two consecutive periodic eigenvalues associated to the same period.
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According to Lemma 1 the equation is hyperbolic unstable in the intervals of the type (Λ↓
n(e),Λ

↑
n(e)).

Actually, since α(e,Λ) = ẋ2(2π, e,Λ) = x1(2π, e,Λ) varies continuously with Λ it is also true that
α(e,Λ) ≤ 1, particularly, the hyperbolic unstable regions satisfy

α(e,Λ) < −1 ∀(e,Λ) : Λ↓
n(e) < Λ < Λ↑

n(e), e 6= 0, (14)

while the elliptic stable regions satisfy that −1 < α(e,Λ) < 1 for each point (e,Λ) such that

0 < Λ < Λ↓
1(e) or Λ↑

n(e) < Λ < Λ↓
n+1(e), Λ 6= Λn(e).

3.3 Analyticity of functions and associated symmetry

The main tool we will apply repeatedly here is the real analytic version of the implicit function theorem
(Theorem 2.4.4 in [16]). According to it, u(t, e), defined in (2), can be seen as a real analytic function
defined for (t, e) ∈ R × (−1, 1), even though e can be interpreted as eccentricity only for non-negative
values. The same is true for r(t, e). In consequence, according to the real analytic version of the theorem
of differentiability of solutions respect to parameters, the solutions of equation (1) will be analytic in
the whole domain (t, e,Λ) ∈ R× (−1, 1)×R. In the following we will take this into account for studying
the analyticity of the functions Λ↓

n, Λ
↑
n and Λn for any fixed value e, including e = 0.

It is satisfied that

α(e,Λn(e)) = 1 α(e,Λ↓
n(e)) = α(e,Λ↑

n(e)) = −1,

this suggests to use the implicit function theorem to prove analyticity of Λ↓
n, Λ

↑
n and Λn again. However,

this will not work for two reasons. First, the identity Λ↓
n(0) = Λ↑

n(0) implies that the uniqueness of the
implicit function theorem is lost at e = 0. Second, it can be checked that the coexistence phenomenon
for solutions of period 2π implies that the partial derivative ∂α

∂Λ (e,Λn(e)) vanishes. The following lemma
shows us that it is more convenient to define the functions Λ↓

n, Λ
↑
n and Λn implicitly by the expressions

(12), that is, in terms of the corresponding symmetric periodic solutions.

Lemma 2 If x1(t, e,Λ) = 0 then

∂x1

∂Λ
(t, e,Λ) 6= 0.

This is also true replacing x1 by any of the functions x2, ẋ1, ẋ2.

Proof of Lemma 2.
We define

zi(t, e,Λ) =
∂

∂Λ
xi(t, e,Λ), i = 1, 2,

if we take derivative with respect to Λ in the equation (1) we see that z1 must satisfy

z̈1 +
Λ

r3(t, e)
z1 = −x1(t, e,Λ)

r3(t, e)
,

the formula of variation of constantants gives us

10



z1(t, e,Λ) = x1(t, e,Λ)

∫ t

0

x1(s, e,Λ)x2(s, e,Λ)

r3(s, e)
ds− x2(t, e,Λ)

∫ t

0

x2
1(s, e,Λ)

r3(s, e)
ds,

and if x1(t, e,Λ) = 0 we have

z1(t, e,Λ) = −x2(t, e,Λ)

∫ t

0

x2
1(s, e,Λ)

r3(s, e)
ds 6= 0,

since the integrand is non-negative and x2(t, e,Λ) 6= 0. The last is true because x1 and x2 are
independent nontrivial solutions and, therefore, neither they nor their derivatives can have a
common root.

We proceed analogously in the case of a zero of ẋ1(t, e,Λ), x2(t, e,Λ) and ẋ2(t, e,Λ).

The real analytic version of the implicit function theorem guarantees that, given a fixed point
(ê, Λ̂), Λ̂ 6= 0, such that

ẋ1(π, ê, Λ̂) = 0,

there exists an open neighborhood U of ê and a function λ : U → R, such that

ẋ1(π, e, λ(e)) = 0 ∀e ∈ U, (15)

that is analytic at ê, since Lemma 2 assures that

∂ẋ1

∂Λ
(π, ê, Λ̂) 6= 0.

According to (12) and (15), the solutions x1(t, e, λ(e)) are 2π-periodic and satisfy the same boundary
conditions for all e ∈ U . Besides, from Sturm theory we know that the zeros of the solution x1(t, e, λ(e))
are simple. Consequently, the number of zeros in the interval [0, 2π) of x1(t, e, λ(e)) is conserved as long
as e ∈ U .

We have proved that if there exists a non-trivial 2π-periodic solution for (ê, Λ̂), Λ̂ 6= 0, then, there
must exists an integer n 6= 0 such that Λ̂ = Λn(ê). This implies that the solution x1(t, e, λ(e)), e ∈ U ,
has 2n zeros in the interval [0, 2π). The only way for this to happen is that the analytic function λ
coincides with the function Λn in the whole U . This can be done for each ê ∈ [0, 1), then, the functions
Λn are analytic for each e ∈ [0, 1).

Similarly, for a given non-negative integer n, there is coexistence of 4π-periodic solutions with 2n−1
zeros in [0, 2π) corresponding to the fixed point (e,Λ) = (0, (n − 1/2)2). Then, there must exist two
analytic functions λeven, λodd : [0, 1) → R, defined respectively by

x1(π, e, λ
even(e)) = 0, ẋ2(π, e, λ

odd(e)) = 0, (16)

such that λeven(0) = λodd(0) = (n−1/2)2. This functions generate 4π-periodic solutions x1(t, e, λ
even(e)),

x2(t, e, λ
odd(e)) with 2n − 1 zeros in [0, 2π). Now we see clearly that, since there is no coexistence for

e 6= 0, then, one of the functions must be Λ↓
n and the other Λ↑

n.

11



Λ

e
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9/8

1

1e∗

Λn

Figure 2: The shaded region is forbidden for Λn(e).

3.4 Asymptotic behavior as e → 1−

Recall that we can write equation (1) in the form of Ince’s equation as

(1− e cosu)x′′ − e sinu x′ + Λx = 0 (17)

and if we take Λ = 1, by direct substitution, we find that

cosu− e, sinu, (18)

are two symmetric independent 2π-periodic solutions of (17) for each value of e ∈ [0, 1). These solutions
have 2 zeros for u ∈ [0, 2π), the same is true in the variable t. This implies that Λ1(e) ≡ 1.

According to the ordering in (5), last result implies that only the graphs of Λ↓
1 and Λ↑

1 lie below the
horizontal line Λ = 1, whereas the rest lie above.

The first consequence is that

lim inf
e→1−

Λn(e) ≥ 1, n ≥ 2,

similarly for Λ↓
n(e) and Λ↑

n(e). In order to set an upper bound for the upper limit as e → 1− we need
the following lemma.

Lemma 3 (from [28], Theorem 2) Given a fixed value of Λ, as e → 1− the number of zeros in the
interval [0, 2π) of a solution x = x(t, e,Λ) of the equation (1) tends to infinity if Λ > 9/8, and it is
bounded if Λ < 9/8.

Sturm comparison theory guarantees that this Lemma is a direct consequence of Theorem 2 in [28].
Let e and C > 9/8 be fixed values and let νC be the number of zeros of a solution x(t, e, C) in [0, 2π).

According to Sturm comparison theory between every two consecutive zeros of x(t, e, C) there must be
a zero of any solution x(t, e,Λ),Λ > C, then its number of zeros in [0, 2π) is larger or equal to νC − 1.

Let n be a fixed positive natural number, then, from Lemma 3 we know that there exists a value e∗
such that for any solution x(t, e, C), e > e∗ we have that νC is larger than some number 2n+ 1.

12



Then, any solution x(t, e,Λ), e > e∗, Λ > C, has more than 2n zeros in [0, 2π). Since solutions
associated to Λn has exactly 2n zeros in [0, 2π), then, the region such that e > e∗, Λ > C, is forbidden
for the graph of the function Λn (Figure 2), then

lim sup
e→1−

Λn(e) ≤ C,

and, since we can take C as close as we want to 9/8, for each n ≥ 2

lim sup
e→1

Λn(e) ≤ 9/8.

If we now take a horizontal line Λ = C < 9/8, Lemma 3 implies that there exist a finite number of
functions Λn whose graph crosses the line Λ = C. Since the values Λn(e), e 6= 0, are organized in an
infinite increasing sequence (5), then there exists an integer n0 > 1 such that

lim inf
e→1−

Λn(e) ≥ C, n ≥ n0.

But again, we can take C as close as we want to 9/8, then, it must be satisfied that

lim
n→∞

(

lim inf
e→1−

Λn(e)

)

=
9

8
.

4 Applications

4.1 Stability of the equilibrium of the (N + 1)-Sitnikov problem

We want to apply our results mainly to the (N +1)-Sitnikov problem, treated in [28], [11], [30], and first
posed in [27]. Consider a system of N gravitating bodies of equal mass M moving in the same plane.
The k-th body is moving according to

v̈k +GM
∑

j 6=k

vk − vj
|vk − vj |3

= 0, j, k = 1, ..., N, (19)

where vk = vk(t) ∈ C is its position and G is the gravitational constant. If, at each time, the bodies
are distributed in the vertexes of a regular polygon with N edges we can take the polar coordinates
vk = ρei(θ+

2π

N
k), then, equation (19) becomes

v̈k +
GMf(N)vk

ρ(t)3
= 0, k = 1, ..., N, (20)

where f(N) must be a real number because v̈k must be parallel to vk. After simplifying we get

f(N) =
1

4

N−1
∑

m=1

1

sinm π
N

. (21)

Equation (20) corresponds to the motion of a body in a newtonian potential, consequently, the k-th
body’s trajectory describes a keplerian ellipse, so, the distance between the focus and the body is of the
form

13
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ζ

ρ
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Figure 3: (N + 1)-Sitnikov problem.

ρ(t, e, a) = a(1− e cosu(t, e)), (22)

where a is the semi-major axis of the ellipse, e ∈ [0, 1) is its eccentricity and u(t, e) is its eccentric
anomaly, which satisfies the well known Kepler’s equation

t = u(t, e)− e sinu(t, e).

By a direct substitution we can say that (22) is a solution of (20) if and only if it is satisfied that

GMf(N) = a3, (23)

which is the corresponding Kepler’s third law for the body. Note that, comparing to the usual Kepler’s
third law, Mf(N) plays a role of effective mass that determines the motion of each body. Let us now
consider a particle of mass m influenced gravitationally by the N bodies, this particle is confined to the
perpendicular line that passes trough the center of the polygon, then, the force exerted on it is

F = N
GMm

ξ2
cosα =

NGMm

ξ3
ζ, ξ =

√

ζ2 + ρ2,

ζ is the distance between the particle and the focus, ξ is the distance between the particle and one of
the primaries. See Figure 3. For M ≫ m the configuration stays almost unchanged and the particle
moves according to the equation

ζ̈ +
GMNζ

(ζ2 + ρ2(t, e, a))3/2
= 0, (24)

and, since GM can be replaced by a3/f(N), this equation can be rescaled to

z̈ +
Λ(N)z

(z2 + r2(t, e))3/2
= 0, Λ(N) =

N

f(N)
(25)

14



where z = ζ/a, r(t, e) = 1 − e cosu(t, e), and f(N) is defined in (21). Note that Λ = 8λ, where λ is
the parameter used in [28], whereas for the classical Sitnikov problem Λ(2) = 8 as we asserted in the
Introduction. Note that in the literature it is most common to take the normalization G = 1, M =
1/2, a = 1/2, in equation (24). However, as we have shown here, the problem can be scaled and its
qualitative properties do not depend on a or M , which can have any value as long as they satisfy the
constraint (23).

In this paper we are going to establish the values of the parameters for which the trivial solution
z = 0 is stable/unstable in the sense of Lyapunov. Following [23] and [22] we can write equation (25) as

z̈ + a(t, e,N)z + c(t, e,N)z3 + d(t, e,N, z) = 0, (26)

where,

a(t, e,N) =
Λ(N)

r3(t, e)
, c(t, e,N) = −3

2

Λ(N)

r5(t, e)
,

and the remainder d(t, e,N, z) = o(z3) as z → 0 and it is 2π-periodic in t. The main results from
[23] and [22] relate the stability of the equilibrium for equations in the form (26) and stability of their
linearization, in our case (1), when c(t, e,N) meets a requirement of sign. Since our problem satisfies
that c(t, e,N) ≤ 0 we can use these results to prove the following theorem. Let

R∗
n = {(e,Λ) : Λ↓

n(e) < Λ ≤ Λ↑
n(e), e 6= 0},

be a set of regions in the stability diagram of parameters (e,Λ) of (1).

Theorem 2 Given N ≥ 2, the equilibrium of (25) is stable in the Lyapunov sense if and only if
(e,Λ(N)) /∈ R∗

n.

Figure 4 is the stability diagram for the linear Sitnikov equation incluiding the lines corresponding
to the discrete values Λ = N/f(N). According to Theorem 1, there are some relevant values of Λ. In
the passage from N = 234 to 235 the corresponding value of Λ(N) becomes smaller than 9/8 (this was
already found in [28]), from N = 472 to 473 the corresponding Λ(N) becomes smaller than 1. As N
becomes larger it is more difficult to calculate f(N), even numerically. However, based on the relation
x ≥ sinx ≥ 2x/π, x ∈ [0, π/2], we can make the following estimate that is useful for N large

N

π
HN/2 <

N/2
∑

m=1

1

sinm π
N

<
N

2
HN/2,

or equivalently,

2π

HN/2
> Λ(N) >

4

HN/2
,

where Hn is the n-th harmonic number, i. e., the n-th partial sum of the harmonic series. We have used
that sin(N − m)π/N = sinmπ/N . Since it is well known that, for n large, Hn = lnn + γ + O(1/n),
where γ is the Euler–Mascheroni constant, we see clearly that Λ(N) → 0 as N → ∞. This also allows
us to estimate that Λ(N) reaches values close to 1/4 for N such that 9.23 · 1010 > N > 9.98 · 106.

In order to introduce the proof of Theorem 2 recall the Definition 1 for Λ = Λ(N). According
to Theorem from [23], if the linear equation associated to (26) is stable, and either c(t, e,N) ≥ 0 or
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Figure 4: Horizontal grey lines correspond to a Λ = N/f(N).
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Figure 5: Sp(2,R) as an open solid torus. The oriented curves at the ends of the cylinder are identified
in order to get the torus. Each cone, excluded its vertex and its base, represents a connected component
of parabolic unstable matrices, it is indicated a representative of the conjugation class.

c(t, e,N) ≤ 0 for all t ∈ R, then its equilibrium is Lyapunov-stable. This result guarantees that, if the
monodromy matrix associated to (1) is elliptic or parabolic stable, then, the equilibrium of the nonlinear
equation (25) is Lyapunov-stable. However, as it was pointed out in [22], if the monodromy matrix is
parabolic unstable the equilibrium can still be stable or unstable in the sense of Lyapunov, depending
on its conjugation class in Sp(2,R).

Let us provide some definitions needed to apply Theorem 5.1 in [22]. We say that two matrices
A,B ∈ Sp(2,R) are conjugate if there exists another matrix G ∈ Sp(2,R) such that B = GAG−1; we
denote this relation by A ∼ B.

It is well known that every parabolic matrix A ∈ Sp(2,R) is conjugate to a matrix of the form

M±
µ =

(

±1 µ
0 ±1

)

, µ ∈ R,

furthermore, if A is a monodromy matrix associated to an even Hill’s equation, then, A has either the
form M±

µ or (M±
µ )T , where (·)T denote transposition.

Lemma 4 It is satisfied that M±
µ ∼ (M±

−µ)
T . Furthermore, assume µ 6= 0, then, M±

µ ∼ M±
kµ if and

only if k > 0.

This algebraic lemma, whose proof is left to the reader, shows us that there are four conjugation
classes of parabolic unstable matrices in Sp(2,R) that, moreover, correspond to four connected compo-
nents, see Figure 5.

Lemma 5 Let the monodromy matrices of (1) for e 6= 0, then, for each n

Φ(2π, e,Λ↓
n(e)) ∼ M−

1 , Φ(2π, e,Λ↑
n(e)) ∼ M−

−1.

Proof of Lemma 5.
First, it is easy to check that, given n, the monodromy matrices associated to the values

Λ = Λ↓
n(e) (or Λ = Λ↑

n(e)) belong to the same conjugation class for all e 6= 0. Note that the map
e 7→ Φ(2π, e,Λ↓

n(e)) is a continuous curve that starts at −1 and moves along one of the cones
labeled by M−

1 or M−
−1 shown in Figure 5. It must stay in one of that cones because there is no

coexistence for e 6= 0.
In order to know what is the corresponding cone let us first consider the case when the 4π-

periodic eigenfunctions associated to Λ = Λ↓
n(e) are even, which implies, according to relations

(11) and (12), that
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Λ↓
n(0) = (n− 1/2)2

ΛΛ

ẋ2(π, 0,Λ)

Λ↓
n(e)

Λ↑
n(e)

ẋ2(π, e,Λ)

Figure 6: Left: For e = 0, the graph of ẋ2(π, 0,Λ). Right: For a fixed e 6= 0 we obtain the graph of
ẋ2(π, e,Λ) deforming the previous one.

x1(π, e,Λ
↓
n(e)) = 0, Φ(2π, e,Λ↓

n(e)) = M−
µ ,

where

µ = x2(2π, e,Λ
↓
n(e)) = 2x2(π, e,Λ

↓
n(e))ẋ2(π, e,Λ

↓
n(e)) 6= 0.

In order to find out the sign of µ, recall (10) for e = 0 and t = π

x2(π, 0,Λ) =
1√
Λ
sin

√
Λπ, ẋ2(π, 0,Λ) = cos

√
Λπ. (27)

From analiticity of solutions with respect to the parameters we know that, for a small enough
e > 0,

sgnx2(π, e,Λ
↓
n(e)) = sgnx2(π, 0,Λ

↓
n(0)) = (−1)n+1.

since Λ↓
n(0) = (n− 1/2)2. We cannot find out the sign of ẋ2(π, e,Λ

↓
n(e)) exactly in the same way,

since ẋ2(π, 0,Λ
↓
n(0)) = 0. However, note that the zeros of the graph of the function Λ 7→ ẋ2(π, 0,Λ)

are simple. Then, due to analiticity of solutions with respect to the parameters, we can smoothly
deform the previous graph, keeping its zeros simple, in order to obtain the graph of the map
Λ 7→ ẋ2(π, e,Λ), for a fixed and small enough e > 0. See Figure 6. Cosidering that for e 6= 0,
ẋ2(π, e,Λ) = 0 if and only if Λ = Λ↑

n(e), and it is satisfied that Λ↓
n(e) < Λ↑

n(e), then, the sign of
ẋ2(π, e,Λ

↓
n(e)) must be the same as the sign of ẋ2(π, 0,Λ) just to the left of the point Λ = Λ↓

n(0),
that is to say,

sgn ẋ2(π, e,Λ
↓
n(e)) = (−1)n+1,

then,
sgnµ = sgnx2(π, e,Λ

↓
n(e)) sgn ẋ2(π, e,Λ

↓
n(e)) = (−1)2n+2 = +1.

If now we assume that the 4π-periodic eigenfunctions associated to Λ↓
n(e) are odd, i.e.

ẋ2(π, e,Λ
↓
n(e)) = 0, Φ(2π, e,Λ↓

n(e)) = (M−
µ′)

T ,
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an analogous procedure gives us that sgnµ′ = −1. Finally, according to Lemma 4 we have that
Φ(2π, e,Λ↓

n(e)) ∼ M−
1 . Analogously, it can be checked that Φ(2π, e,Λ↑

n(e)) ∼ M−
−1 as we claimed.

Now we can introduce the main result of [22]. Let us first define the invariants of the conjugation
class within the subgroup of parabolic matrices.

Definition 2 Let A be a parabolic matrix such that A ∼ M±
µ , then

σ(A) = ±1, ν(A) = sgnµ.

Here it must be understood that if µ = 0 then sgnµ = 0. Thus, we associate a pair of numbers
σ, ν to every equation in the form (1), whose monodromy matrix is parabolic. With these two numbers
we are able to state Theorem 5.1 in [22]. According to it, if the linear equation associated to (26) is
parabolic unstable, then the equilibrium is stable if

σνc(t, e,N) ≥ 0 ∀t ∈ R,

and unstable if
σνc(t, e,N) ≤ 0 ∀t ∈ R.

Proof of Theorem 2.
From the First Lyapunov Method we see that the trivial solution z = 0 of (25) is Lyapunov-

unstable within the interior of the regions Rn for Λ = Λ(N), where Rn are defined in (6), because
the linear equation (1) is hyperbolic unstable, as we observe in (14).

Since equation (1) is stable for any point in the (e,Λ)-diagram, with Λ = Λ(N), that does
not belong to Rn, and c(t, e,N) ≤ 0, from the main theorem of [23] the equilibrium of (25) is
Lyapunov-stable in that points.

Thus, the only points that we have left are those that belong to the curves Λ = Λ↓
n(e) and

Λ = Λ↑
n(e). From Lemma 5

σ(Φ(2π, e,Λ↓
n(e))) = −1, ν(Φ(2π, e,Λ↓

n(e))) = 1,

σ(Φ(2π, e,Λ↑
n(e))) = −1, ν(Φ(2π, e,Λ↑

n(e))) = −1.

Finally, from Theorem 5.1 in [22] we conclude that the equilibrium of (25) is Lyapunov-stable
for points (e,Λ(N)), Λ(N) = Λ↓

n(e), since σνc ≥ 0, and unstable for points (e,Λ(N)), Λ(N) =
Λ↑
n(e), since σνc ≤ 0.

4.2 Existence of symmetric periodic solutions of the (N+1)-Sitnikov problem

Next application of Theorem 1 to the problem (25) deals with the existence of symmetric 2π-periodic
solutions with a prescribed number of zeros.

Even and odd 2π-periodic solutions of equation (1) are eigenfunctions in coexistence associated to
the eigenvalues Λ = Λn(e) for a given e. From relations (12) it is satisfied that

x2(π, e,Λn(e)) = 0, ẋ1(π, e,Λn(e)) = 0.

For e = 0 the symmetric solutions corresponding to Λ = Λn(0) have n zeros in [0, π), see (10).
Besides, the number of zeros of the symmetric solutions is constant as we move along the graph of the
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function e 7→ Λn(e), since the boundary conditions are the same for all e and the zeros of the solutions
are simple.

Theorem 3 For a given value e ∈ [0, 1), there exist an even and an odd 2π-periodic solutions of (25)
with n zeros in [0, π) if and only if Λ(N) > Λn(e).

To prove this theorem we need the following lemma, which is an extension of Theorem 2 in [25],
because [25] deals with odd periodic solutions and our lemma deals with both types of symmetric
periodic solutions.

Lemma 6 (Extension of Theorem 2 in [25]) Given two integers m ≥ 1 and n ≥ 0, the following
statements are equivalent

i) There exists an even 2mπ-periodic2 non-trivial solution of (25) with n critical points (ż(t, e,Λ) = 0)
in [0,mπ).

ii) The even normalized solution x1(t, e,Λ) of the linear equation (1) has more than n critical points
(ẋ1(t, e,Λ) = 0) in [0,mπ).

The same is true replacing “even” by “odd”, “ x1” by “ x2” and “critical points” by “zeros”.

Remark. Note that symmetric periodic solutions of (25) must have the same number of zeros than
of critical points in [0, π) because it has the form

z̈ +D(t, z)z = 0, D(t, z) > 0,

this is why in Theorem 3 we do not mention the number of critical points, but only the number of zeros.
According to this, we can express one of the assertions of Lemma 6 as: There exists an even 2π-periodic
solution of (25) with n zeros in [0, π) if and only if x1(t, e,Λ) has more than n critical points in the
same interval.

Proof of Lemma 6.
Theorem 2 in [25] treats only the case of the zeros of odd solutions. Our goal is to prove that

it has an extension for the case of even solutions. But now, instead of paying attention to the
zeros of the odd solutions, we pay attention to the critical points of even solutions. Anyhow, our
proof is entirely analogous to that of [25].

First, let us consider a more general equation

z̈ +D(t, z)z = 0, (28)

where D : [0, L] × R → R is a continuous function in the first argument and of class C1 in the
second argument, that also satisfies,

D(t, 0) > D(t, z) > 0, z 6= 0,

and

|D(t, z)| ≤ C

1 + |z| , (t, z) ∈ [0, L]×R.

2In this subsection we do not require the period to be minimum.
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Let us consider the solution generated by the initial conditions

z(0) = d ∈ R, ż(0) = 0,

we denote this solution by z(t, d). We are looking for even 2L-periodic solutions, that is to say, we
want to know if there exists a value of d such z(t, d) satisfies the Neumann boundary conditions

ż(0, d) = ż(L, d) = 0.

Now, note that z(t, 0) ≡ 0, then, the uniqueness of the Cauchy problem of (28) implies that
the zeros of z(t, d), d 6= 0, must be simple, then, between two consecutive zeros of z(t, d) there
must be a zero of ż(t, d), but considering the strict inequality D(t, z) > 0, there must be only one
zero. Consequently, the zeros of ż(t, d) must be also simple. We denote the number of zeros of
ż(t, d) in [0, L) by µ(d), which is a finite non-negative integer.

Instead, in [25] it is defined ν(v), the number of zeros in (0, L) of the solution with initial
conditions z(0) = 0, ż(0) = v ∈ R. We want to prove that µ(d) satisfies the equivalent four
properties than ν(v).

Let µ0 the number of zeros in [0, L) of χ̇(t), where χ satisfies

χ̈+D(t, 0)χ = 0, χ(0) = 1, χ̇(0) = 0. (29)

Property I: µ(d) ≤ µ0 for each d 6= 0.
In order to prove this property we need Theorem V in [15], which is a generalization of the

Sturm comparison theory. We can see equation (28) as the system

ẏ1 = D(t, z1)z1, ż1 = −y1,

where z1(t) = z(t, d), for a given d 6= 0, and equation (29) as the system

ẏ2 = D(t, 0)z2, ż2 = −y2,

where z2(t) = χ(t). We can see that the coefficientes, particularly D(t, z(t, d)) and D(t, 0),
are continuous functions in [0, L] such, at least for t = 0, D(t, 0) > D(t, z(t, d)) > 0, and
y1(0) = −ż(0, d) = 0. Then we have two systems fulfilling the hypotheses of Theorem V in
[15]. Consequently, if tn and t∗n are the n-th zeros of y1(t) = −ż(t, d) and y2(t) = −χ̇(t), respec-
tively, then tn > t∗n. Thus, ż(t, d) cannot have more zeros than χ̇(t) in [0, L).

Property II: Given h 6= 0, there exists δ > 0 such that µ(h) ≤ µ(d) ≤ µ(h) + 1 if |d− h| ≤ δ.
Assuming in addition that ż(L, h) 6= 0, the identity µ(h) = µ(d) holds if |d− h| ≤ δ.

This property is consequence of Lemma 3 in [25], let us check the hypotheses. If we take
a sequence {dk} converging to d, then, by continuous dependence on initial conditions, there is
uniform convergence of functions

z(·, dk) → z(·, d), ż(·, dk) → ż(·, d),
but there is also uniform convergence of

z̈(·, dk) → z̈(·, d)
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since z̈ = −D(t, z)z, and D is a continuous function such D(t, z) > 0. This let us assert that
ż(·, dk) converges uniformly to ż(·, d) in C1[0, L], whose zeros are simple and ż(0, d) = 0. Finally,
we can apply Lemma 3 in [25], which gives us directly Property II.

Property III: There exists d∗ > 0 such that µ(d) = µ0 if |d| ≤ d∗.
In an analogous way that in [25] we see that for a sequence {dk} converging to 0 there is

uniform convergence of

z(t, dk)

dk
→ χ(t),

ż(t, dk)

dk
→ χ̇(t),

then, by Lemma 3 in [25], for some k large enough µ0 ≤ µ(dk) ≤ µ0+1. But, moreover, Property
I says that µ(dk) ≤ µ0, which implies finally that µ(dk) = µ0.

Property IV: There exists d∗ > 0 such that µ(d) = 0 if |d| ≥ d∗.
We can write

ż(t, d) = −
∫ t

0

D(s, z(s, d))z(s, d)ds,

and since there exists a C > 0 such |D(t, z)| ≤ C/(1 + |z|), then

|ż(t, d)| ≤ CL.

Since for d → ∞ the functions fd(t) = 1
d ż(t, d) converge uniformly to f(t) = 1 in C1[0, L],

which has no zeros, then we can apply Lemma 3 in [25], so, for d large enough µ(d) = 0.
Following [25], this four properties are enough to guarantee that for any N < µ0 there exists

a dN > 0, such that ż(t, dN ) has exactly N zeros and so z(t, dN ) satisfies the Neumann boundary
conditions for it to be the even 2L-periodic solution we were looking for. Actually, the condition
N < µ0 is necessary for existence of an even 2L-periodic solution with N critical points, due to
the generalization of Sturm comparison theorem in [15].

Now it is easy to prove Theorem 3.

Proof of Theorem 3. Let us start with the case of odd solutions. Remember that x2(π, e,Λ) =
0 if and only if there exists n such that Λ = Λn(e), and consequently, x2 is 2π-periodic with n
zeros in [0, π). Note that given e ∈ [0, 1) the first zero of x2(t, e,Λn(e)) arise at t = 0, while the
equation x2(π, e,Λn(e)) = 0 implies that its (n+ 1)-th zero is not included in the interval. With
this in mind, it is straightforward from the Sturm comparison theory that x2 has exactly n zeros
in [0, π) if and only if the point (e,Λ) belongs to the region

{(e,Λ) : Λn−1(e) < Λ ≤ Λn(e)}.
Then, x2 has more than n zeros in [0, π) if and only if Λ > Λn(e). We finish the proof applying

Lemma 6, for m = 1, in the case of odd 2π-periodic solutions.
For even solutions we proceed exactly in the same way regarding the number of critical points

instead of the number of zeros.

In fact, Lemma 6 allows us to extend Theorem 3 to symmetric 2mπ-periodic solutions of (25), for
any m = 1, 2, ... Here we sketch the method to accomplish it. We only need to define analogous functions
to Λn.
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It is well known that if a Hill’s equation like (1) has a non-trivial 2mπ-periodic solution, with
m = 3, 4..., then, there is always coexistence, consequently, there should exists a family of functions
Λn,m satisfying

x2(mπ, e,Λn,m(e)) = 0, ẋ1(mπ, e,Λn,m(e)) = 0,

such that the corresponding symmetric solutions to Λn,m(e) are 2mπ-periodic with n zeros and n critical
points in the interval [0,mπ) and such that

Λn,m(0) =
( n

m

)2

.

Then, the extension of Theorem 3 would be the following: Given a positive integer m ≥ 3, there
exist an even and an odd 2mπ-periodic non-trivial solutions of (25) with n zeros in [0,mπ) if and only
if Λ(N) > Λn,m(e).

Note that in the case m = 2 we should keep in mind that there is no coexistence of non-trivial
periodic solutions of (1) with minimum period 4π for e 6= 0 (Lemma 1). Thus, we need to distinguish
two families of functions Λeven

n,2 and Λodd
n,2 satisfying

x2(2π, e,Λ
odd
n,2 (e)) = 0, ẋ1(2π, e,Λ

even
n,2 (e)) = 0,

such that, for Λ = Λodd
n,2 (e) (resp. for Λ = Λeven

n,2 (e)) there exists an odd (resp. even) 4π-periodic
non-trivial solution with n zeros (resp. n critical points) in the interval [0,mπ) and such that

Λodd
n,2 (0) = Λeven

n,2 (0) =
(n

2

)2

.

Note that Λodd
2n,2 = Λeven

2n,2 = Λn and that Λodd
2n−1,2 is one of the functions Λ↓

n,Λ
↑
n and Λeven

2n−1,2 is the
other one.

Then, the extension of Theorem 3 would be in this case: There exists an even (resp. odd) 4π-periodic
non-trivial solution of (25) with n zeros in the interval [0, 2π) if and only if Λ(N) > Λeven

n,2 (e) (resp.

Λ(N) > Λodd
n,2 (e)).

4.3 Stability of the center of mass in the Curved Sitnikov problem

In [12] it is considered a variant of Sitnikov problem: two primaries orbit around their center of mass
in keplerian ellipses, we deal with the motion of a third massless particle confined to a circumference
of radius R under the influence of the primaries. See Figure 7. The plane of the circumference and
the plane of primaries’ orbits intersect each other through the common line of major axes. Also, the
circumference itself intersect the primaries’ plane through the center of mass. Both this point and the
other intersection point are equilibria for the dynamics because the forces exerted by the primaries lie
in their plane.

If the distance between the center of mass and each of the primaries is 1
2r(t, e), then the massless

particle moves according to

q̈ +

(

R+ 1
2r(t, e) cos t

d1(t, e, R, q)3
+

R− 1
2r(t, e) cos t

d2(t, e, R, q)
3

)

sin q = 0, (30)

where q is the particle’s angular position in the circumference (taking the center of mass as q = 0) and
di(t, e, R, q), i = 1, 2, are the distances from the massless particle to each primary.
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r/2

d1

d2

Figure 7: Curved Sitnikov problem.

The equilibria of (30) correspond to q = 0 and q = π. In [12] it is studied mainly the Lyapunov-
stability of the equilibrium q = π as an application of a more general theorem that regards the proximity
of an equilibrium to one of the orbits of the primaries. The equilibrium q = 0 is only studied in the case
of e = 0, whereas for e 6= 0 they mention some works, as [20], that suggest alternation of Lyapunov-
stability/instability intervals as we change e.

Theorem 1 allows us to state a complete and precise result for the Lyapunov-stability of the equilib-
rium q = 0 for any e ∈ [0, 1). First let us recall the following regions of the stability diagram of equation
(1) defined in page 15

R∗
n = {(e,Λ) : Λ↓

n(e) < Λ ≤ Λ↑
n(e), e 6= 0}.

Theorem 4 The equilibrium q = 0 of (30) is Lyapunov-stable if and only if (e, 16R) /∈ R∗
n.

This theorem’s proof is equivalent to that of Theorem 2, so we will not make it explicitly. We only
mention that everything works because it is possible to write equation (30) for q close to 0 as

q̈ +
16R

r3(t, e)
q − 8R

3

(1 + 9 cos2 t)r2(t, e) + 36R

r5(t, e)
q3 +O(q5) = 0

since di(t, e, R, 0) = 1
2r(t, e), i = 1, 2.

Note that, as we see in [12], it is important for the equilibrium q = π to avoid the possibility of
contact of the circumference with one of the elliptic orbits of the primaries. However, in this case it is
irrelevant because we are considering only motions close enough to q = 0, so we consider all the possible
values of R and e.

We conclude from Theorems 1 and 4 that for a fixed R > 9/128 there is alternation of infinite
intervals (in the range of the eccentricity e of the primaries’ orbits) of Liapunov-stability/instability of
the equilibrium of (30). For R ∈ (1/16, 9/128) the number of alternating intervals is finite. For R = 1/16
the equilibrium is Lyapunov-stable for each value e ∈ [0, 1). For R ∈ (0, 1/64) ∪ (1/64, 1/16) it looks
that there is only one transition from stability to instability. Finally, for R = 1/64, it seems that the
equilibrium is unstable for each e ∈ [0, 1).
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5 Conclusions and open questions

The linear Sitnikov equation (1) has been shown to be relevant for some Sitnikov-like problems, for
which there are several primaries in an elliptic motion determined by r(t, e). Here we have focused on
the (N +1)-Sitnikov problem and on the curved Sitnikov problem, but we can easily imagine a (N +1)-
curved Sitnikov problem or other problems for which equation (1) is useful. With this paper we point
out two possible applications: in one hand, Lyapunov stability of the equilibrium in the center of mass
of the nonlinear Sitnikov-like problem, and on the other hand, existence of symmetric periodic solutions
for the problem.

Despite the foregoing, keplerian elliptic motion is one of the most common considered in Celestial
Mechanics. Then, it makes sense to look for other models related to the linear Sitnikov equation. In
the search for it we have found the following interesting relation.

The following biparametric equation

θ̈ +
ǫ

r3(t, e)
sin 2(θ − f(t, e)) = 0, e ∈ [0, 1), ǫ > 0, (31)

determine the motion of a triaxial rigid satellite of ellipticity ǫ in a elliptic orbit determined by r(t, e),
with eccentricity e and associated true anomaly f(t, e). This is the so-called spin-orbit problem, it has
been widely studied, see for example [8] for the conservative case or [9] and [14] for the dissipative case.
Consider

Θ(t) = θ(t)− t, φ(t, e) = f(t, e)− t,

then equation (31) turns into

Θ̈ +
ǫ

r3(t, e)
sin 2(Θ− φ(t, e)) = 0, (32)

whose solutions are denoted by Θ = Θ(t, e, ǫ). Note that a 2π-periodic solution of equation (32)
corresponds to a spin-orbit resonance 1 : 1 of equation (31), that is to say, solutions such that θ(t+2π) =
θ(t) + 2π. Since the nonlinear term is bounded, there exists a solution for the Dirichlet boundary
conditions

Θ(0, e, ǫ) = Θ(π, e, ǫ) = 0, (33)

moreover, since φ(−t, e) = −φ(t, e), then equation (32) is of the form

Θ̈ + F (t,Θ) = 0, F (−t,−Θ) = −F (t,Θ)

consequently, a solution of (32) with boundary conditions (33) is odd and 2π-periodic. Consider the
Dirichlet problem for e = 0

{

Θ̈ + ǫ sin 2Θ = 0
Θ(0, 0, ǫ) = Θ(π, 0, ǫ) = 0,

(34)

which has a solution Θ(t, 0, ǫ) ≡ 0. This solution has a local analytic continuation Θ(t, e, ǫ), solution of
(32) with boundary conditions (33), for a small enough e 6= 0, if and only if 2ǫ 6= n2, for n ∈ Z, because
in that points the linearized equation of (34), i.e. ÿ + 2ǫy = 0, has Floquet multiplier 1.
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Since for e small φ(t, e) is close to zero and the local continuation Θ(t, e, ǫ) is close to Θ(t, 0, ǫ) ≡ 0,
then, this solution Θ(t, e, ǫ) might be seen as solution of

Θ̈ +
2ǫ

r3(t, e)
(Θ− φ(t, e)) = 0, (35)

which has the form of a non-homogeneous linear Sitnikov equation (1). This suggests that the stability
diagram in Figure 1 for e close to zero must be also significant for the capture into the resonance 1:1 of
the spin-orbit problem.
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