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Abstract. It is shown that a periodically forced impact oscillator may exhibit
chaotic dynamics on two symbols, as well as an infinity of periodic solutions. Two
cases are considered, depending if the impact velocity is finite or infinite. In the
second case, the Poincaré map is well defined by continuation of the energy. The
proof combines the study of phase plane curves together with the “stretching along
paths” notion.
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1 Introduction

The presence of impacts in a physical process is a classical source of nonlinearity
and complex behavior. Partially elastic impacts are important in Mechanical En-
gineering, for instance in the modelling of pneumatic hammers, drilling machines
and other industrial devices, whereas elastic impacts plays a key role in Billiard
Dynamics and other related models appearing in different branches of Theoretical
Physics like the Fermi-Ulam oscillator and its many variants. The importance of
this topic is reflected on thousands of analytical, numerical and experimental papers
that can be consulted in the bibliographies of the monographs [5, 21, 45].

For our purposes, systems with elastic impacts can be classified into two big
families:
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• Systems exhibiting impacts at finite velocity: most of the examples considered
in the cited monographs belong to this type, for instance the offset impact
oscillator or the bouncing ball in a massive oscillating table. In general, we
consider the motion of a particle following the newtonian equation

u′′ + f(t, u) = 0,

where f is smooth and T -periodic with respect to t. Besides, it is assumed
that the particle experiences impacts against a T -periodically oscillating wall
or barrier q(t). If the impacts are elastic, the restitution rule is

u(t0) = q(t0) =⇒ u′(t+0 ) = −u′(t−0 ) + q′(t0).

Summing up, if the relative distance x(t) = u(t) − q(t) between the particle
and the wall is taken as the relevant coordinate, the impact system reads

{
x′′ + g(t, x) = 0, for x(t) > 0,
x(t0) = 0 =⇒ x′(t+0 ) = −x′(t−0 ). (1.1)

where g(t, x) = f(t, x− q(t))− q′′(t).

• Systems exhibiting impacts at infinite velocity: this type of impacts are char-
acterized by the presence of a singularity on the potential that rules the motion
of the particle. It is said that a potential has a singularity if it becomes in-
finite at a given point. If a particle is moving under a singular potential, an
eventual collision with the singularity will have infinite velocity. Since the
gravitational potential is singular at the origin, the n-body problem and re-
lated models from Celestial Mechanics are the most prominent examples of
this family. To continue a collision orbit after the impact, the usual restitution
rule by reflection of the impact velocity is not effective and an energy-based
continuation is required, as we will see later in more detail.

To abbreviate, the families described above will be called regular systems and
singular systems respectively. In the available bibliography, both families have
been studied in a separated way. Our objective is to show an unified method
of study that can be implemented in both contexts. Such method provides a way
to construct concrete examples of periodic forces such that the associated Poincaré
section induces chaotic dynamics on two symbols. In an informal way, we say that a
map induces chaotic dynamics on two symbols if there exists an invariant set Λ being
semi-conjugate to the Bernoulli shift, topologically transitive, and having infinitely
many periodic points (see Definition 5.1 and Theorem 5.1 in the Appendix). This
definition of chaos has been used before by several authors in [1, 8, 9, 29, 44].

In the related literature, a variety of methods have been developed to detect
analytically the presence of chaos in a concrete dynamical system such as the
Mel’nikov or the Sil’nikov methods, the Conley-Wazewki theory, estimates of Lya-
punov exponents, ergodicity or mixing associated to some invariant measures, etc
(see [6, 8, 9, 19, 23, 34, 39, 44, 48]). In this paper we study the notion of chaos
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under the perspective of topological horseshoes, see [23] and [51]. This topological
point of view enables us to give explicit conditions in our models without using
small/large parameters or hyperbolicity conditions. It is important to observe that
a topological approach has been used in a broad variety of problems with physical
and biological meaning (see [17, 18, 29, 35, 40]). However, up to our knowledge, this
is the first time that such an approach has been applied in the context of problems
with impacts.

The arguments contained in this paper will describe a general strategy that can
be applied to a variety of models. Rather than formulate an abstract setting, we
have preferred to focus on some concrete and basic examples to better illustrate the
underlying ideas. A paradigmatic regular system is

{
x′′ + a2x = p(t), for x(t) > 0,
x(t0) = 0 =⇒ x′(t+0 ) = −x′(t−0 ), (1.2)

where a ∈ R. Section 2 is devoted to the construction of periodic forcing terms
p(t) leading to chaotic dynamics in the sense exposed above. Note that this model
comprises two important models in the field of Impact Dynamics, namely the impact
harmonic oscillator (if a 6= 0) and the bouncing ball over an oscillating table (if
a = 0). Both models are touchstones and have been studied in many papers, see
for instance [4, 15, 16, 41, 22, 26, 31, 32, 50] and the references therein (this is just
a personal selection of the authors among the huge number of papers concerning
this topic).

On the other hand, as an example of singular system we will analyze the model
equation

x′′ = − 1
x2

+ p(t), (1.3)

being p(t) a continuous and T -periodic function. Equation (1.3) is a forced second
order equation with an attractive singularity on the origin and can be regarded as
a forced 1D Kepler problem. It was first considered by Lazer and Solimini in the
pioneering work [25], where it is proved that (1.3) has a positive T -periodic solution
if and only if the mean value of the forcing term p is positive. Later, it was proved
in [7, 28] that such a T -periodic solution is unique and a global dynamics of saddle
type is organized around it. Hence, the dynamical behavior of classical solutions is
extremely simple and reduced to a dichotomy: solution lying in the stable manifold
tends to the periodic one and the rest of solutions tend to infinite or collide with
the singularity.

In an eventual collision, the velocity of the solution becomes infinite, but the
total energy remains finite. In this way, collisions can be regularized by continu-
ation of the energy, as presented by Sperling in [42]. In a recent paper [33], R.
Ortega has combined this argument of regularization with the Poincaré-Birkhoff
Theorem in order to prove the existence and multiplicity of periodic solutions with
a prescribed number of impacts. Let us mention that in the related bibliography,
many regularization techniques have been developed (see [12, 13]), as well as other
notions of generalized solutions (see for instance [2, Definitions 3.1 and 3.23] also
used in [10], [7, Definition 4.1] or [20, Section 3]).
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In this paper, we will continue the study of the impact dynamics of equation
(1.3) initiated in [33]. Specifically, our objective is to construct concrete examples of
periodic forces p(t) in such a way that the associated Poincaré section (considering
the regularization of collisions) induces chaotic dynamics on two symbols.

The rest of the paper is organized as follows. In Section 2, the regular case is
studied by means of an analysis of phase plane curves combined with the linked twist
map technique and the “stretching along the paths” definition. In Section 3, first
the regularization process is formalized and the Poincaré map is rigourously defined
for the singular equation (1.3). After that, the main results for this model are
stated and proved. Finally, in Section 4 some extensions and further comments are
presented. For the reader’s convenience, the explicit definition of chaotic dynamics
and some necessary background is included in a separate Appendix.

2 Regular systems

2.1 Bouncing solutions and the Poincaré map

Given a general system
{

x′′ + g(t, x) = 0, for x(t) > 0,
if x(t0) = 0 =⇒ x′(t+0 ) = −x′(t−0 ), (2.4)

where g is T-periodic in the first variable and of class C1, we say that u : R −→
[0, +∞[=: R+ is a bouncing solution of (2.4) if the following conditions hold:

• Z = {t ∈ R : u(t) = 0} is discrete,

• for any interval I ⊂ R\Z, the function u is of class C2(I) and satisfies the
differential equation x′′ + g(t, x) = 0,

• for each t0 ∈ Z, there is a constant v ≥ 0 so that

lim
t→t−0

u′(t) = −v,

lim
t→t+0

u′(t) = v.

Along this section we assume, without further mention, that the force p(t) in our
regular model {

x′′ + a2x = p(t), for x(t) > 0,
x(t0) = 0 =⇒ x′(t+0 ) = −x′(t−0 ). (2.5)

is continuous, T-periodic, and strictly negative. Under these conditions we can
check that for each initial condition (x0, v0) ∈ X :=]0,∞[×R, there is a unique
bouncing solution (defined on R) associated to (2.5), namely x(t; x0, v0), satisfying
that

x(0; x0, v0) = x0,
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x′(0; x0, v0) = v0.

Note that as p(t) < 0, the set Z is always nonempty.
Given x(t;x0, v0) a bouncing solution of (2.5), there is a time t1 := t1(x0, v0) > 0

and a constant v1 := v1(x0, v0) ≥ 0, such that

x(t;x0, v0) > 0 for all t ∈ [0, t1[,

x(t1; x0, v0) = 0,

lim
t−→t−1

x′(t; x0, v0) = −v1.

In this framework, an elementary argument of continuous dependence enables us to
conclude that the map

X −→ R2

(x0, v0) 7→ (t1(x0, v0), v1(x0, v0))
(2.6)

is continuous (the same conclusion holds working with the previous collision). Fol-
lowing [37], it will be useful to introduce a successor map for equation (2.5). Specif-
ically, given τ ∈ R and v ∈ R+, let us denote u(t; τ, v) the unique bouncing solution
of (2.5) satisfying the initial conditions

u(τ ; (τ, v)) = 0,

u′(τ+; (τ, v)) = v ≥ 0.

If we assume that τ1 > 0 is the time of the next collision and v1 is the corresponding
velocity, then it can be proved as in [37] that the successor map

S : R× R+ −→ R× R+

S(τ, v) := (S1(τ, v),S2(τ, v)) = (τ1, v1)
(2.7)

is continuous, injective, and S1(τ, v) is strictly increasing with respect to the velocity.
On the other hand, the map

(t, τ, v) ∈ H 7→ (u(t; τ, v), u′(t; τ, v))

is continuous where H = {(t, τ, v) : τ < t < τ1}. Consequently, using the continuity
of (2.6) and (2.7) we deduce that the function

(t; x0, v0) ∈ G −→ (x(t;x0, v0), x′(t; x0, v0))

is continuous with G = {(t, x0, v0) ∈ R×X : x(t;x0, v0) 6= 0}.
Consider the topological space (∆,=) where

∆ = X ∪ {(0, v) : v ∈ R+}.
The definition of the topology in ∆ is as follows. A sequence (xn, yn) ∈ ∆ converges
to (x0, v0) ∈ ∆ with x0 > 0 if each coordinate converges in the classical sense. In
the case x0 = 0, (xn, yn) converges to (0, v0) if

xn −→ 0,
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|yn| −→ v0.

Clearly, X ⊂ ∆ is an open set in (∆,=). This topological space is natural under
the notion of bouncing solution. Indeed, take a solution, namely x(t; x0, v0), with
a first impact at time T , (assume that t1(x0, v0) = T ). In a neighborhood of
(x0, v0), (under the Euclidean distance), some bouncing solutions have velocity
close to v1(x0, v0) whereas other ones have velocity close to −v1(x0, v0) at T , (it
depends if the impact is before/after T ). The key property in our topological space
is that we “identify” these two behaviors and so this situation does not produce any
discontinuity.

Putting all the information together, we can prove that the map

P : X −→ ∆

given by

P(x0, v0) =





(0, v1(x0, v0)) if t1(x0, v0) = T

(0,Sj
2(t1(x0, v0), v1(x0, v0))) if Sj

1(t1(x0, v0), v1(x0, v0)) = T

(x(T ; x0, v0), x′(T ; x0, v0)) otherwise
(2.8)

is continuous and injective. In the previous expression, Sj = (Sj
1 ,Sj

2) denotes the
j-th iterate of the successor map. Notice that Ω = P−1(X) is an open set and given
an initial condition (x0, v0) in Ω, x(T ; x0, v0) 6= 0. Throughout this section, we refer
to this map as the Poincaré map of (2.5). Note that this is not the classical notion
of Poincaré map commonly used in the literature of Dynamical Systems because
the classical flux is extended by considering bouncing solutions.

2.2 Chaotic dynamics of equation (2.5)

In this subsection we focus our attention on the construction of T -periodic forces
producing chaotic dynamics in (2.5). By chaotic dynamics in (2.5) we understand
that the map

P : Ω −→ X
(x0, v0) 7→ (x(T ; x0, v0), x′(T ; x0, v0))

(2.9)

has chaotic dynamics on two symbols, see Definition 5.1. In view of our definition of
chaos, our results provide us criteria ensuring the existence of infinitely many sub-
harmonics. Our method of proof consists of applying the results in the Appendix
to a geometrical configuration similar to the Linked Twists Maps, (see [43, 27, 36,
6, 14, 48] for abstract results concerning LTM and [30, 46, 35] for different contexts
of application).

The plan of this subsection is as follows. Firstly, the class of forces is constructed
and then we state and prove the main theorem. For convenience, we assume that
a2 = 1. The rest of the cases, including the bouncing ball a = 0, can be studied in
a similar way.
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We begin with a brief analysis of the geometry of orbits. Fix two constants
p2 < p1 < 0 and consider the equations

x′′ + x = p1, (2.10)

x′′ + x = p2. (2.11)

Fix two nontrivial intervals [H1, h1] and [H2, h2] satisfying that for all h∗1 ∈ [H1, h1]
and h∗2 ∈ [H2, h2],

(C1) 0 < h∗1 < h∗2,

(C2) p2 +
√

p2
2 + 2h∗2 < p1 +

√
p2
1 + 2h∗1.

Such properties imply some geometrical properties of the energy curves

γ1 = {(x, y) ∈ X : E1(x, y) = h∗1},

γ2 = {(x, y) ∈ X : E2(x, y) = h∗2},
where Ei(x, y) = y2

2 + x2

2 − pix. Specifically, (C1) implies that for δ > 0 small
enough, |y2| > |y1| provided (x, y1) ∈ γ1, (x, y2) ∈ γ2 and 0 < x < δ. On the other
hand, condition (C2) implies that x1 > x2 where (x1, 0) = γ1 ∩ {(x, 0) : x ∈ R}
and (x2, 0) = γ2 ∩ {(x, 0) : x ∈ R}. See Figure 1.

0 1 2 3 4

-4

-2

0

2

4

γ2 γ1

Figure 1: The configuration of orbits γ1, γ2.

Now we fix four constants

H̃1 < h̃1 < H̃2 < h̃2
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with H̃1, h̃1 ∈]H1, h1[ and H̃2, h̃2 ∈]H2, h2[. Define the topological rectangles

D1 := {(x, y) ∈ X : H̃1 ≤ E1(x, y) ≤ h̃1,H2 ≤ E2(x, y) ≤ h2, y > 0},

D2 := {(x, y) ∈ X : H1 ≤ E1(x, y) ≤ h1, H̃2 ≤ E2(x, y) ≤ h̃2, y > 0}.
See Figure 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-4

-2

0

2

4

Figure 2: Left: The “linked rings”. The dashed lines denote the energy levels
H̃1, h̃1, H̃2, h̃2 and the continuous lines the energy levels H1, h1,H2, h2. Right:
D1,D2 and the distinguished boundaries. Note that this figure is a “zoom” of
the upper intersection of the “rings”.

Take d1 > 0 such that the d1-neighbourhood of Dl
1 ∪ Dr

1 (see Figure 2,right),
with

Dl
1 := {(x, y) ∈ D1 : H2 = E2(x, y)},
Dr

1 := {(x, y) ∈ D1 : h2 = E2(x, y)},
does not intersect the set D2 and the d1-neighbourhood of D1 does not intersect the
sets

{(x, y) ∈ X : h1 = E1(x, y)},
{(x, y) ∈ X : H1 = E1(x, y)}.

Analogously, we pick d2 > 0 such that the d2-neighbourhood of Du
2 ∪Dlo

2 ,(see Figure
2, right), with

Du
2 := {(x, y) ∈ D2 : h1 = E1(x, y)},

Dlo
2 := {(x, y) ∈ D2 : H1 = E1(x, y)},
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does not intersect the set D1 and the d2-neighbourhood of D2 does not intersect the
sets

{(x, y) ∈ X : h2 = E2(x, y)},
{(x, y) ∈ X : H2 = E2(x, y)}.

In the definition of the forcing p(t), the following elementary estimate will be
useful.

Lemma 2.1. Fix two positive numbers d,M and a compact set K ⊂ X. Then
there exists a constant τ , depending on d,M and K, such that for every continuous
function satisfying |p(t)| ≤ M and for all (x0, y0) ∈ K,

|x(t; (s0, x0, y0))− x0|2 + |x′(t; (s0, x0, y0))− y0|2 < d (2.12)

for all t ∈ [s0 − τ, s0 + τ ], ( x(t; (s0, x0, y0)) is the bouncing solution of (2.5) with
(x(s0; (s0, x0, y0)), x′(s0; (s0, x0, y0))) = (x0, y0) ).

Now, we have all the ingredients for the definition of p(t). At a first stage,
the previous lemma is applied twice. Specifically, by taking d = d1, M = |p2|,
K = D1, we obtain a parameter τ1 > 0 satisfying condition (2.12); then, pick
d = d2, M = |p2| and K = D2 and obtain a parameter τ2 > 0 satisfying condition
(2.12).

Next, given two constants T1 and T2 we define a (T1 + T2 + τ1 + τ2)-periodic
function given by

p(t) =





p1 if 0 ≤ t < T1

p̃1(t) if T1 ≤ t < T1 + τ1

p2 if T1 + τ1 ≤ t < T1 + τ1 + T2

p̃2(t) if T1 + τ1 + T2 ≤ t < T1 + τ1 + T2 + τ2

(2.13)

so that |p̃i(t)| ≤ |p2| and the function p(t) is continuous. Our purpose is to prove
that, for suitable choices of the parameters T1 and T2, equation (2.5) with the
previous force induces chaotic dynamics. Before studying this result, we introduce
some notation. Consider φ1 the Poincaré map associated to (2.10) at time T1 (see
(2.8)). For Ω1 = φ−1

1 (X) we have that

φ1 : Ω1 −→ X
(x0, v0) 7→ (x(T1;x0, v0), x′(T1;x0, v0))

(2.14)

where, for convenience, (x(T1;x0, v0), x′(T1; x0, v0)) is the bouncing solution of
(2.10) with initial data at (x0, v0). Define φ2 and Ω2 in a similar way with equation
(2.11) and T2. On the other hand, in U , a neighbourhood of D1 ∪D2, by lemma 2.1
and the definition of τ1 and τ2, we can define two maps,

h1 : U −→ X
h1(x0, v0) := (x(T1 + τ1; (T1, x0, v0)), x′(T1 + τ1; (T1, x0, v0)))

(2.15)



10 A. Ruiz-Herrera and Pedro J. Torres

h2 : U −→ X
h2(x0, v0) := (x(T1 + τ1 + T2 + τ2; (T1 + τ1 + T2, x0, v0),

x′(T1 + τ1 + T2 + τ2; (T1 + τ1 + T2, x0, v0)))
(2.16)

where (x(t; (t0, x0, v0)), x′(t; (t0, x0, v0))) refers to the bouncing solution of (2.5) with
force (2.13). Note that, by the expression of (2.13), if (x, v) ∈ Ω1, φ1(x, v) ∈ U ,
h1(φ1(x, v)) ∈ Ω2 and φ2(h1(φ1(x, v))) ∈ U then

P(x, v) = h2 ◦ φ2 ◦ h1 ◦ φ1(x, v) (2.17)

where P is the Poincaré map of (2.5) with force (2.13).

Theorem 2.1. There exist T ∗1 , T ∗2 > 0 with the following property: for every func-
tion p(t) given in (2.13) with parameters T1 > T ∗1 and T2 > T ∗2 , equation (2.5) has
chaotic dynamics.

Proof. The proof of this theorem is divided into five steps.
Step 1: Stretching property for [0, T1].
In this step we study system (2.5) when p(t) = p1, (as we point out before, we
always assume that a2 = 1). First we observe that given a point

(x0, v0) ∈ {(x, y) ∈ X : E1(x, y) = h1},

the bouncing solution associated to this initial condition is periodic with period
S1(0,

√
2h1) (S = (S1,S2) is the successor map associated to equation (2.10), see

(2.7)). We recall that S1(x, v) is strictly increasing with respect to the velocity.
Therefore,

P1 = S1(0,

√
2H̃1) < P2 = S1(0,

√
2h̃1). (2.18)

Now we define

T ∗1 =
5P1P2

P2 − P1
,

and take a constant T1 such that T1 > T ∗1 . Property (2.18) implies the dynamical
behavior for φ1 illustrated in Figure 3.
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Figure 3: Left: A path γ : [0, 1] −→ D1 joining the sides {(x, y) ∈ D1 : E1(x, y) =
h̃1} and {(x, y) ∈ D1 : E1(x, y) = H̃1}. Right: Illustration of φ1(Ω1 ∩ γ(t)). Note
that this effect is caused by the “twist” property (2.18).

Our aim is to find two disjoint compact sets K1,K0 ⊂ D1 such that (see Defini-
tion 5.3)

(Ki, φ1) : D̃0
1 m−→D̃1 for i = 0, 1

where φ1 : Ω1 −→ X and D̃0
1 = (D1, (D0

1)
−) with

(D0
1)
− = {(x, y) ∈ D1 : H̃1 = E1(x, y)} ∪ {(x, y) ∈ D1 : h̃1 = E1(x, y)},

and D̃1 = (D1, (D1)−) where (D1)− = (Dl
1 ∪ Dr

1).
Indeed, first consider m∗ the smallest integer satisfying that

T1

P2
< m∗ (2.19)

and m∗ the largest integer satisfying

T1

P1
> m∗. (2.20)

From the choice of T1 we deduce that m∗ −m∗ > 5. Observe that property (2.19)
implies that given any initial condition (x0, y0) ∈ {(x, y) ∈ X : E1(x, y) = h̃1},
solution (x(t;x0, y0), x′(t; x0, y0)) finds the point (x0, y0) at most m∗ times for the
interval [0, T1]. Similarly, property (2.20) says that for all initial condition (x0, y0) ∈
{(x, y) ∈ X : E1(x, y) = H̃1}, solution (x(t;x0, y0), x′(t;x0, y0)) finds the point
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(x0, y0) at least m∗ times for the interval [0, T1]. After that, we define the compact
sets

K1 = {(x, y) ∈ D1 :
T1

S1(0,
√

2E1(x, y))
∈ [m∗,m∗ + 2]},

K0 = {(x, y) ∈ D1 :
T1

S1(0,
√

2E1(x, y))
∈ [m∗ − 2,m∗]}.

Now we focus our attention on the stretching property, (see Definition 5.3). Take

γ : [0, 1] −→ D1

a path with
γ(0) ∈ {(x, y) ∈ D1 : E1(x, y) = H̃1},
γ(1) ∈ {(x, y) ∈ D1 : E1(x, y) = h̃1}.

Using that S1(0,
√

2E1(γ(t))) is continuous, we deduce that there exist two disjoint
subintervals [A0, A

′
0] and [A1, A

′
1] such that

T1

S1(0,
√

2E1(γ(s)))
∈ [m∗,m∗ + 2] for s ∈ [A0, A

′
0]

with T1

S1(0,
√

2E1(γ(A0)))
= m∗ and T1

S1(0,
√

2E1(A′0)))
= m∗ + 2 and

T1

S1(0,
√

2E1(γ(s)))
∈ [m∗ − 2,m∗] for s ∈ [A1, A

′
1]

with T1

S1(0,
√

2E1(γ(A1)))
= m∗ and T1

S1(0,
√

2E1(γ(A′1)))
= m∗ − 2 . Now we concentrate

on the interval [A0, A
′
0]. Clearly, the solutions with initial conditions at γ(A0) and

γ(A′0) have exactly m∗ and (m∗ + 2) collisions respectively on the interval [0, T1].
This property implies that there exists a subinterval [S̃0, S̃

′
0] ⊂ [A0, A

′
0] such that

(
x(T1, γ(S̃0)), x′(T1, γ(S̃0))

)
∈ {(x, y) : x < min{x0 : (x0, y) ∈ D1}},

(
x(T1, γ(S̃′0)), x

′(T1, γ(S̃′0))
)
∈ {(x, y) : y = 0},

(x(T1, γ(s), x(T1, γ(s))) ∈ {(x, y) : y ≥ 0}
for all s ∈ [S̃0, S̃

′
0]. Finally, we easily obtain the desired subinterval [S0, S

′
0]. Observe

that previous we have used above that

H̃1 ≤ E1(x(T1; γ(t)), x′(T1; γ(t))) ≤ h̃1

for all t ∈ [0, 1].
Step 2: Behavior in the interval [T1, T1 + τ1].
By the definition of p(t), the following property holds as a direct consequence of



13

Lemma 2.1: For all continuous path γ(t) : [0, 1] −→ D1 with γ(0) ∈ Dl
1, γ(1) ∈ Dr

1,
there exists a sub-interval [R0, R

′
0] ⊂ [0, 1] so that the curve

β(t) = (x(T1 + τ1; (T1, γ(t))), x′(T1 + τ1; (T1, γ(t))))

satisfies that
β([R0, R

′
0]) ⊂ D2,

β(R0) ∈ {(x, y) ∈ D2 : E2(x, y) = H̃2},
β(R′0) ∈ {(x, y) ∈ D2 : E2(x, y) = h̃2}.

This property is illustrated in Figure 4.

Figure 4: Left: A path γ : [0, 1] −→ D1 joining the sides {(x, y) ∈ D1 : H2 =
E2(x, y)} and {(x, y) ∈ D1 : h2 = E2(x, y)} . Right: Illustration of β(t). Note that
by lemma 2.1 , β(0), β(1) does not touch D2 and β(t) does not touch {(x, y) ∈ X :
H1 = E1(x, y)} and {(x, y) ∈ X : h1 = E1(x, y)}

To prove this property, we use that

β(t) ∈ {(x, y) ∈ X : H1 ≤ E1(x, y) ≤ h1, y > 0}

and β(0) and β(1) belong to different connected components of

X\{(x, y) : H̃2 ≤ E2(x, y) ≤ h̃2}.

Step 3: Stretching property in the interval [T1 + τ1, T1 + τ1 + T2].
In this step we study equation (2.5) when p(t) = p2. Consider the corresponding
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successor map S̃ associated to this equation. As in the first step, we define

T ∗2 =
5P̃1P̃2

P̃2 − P̃1

where P̃1 = S̃1(0,

√
2H̃2) < P̃2 = S̃1(0,

√
2h̃2). After that, fix a constant T2 > T ∗2

and consider φ2 : Ω2 −→ X where φ2 is the Poincaré map associated to (2.5) (for
p(t) = p2) at time T2 and Ω2 = φ−1

2 (X). Reasoning as in Step 1, we can prove that
for every continuous path

γ : [0, 1] −→ D2

with
γ(0) ∈ {(x, y) ∈ D2 : E2(x, y) = H̃2}

and
γ(1) ∈ {(x, y) ∈ D2 : E2(x, y) = h̃2}

there exists a sub-interval [M0,M
′
0] satisfying that

φ2(γ([M0,M
′
0])) ⊂ D2

with φ2(γ(M0)) ∈ Du
2 and φ2(γ(M ′

0)) ∈ Dlo
2 .

Step 4: Behaviour in the interval [T1 + T2 + τ1, T1 + T2 + τ1 + τ2].
Reasoning as in Step 2, we obtain that for all continuous path γ(t) : [0, 1] −→ D2

with γ(0) ∈ Du
2 , γ(1) ∈ Dlo

2 , there exists a sub-interval [C0, C
′
0] ⊂ [0, 1] so that the

curve

β(t) = (x(T1+τ1+T2+τ2; (T1+τ1+T2, γ(t))), x′(T1+τ1+τ2+T2; (T1+τ1+T2, γ(t))))

satisfies that
β([C0, C

′
0]) ⊂ D1,

β(C0) ∈ {(x, y) ∈ D1 : E1(x, y) = H̃1},

β(C ′0) ∈ {(x, y) ∈ D1 : E1(x, y) = h̃1}.

Step 5: Conclusion
Putting all the information together we deduce that P with P the Poincaré map
associated to (2.5) with function p(t) given by (2.13) has the properties

(Ki,P) : D̃0
1 m−→D̃0

1

for i = 0, 1. For it, we use the previous steps and (2.17). Finally we apply Theorem
5.2. ¤
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3 Singular Systems

3.1 Bouncing solutions and the Poincaré map

Consider the equation

x′′ = − 1
x2

+ p(t), (3.21)

with p(t) a periodic function of class C1. Let us denote by (xc(t; x0, v0), x′c(t; x0, v0))
the maximal solution of (3.21) satisfying the initial condition

(xc(0; x0, v0), x′c(0; x0, v0)) = (x0, v0) ∈ X :=]0, +∞[×R.

As it was observed in the Introduction, many solutions are not defined on R. How-
ever, in such a case we have a nice property, (see Section 2 in [33]). Specifically,
if the maximal interval of definition of (xc(t; x0, v0), x′c(t; x0, v0)) is I =]t0, t1[ with
t0 > −∞ (resp. t1 < ∞) then

(P1) limt→t+0
xc(t; x0, v0) = 0 (resp. limt→t−1

xc(t; x0, v0) = 0),

(P2) limt→t+0
x′c(t; x0, v0) = +∞ (resp. limt→t−1

x′c(t;x0, v0) = −∞),

(P3) by defining

h(t; x0, v0) :=
x′c(t;x0, v0)2

2
− 1

xc(t; x0, v0)
,

there exists a constant h0 such that limt→t+0
h(t;x0, v0) = h0 (resp. there

exists a constant h1 such that limt→t−1
h(t; x0, v0) = h1).

From a physical point of view, the previous identities can be interpreted in the
following way. If the solution associated with the particle motion is not defined for
all time then the particle has a collision at finite time and the energy function at that
instant is finite and well defined. On the other hand, from a mathematical point of
view, the previous properties allow us to define a natural notion of generalized or
bouncing solution in equation (3.21).

Definition 3.1. A bouncing solution of (3.21) is a continuous function u : R −→
[0,∞[ satisfying

• Z = {t ∈ R : u(t) = 0} is discrete,

• for any interval I ⊂ R\Z, the function u is of class C2(I) and satisfies (3.21)
on I,

• for each t0 ∈ Z, the limit

lim
t→t0

1
2
u′(t)2 − 1

u(t)
(3.22)

exists.
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There are some remarks to be made concerning the previous definition. Of course,
a classical solution defined in R is a bouncing solution with Z = ∅. Limit (3.22)
is taken from both sides of t0. Therefore, the energy function must be preserved
at the collision. As it was mentioned in the Introduction, this notion of collision
regularization by continuation of the energy is due to Sperling [42]. For other
techniques of extensions after collision in Celestial Dynamics, one can consult [10]
and the references in this paper.

As proved in Proposition 3.1 in [33], an advantage of the notion of bouncing
solution is that for all initial condition (x0, v0) ∈ X, there exists a unique bouncing
solution denoted by (x(t; x0, v0), x′(t;x0, v0)) so that

(x(0; x0, v0), x′(0; x0, v0)) = (x0, v0).

Observe that x(t; x0, v0) is defined for all t ∈ R, x′(t; x0, v0) is defined for all t ∈ R\Z,
and given t0 ∈ Z

lim
t→t−0

x′(t; x0, v0) = −∞,

lim
t→t+0

x′(t; x0, v0) = +∞.

These last properties are a direct consequence of (P2) and the second condition in
Definition 3.1.

For illustrative purposes, we study this notion of solution in equation (3.21)
when p(t) is a negative constant. Indeed, if p < 0, a simple phase portrait analysis
shows that each classical solution has a bounded maximal interval I and stays in
the curve

βh = {(x, y) ∈ X :
y2

2
− 1

x
− px = h}

with h ∈ R. In this scenario, if I =]t0, t1[ is the maximal interval of the classical
solution (xc(t;x0, v0), x′c(t; x0, v0)) then (x(t;x0, v0), x′(t; x0, v0)) := (xc(t− n(t1 −
t0); x0, v0), x′c(t− n(t1 − t0); x0, v0)) where t ∈]t0 + n(t1 − t0), t1 + n(t1 − t0)[.

After this discussion, we define the Poincaré map associated with (3.21) by using
the notion of bouncing solution. For it, we need the following result.

Lemma 3.1. Consider the set

B := {(x0, v0) ∈]0,∞[×R : (xc(t;x0, v0), x′c(t;x0, v0)) has

a maximal interval ]t0, t1[ with t1 < ∞}.
Then B is open and the map

B −→ R2

(x0, v0) 7→ (t1, h1)
(3.23)

is continuous where t1 is the time of the first collision and h1 is the energy at that
instant of the solution (xc(t;x0, v0), x′c(t;x0, v0)), (see (P1) and (P3)).

Proof. We split the proof into two steps:
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• Step 1: Continuity in the first component.
Take (x0, v0) ∈ B and ε > 0. By (P1) and (P2), there exists τ < t1(x0, v0) =:
t1 satisfying

x2
c(τ ;x0, v0)‖p‖∞ < 1, (3.24)

xc(τ ;x0, v0) > 0, (3.25)

x′c(τ ;x0, v0) < 0, (3.26)

0 < −xc(τ ;x0, v0)
x′c(τ ;x0, v0)

< ε. (3.27)

Observe that these properties imply

x′′c (t;x0, v0) < 0 for all t ∈]τ, t1[.

Therefore,
x′c(t; x0, v0) < x′c(τ ; x0, v0) for all t ∈]τ, t1[

and so,
0 < xc(t; x0, v0) < xc(τ ; x0, v0) + x′c(τ ; x0, v0)(t− τ). (3.28)

Clearly, by (3.28) we deduce that τ < t1(x0, v0) < τ + ε. To conclude that B
is an open set and the continuity in the first component we use an argument
of continuous dependence to guarantee (3.24)-(3.27).

• Step 2: Continuity in the second component.
Take {(xn

0 , vn
0 )} −→ (x0, v0). We know, by continuous dependence, that

xc(t; xn
0 , vn

0 ) −→ xc(t; x0, v0)

point-wise provided 0 ≤ t < t1(x0, v0). On the other hand, by the previous
step, we also deduce that

χ[0,t1(xn
0 ,vn

0 )] −→ χ[0,t1(x0,v0)]

pointwise, where χ[0,t1(xn
0 ,vn

0 )](t) = 1 if t ∈ [0, t1(xn
0 , vn

0 )] and 0 otherwise.
Apart from these arguments, an easy computation shows that

h′(t; xn
0 , vn

0 ) = p(t)x′c(t;x
n
0 , vn

0 ) for all t ∈ [0, t1(xn
0 , vn

0 )].

Collecting all the information we obtain that

h(t1(xn
0 , vn

0 ); xn
0 , vn

0 )− h1(0; xn
0 , vn

0 ) = −p(0)xn
0−

∫ t1(x
n
0 ,vn

0 )

0

p′(s)xc(s; xn
0 , vn

0 )ds.

The proof is now complete after using Lebesgue’s dominated convergence theorem.
¤
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Remark 3.1. If we replace, in the previous lemma, B by

C := {(x0, v0) ∈]0,∞[×R : (xc(t; , x0, v0), x′c(t; x0, v0)) has

a maximal interval ]t0, t1[ with t0 > −∞}
and consider the map

C −→ R2

(x0, v0) 7→ (t0, h0)
(3.29)

with h0 the energy at time t0, then the same conclusions as Lemma 3.1 hold.

Lemma 3.1 allows us to pass, in a continuous way, from (position, velocity) at the
initial time to (time, energy) of the first collision. Analogously, by Remark 3.1, we
can repeat the same procedure in the past. On the other hand, given (t0, h0) ∈ R2,
by Proposition 3.1 in [33] we know that there exists a unique bouncing solution,
namely u(t; (t0, h0)), satisfying

(i) limt→t0 u(t, (t0, h0)) = 0,

(ii) limt→t+0
u′(t, (t0, h0)) = −∞,

(iii) limt→t0
u′(t,(t0,h0))

2

2 − 1
u(t,(t0,h0))

= h0.

As in the regular case, if t1 > t0 is the next instant of collision and h1 is the
corresponding energy, then it was proved in [33, Section 5] that the successor map

S : D ⊂ R2 −→ R2

S(t0, h0) = (S1(t0, h0), S2(t0, h0)) = (t1, h1)
(3.30)

is continuous and injective with D := {(t0, h0) ∈ R2 : t1 < ∞} and the map

(t, t0, h0) ∈ H 7→ (u(t; t0, h0), u′(t; t0, h0)) ∈ R2

is continuous where H := {(t; t0, h0) ∈ R3 : t0 < t < t1}, (observe that t1 can be
∞). Consequently we deduce the continuity of the function

(t; x0, v0) ∈ G −→ (x(t; x0, v0), x′(t;x0, v0)) (3.31)

where G = {(t; x0, v0) : x(t;x0, v0) 6= 0}. Putting all the information together and
reasoning inductively as in the second step of Lemma 3.1 we obtain that the energy
function

h : R×]0,∞[×R −→ R
h(t, x0, v0) = x′(t;x0,v0)

2

2 − 1
x(t;x0,v0)

(3.32)

is continuous (see (P3) when x(t; x0, v0) = 0).
Once these remarks have been done, we need to introduce a topological space

(A,=) where

A = {(x, y, z) ∈ X × R : z =
y2

2
− 1

x
} ∪ {(0,∞, z) : z ∈ R}.
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Using the convention y < ∞ for all y ∈ R, the definition of the topology in A
is as follows: a sequence (xn, yn, zn) converges to (x0, y0, z0) ∈ A with x0 > 0 if
each coordinate converges in the classical sense. In the case x0 = 0, a sequence
(xn, yn, zn) ⊂ A converges to (0,∞, z0) if

xn −→ 0,

|yn| −→ ∞,

zn −→ z0.

In this topological space, it is useful to introduce the maps

i : X −→ A
(x, v) 7→ (x, v, v2

2 − 1
x )

(3.33)

and
π : i(X) ⊂ A −→ X
(x, v, h) 7→ (x, v). (3.34)

Clearly these two maps are continuous and injective.
Next we properly define the Poincaré map associated with (3.21). Specifically,

P : X −→ A
given by

P(x0, v0) =





(0,∞, h(T ; x0, v0)) if t1(x0, v0) = T

(0,∞, h(T ; x0, v0)) if Sj
1(t1(x0, v0), h1(x0, v0)) = T

(x(T ; x0, v0), x′(T ;x0, v0), h(T ; x0, v0)) otherwise
(3.35)

where Sj = (Sj
1, S

j
2) denotes the j-th iterate of the successor map.

Proposition 3.1. The Poincaré map (3.35) is injective and continuous.

Proof. By uniqueness of bouncing solution, we know that P is injective. On the
other hand, from the comments above on the definition of (A,=) (see (3.30-3.32)),
P is continuous at the points (x0, v0) such that P(x0, v0) 6= (0,∞, z). After that,
we concentrate on points (x0, v0) with P(x0, v0) = (0,∞, z). Indeed, pick a point
(x0, v0) such that Sj

1(t1(x0, v0), h1(x0, v0)) = T , (the proof is completely analogous
if t1(x0, v0) = T ), and a sequence {(xn

0 , vn
0 )} −→ (x0, v0). We split the proof into

three cases:

Case 1: The sequence Sj
1(t1(x

n
0 , vn

0 ), h1(xn
0 , vn

0 )) = T for all n ∈ N.
The assertion of the proposition is clear by the continuity of the energy func-
tion. (see (3.32))

Case 2: The sequence Sj
1(t1(x

n
0 , vn

0 ), h1(xn
0 , vn

0 )) < T for all n ∈ N.
Fix ε, k > 0. After that, notice that h(T ; xn

0 , yn
0 ) −→ h(T ; x0, v0). By proper-

ties (P1),(P2), we can take s < T such that
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• x2(s;x0, v0)‖p‖∞ < 1,

• 0 < x(s;x0, v0) < ε,

• −x′(s; x0, v0) > k.

By continuous dependence, it is deduced that for n large enough, (x(s; xn
0 , vn

0 ),
x′(s; xn

0 , vn
0 )) enjoys also these properties. At this moment, we reason as in

Step 1 of Lemma 3.1 in order to obtain that

0 < x(T ; xn
0 , vn

0 ) < ε,

−x′(T ; xn
0 , vn

0 ) > k.

Case 3: The sequence Sj
1(t1(x

n
0 , vn

0 ), h1(xn
0 , vn

0 )) > T for all n ∈ N.
Again, fix ε, k > 0. First observe that h(T ; xn

0 , yn
0 ) −→ h(T ;x0, v0). Now take

s > T such that

• x2(s;x0, v0)‖p‖∞ < 1,

• 0 < x(s;x0, v0) < ε,

• x′(s; x0, v0) > k.

Reasoning as in the previous case, we obtain, for n large enough,

0 < x(T ; xn
0 , vn

0 ) < ε,

x′(T ; xn
0 , vn

0 ) > k.

¤
As a direct consequence of this lemma we deduce that Ω := P−1(i(X)) ⊂ X is

an open set and

φ = π ◦ P : Ω −→ X
(x0, v0) 7→ (x(T ; x0, v0), x′(T ; x0, v0))

(3.36)

is continuous. Notice that given (x0, v0) ∈ Ω, we know that the solution with this
initial condition does not a have collision at T . It is also important to observe that
the key point for the continuity of P is the continuity of the energy function at the
collisions.

3.2 Chaotic dynamics of equation (3.21)

In this section we concentrate on the construction of T -periodic forces with alter-
nating sign inducing chaotic dynamics in (3.21). By chaotic dynamics in (3.21) we
understand that the map

π ◦ P : Ω −→ X
(x0, v0) 7→ (x(T ; x0, v0), x′(T ; x0, v0))

(3.37)
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induces chaotic dynamics on two symbols (see Definition 5.1). In our results it
is essential the notion of bouncing solution. To appreciate this fact, we recall
that, in the classical sense, either there are no T -periodic solutions (this happens
if

∫ T

0
p(t)dt ≤ 0, see [25]) or equation (3.21) has a dynamics of “saddle-type” (see

[25, 28]). In both cases, no chaos is present. As in the regular case, first we construct
the class of functions and then we give the main results.

Fix two constants p1 < 0 < p2 and consider the equations

x′′ =
−1
x2

+ p1, (3.38)

x′′ =
−1
x2

+ p2. (3.39)

Next, take e1, e2 < 0 with e2 < −2
√

p2 so that

−e1 −
√

e2
1 − 4p1

2p1
>
−e2 −

√
e2
2 − 4p2

2p2
. (3.40)

Define by Fi(x, y) = y2

2 − 1
x − pix for i = 1, 2 the (conserved) energy for both

autonomous equations (3.38)-(3.39). Let be

β1 = {(x, y) : F1(x, y) = e1}
and

β2 = {(x, y) : F2(x, y) = e2, x ≥ σ},
where σ =

√
1/p2 is the unique equilibrium of (3.39). By (3.40), the intersection

points between βi and the x-axis, namely (z1, 0) and (z2, 0) respectively, satisfy that

z1 > z2. (3.41)

Using this property, a simple analysis implies that the intersection β1 ∩ β2 is made
by two points, specifically {(x1, y1), (x2, y2)} with y1 < 0 < y2. See Figure 5.

0 1 2 3 4 5 6

-4

-2

0

2

4

β2 β1

Figure 5: The configuration of orbits β1, β2.
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Clearly, as e2 < −2
√

p2, we can take T ∗2 > 0 such that

(x2(T ∗2 ; (x1, y1)), x′2(T
∗
2 ; (x1, y1)) = (x2, y2)

where (x2(t; (x1, y1)), x′2(t; (x1, y1))) is the solution of (3.39) with initial condition
at (x1, y1). After that, pick a constant ẽ2 such that

i) e2 < ẽ2 < −2
√

p2,

ii) −e1−
√

e2
1−4p1

2p1
>

−ẽ2−
√

ẽ2
2−4p2

2p2
.

By an elementary phase portrait analysis, we know that

x1 < x̃1,

y1 < ỹ2,

and
x2 < x̃2,

ỹ2 < y2,

where (x̃1, ỹ1) and (x̃2, ỹ2) are the intersection points between β1 and β̃2 with

β̃2 = {(x, y) : F2(x, y) = ẽ2, x ≥ σ}.

Figure 6: The configuration of orbits β1, β2, β̃2.

Equation (3.39) preserves the usual ordering in R2 (see Theorem 2.1 and its
proof in [7]) and so we have that

x2(T ∗2 , (x1, y1)) < x2(T ∗2 , (x̃1, ỹ1))

x′2(T
∗
2 , (x1, y1)) < x′2(T

∗
2 , (x̃1, ỹ1)).

By these inequalities, we can take a constant ẽ1 close to e1 satisfying:
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1. e1 < ẽ1.

2. Let H1 and H2 be the connected components of

{(x, y) : e2 ≤ F2(x, y) ≤ ẽ2, e1 ≤ F1(x, y) ≤ ẽ1, x ≥ σ}

with H1 ⊂ {(x, y) : y < 0}. Then we can fix a time T2 < T ∗2 such that for all
(x0, y0) ∈ {(x, y) ∈ H1 : F2(x, y) = e2} we have that

a1) {(x, y) ∈ H1 : F2(x, y) = ẽ2} ⊂ {(x, y) : x0 < x, y0 < y},
a2) {(x, y) : x2(T2; (x0, y0)) < x, x′2(T2; (x0, y0)) < y} ∩ {(x, y) ∈ H2 :

F2(x, y) = ẽ2} = ∅,
a3) {(x, y) ∈ H2 : F2(x, y) = e2} ⊂ {(x, y) : x2(T2; (x0, y0)) < x, x′2(T2; (x0, y0)) <

y}.
See Figure 7.
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Figure 7: Illustration of H1 and H2.

Observe that these properties have deep consequences. Take (x0, y0) ∈ {(x, y) ∈
H1 : F2(x, y) = e2} and (x̃0, ỹ0) ∈ {(x, y) ∈ H1 : F2(x, y) = ẽ2}. Clearly,

x0 < x̃0,

y0 < ỹ0.

Then, using that equation (3.39) preserves the usual ordering in R2,

x2(T2; (x0, y0)) < x2(T2; (x̃0, ỹ0)),

x′2(T2; (x0, y0)) < x′2(T2; (x̃0, ỹ0)).
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Using 2 we deduce that

(x2(T2; (x0, y0)), x′2(T2; (x0, y0))) 6∈ H2, (see a3)

(x2(T2; (x̃0, ỹ0)), x′2(T2; (x̃0, ỹ0))) 6∈ H2, (see a2).

In fact, these points belong to different connected components of

X\{(x, y) : e1 ≤ F1(x, y) ≤ ẽ1}.

Finally, we fix four additional constants E1 < Ẽ1 and E2 < Ẽ2 so that

• [E1, Ẽ1] ⊂]e1, ẽ1[, [e2, ẽ2] ⊂]E2, Ẽ2[,

• for all e∗1 ∈ [e1, ẽ1] and for all e∗2 ∈ [E2, Ẽ2]

−e∗1 −
√

(e∗1)2 − 4p1

2p1
>
−e∗2 −

√
(e∗2)2 − 4p2

2p2

holds. (See Figure 8)

0 1 2 3 4 5 6

-4

-2

0

2

4

Figure 8: Illustration of the configuration of the orbits. The dashed lines correspond
to the orbits associated to the energy levels denoted by E1, Ẽ1, E2, Ẽ2.



25

3.0 3.2 3.4 3.6 3.8 4.0

-1.8

-1.6

-1.4

-1.2

-1.0

Q2

R2

3.0 3.2 3.4 3.6 3.8 4.0

1.0

1.2

1.4

1.6

1.8

Q1 J

Figure 9: Detail of the intersections between the linked orbits. Left: Lower inter-
section. Right: Upper intersection.

Denote by

Q1 = {(x, y) : E1 ≤ F1(x, y) ≤ Ẽ1, E2 ≤ F2(x, y) ≤ Ẽ2, y > 0, x ≥ σ},
Q2 = {(x, y) : e1 ≤ F1(x, y) ≤ ẽ1, e2 ≤ F2(x, y) ≤ ẽ2, y < 0, x ≥ σ}.

Clearly we can choose r2 > 0 such that the r2-neighbourhood of

{(x, y) : e1 = F1(x, y), e2 ≤ F2(x, y) ≤ ẽ2, y > 0, x ≥ σ}
and

{(x, y) : ẽ1 = F1(x, y), e2 ≤ F2(x, y) ≤ ẽ2, y > 0, x ≥ σ}
does not touch Q1 and the r2-neighbourhood of

J = {(x, y) : ẽ2 ≤ F2(x, y) ≤ e2, ẽ1 ≤ F1(x, y) ≤ e1, y > 0, x ≥ σ}
does not touch the sets

{(x, y) : F2(x, y) = E2, x ≥ σ},

{(x, y) : F2(x, y) = Ẽ2, x ≥ σ}.
Analogously, we can choose r1 > 0 such that the r1-neighbourhood of

{(x, y) : E2 = F2(x, y), E1 ≤ F1(x, y) ≤ Ẽ1, y < 0, x ≥ σ}
and

{(x, y) : Ẽ2 = F2(x, y), E1 ≤ F1(x, y) ≤ Ẽ1, y < 0, x ≥ σ}
does not touch Q2 and the r1-neighbourhood of

R2 = {(x, y) : E1 ≤ F1(x, y) ≤ Ẽ1, E2 ≤ F2(x, y) ≤ Ẽ2, y < 0, x ≥ σ}
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does not touch the sets
{(x, y) : F1(x, y) = e1},
{(x, y) : F1(x, y) = ẽ1}.

See Figure 9 for an illustration of these sets.
The next step is to point out that Lemma 2.1 holds exactly the same for equation

(3.21). Now, we are in the conditions to construct the forcing term p(t). First, apply
Lemma 2.1 with d = r1, M = max{|p1|, |p2|} and K = R2 to obtain a parameter
τ1 > 0 satisfying condition (2.12). After that, apply Lemma 2.1 with d = r2,
M = max{|p1|, |p2|} and K = J to obtain a parameter τ2 > 0 satisfying condition
(2.12). Now, for a parameter T1 > 0 we define

p(t) =





p1 if 0 ≤ t < T1

p̃1(t) if T1 ≤ t < T1 + τ1

p2 if T1 + τ1 ≤ t < T1 + τ1 + T2

p̃2(t) if T1 + τ1 + T2 ≤ t < T1 + τ1 + T2 + τ2

(3.42)

so that |p̃i(t)| ≤ max{|p1|, |p2|} and function p(t) is of class C1. Recall that the
parameter T2 is fixed above (see a1-a3). As in the regular case, we need to introduce
some notation. Consider Φ1 the Poincaré map associated to (3.38) at time T1 (see
(3.35)). For Ω1 = Φ−1

1 (i(X)) we have that

π ◦ Φ1 : Ω1 −→ X
(x0, v0) 7→ (x(T1; x0, v0), x′(T1; x0, v0))

(3.43)

where, for convenience, (x(T1; x0, v0), x′(T1;x0, v0)) is the bouncing solution of
(3.38) with initial data at (x0, v0). Define Φ2 and Ω2 in a similar way with system
(3.39) and T2. On the other hand, in U a neighbourhood of Q1 ∪Q2, by lemma 2.1
and the definition of τ1 and τ2, we can define two maps,

h1 : U −→ X
h1(x0, v0) := (x(T1 + τ1; (T1, x0, v0), x′(T1 + τ1; (T1, x0, v0)))

(3.44)

h2 : U −→ X
h2(x0, v0) := (x(T1 + τ1 + T2 + τ2; (T1 + τ1 + T2, x0, v0),

x′(T1 + τ1 + T2 + τ2; (T1 + τ1 + T2, x0, v0)))
(3.45)

where (x(t; (t0, x0, v0)), x′(t; (t0, x0, v0))) refers to the bouncing solution of (3.21)
with force (3.42). Note that, by the expression of (3.42), if (x, v) ∈ Ω1, π◦Φ1(x, v) ∈
U , h1(π ◦ Φ1(x, v)) ∈ Ω2 and π ◦ Φ2(h1(π ◦ Φ1(x, v))) ∈ U then

π ◦ P(x, v) = h2 ◦ π ◦ Φ2 ◦ h1 ◦ π ◦ Φ1(x, v) (3.46)

where P is the Poincaré map of (3.21) with force (3.42).

Theorem 3.1. There exists T ∗1 with the following property: for every function p(t)
given in (3.42) with parameter T1 > T ∗1 , equation (3.21) has chaotic dynamics.
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Proof. The proof of this theorem is divided into five steps.
Step 1: Stretching property for [0, T1].
We follow a similar reasoning as Step 1 in Theorem 2.1. Consider the successor map
S = (S1, S2) associated to equation (3.38). Observe that given a point (x0, v0) ∈
{(x, y) : F1(x, y) = h1} the bouncing solution of (3.38) with this initial condition is
periodic with period S1(0, h1). We recall that by Proposition 5.1 in [33], S1(x, h) is
a strictly increasing function in the second component. Now we define

T ∗1 =
5P1P2

P2 − P1

where P1 = S1(0, E1) and P2 = S1(0, Ẽ1).
Fix T1 > T ∗1 . We have to find two compact sets K0,K1 ⊂ Q1 such that (see
Definition 5.3)

(Ki, π ◦ Φ1) : Q̃1 m−→R̃2,

where Φ1 is the Poincaré map of (3.38) at the instant T1, Q̃1 = (Q1, (Q1)−) with

Q−
1 = {(x, y) ∈ Q1 : F1(x, y) = E1} ∪ {(x, y) ∈ Q1 : F1(x, y) = Ẽ1},

and R̃2 = (R2, R
−
2 ) with

R−2 = {(x, y) ∈ R2 : F2(x, y) = E2} ∪ {(x, y) ∈ R2 : F2(x, y) = Ẽ2}.

In Figure 10, we illustrate this dynamical property.

Figure 10: Left: A path γ : [0, 1] −→ Q1 joining the sides {(x, y) ∈ Q1 : F1(x, y) =
E1} and {(x, y) ∈ Q1 : F1(x, y) = Ẽ1}. Right: Illustration of π ◦ Φ1(Ω1 ∩ γ(t)).
Note that this effect is caused by the “twist” property.
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Indeed, first consider m∗ the smallest integer satisfying that

T1

P2
< m∗ (3.47)

and m∗ the largest integer satisfying

T1

P1
> m∗. (3.48)

By the definition of T1 we know that m∗ −m∗ > 5. Observe that property (3.47)
says that for all initial condition (x0, y0) ∈ {(x, y) : F1(x, y) = Ẽ1}, solution
(x(t; x0, y0), x′(t; x0, y0)) finds the point (x0, y0) at most m∗ times for the inter-
val [0, T1]. Similarly, property (3.48) says that for all initial condition (x0, y0) ∈
{(x, y) : F1(x, y) = E1}, solution (x(t; x0, y0), x′(t; x0, y0)) finds the point (x0, y0)
at least m∗ times for the interval [0, T1]. Next, we consider the compact sets

K1 = {(x, y) ∈ Q1 :
T1

S1(0,F1(x, y))
∈ [m∗, m∗ + 2]}

K0 = {(x, y) ∈ Q1 :
T1

S1(0,F1(x, y))
∈ [m∗ − 2, m∗]}.

Now we prove the stretching property, (see Definition 5.3).
Take

γ : [0, 1] −→ Q1

a path with
γ(0) ∈ {(x, y) ∈ Q1 : F1(x, y) = E1},
γ(1) ∈ {(x, y) ∈ Q1 : F1(x, y) = Ẽ1}.

Using that S1(0,F1(γ(t))) is continuous, we deduce that there exist two disjoint
subintervals [A0, A

′
0] and [A1, A

′
1] such that

T1

S1(0,F1(γ(s)))
∈ [m∗,m∗ + 2] for s ∈ [A0, A

′
0]

with T1
S1(0,F1(γ(A0)))

= m∗ and T1
S1(0,F1(A′0)))

= m∗ + 2 and

T1

S1(0,F1(γ(s)))
∈ [m∗ − 2,m∗] for s ∈ [A1, A

′
1]

with T1
S1(0,F1(γ(A1)))

= m∗ and T1
S1(0,F1(γ(A′1)))

= m∗ − 2. Now we concentrate on the
interval [A0, A

′
0]. Clearly, the solutions with initial conditions at γ(A0) and γ(A′0)

have exactly m∗ and (m∗ + 2) collisions respectively for the interval [0, T1]. This
property implies that there exists a subinterval [S̃0, S̃

′
0] ⊂ [A0, A

′
0] such that

(x(T1; γ(S̃0)), x′(T1; γ(S̃0))) ∈ {(x, y) : x < min{x0 : (x0, y) ∈ R2}},
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(x(T1; γ(S̃′0)), x
′(T1; γ(S̃′0))) ∈ {(x, y) : y = 0},

(x(T1; γ(s)), x(T1; γ(s))) ∈ {(x, y) : y ≤ 0}
for all s ∈ [S̃0, S̃

′
0]. Finally, we easily obtain the desired subinterval [S0, S

′
0]. Observe

that previously we have used that

E1 ≤ F1(x(T1; γ(t)), x′(T1; γ(t))) ≤ Ẽ1

for all t ∈ [0, 1].
Step 2: Behavior in the interval [T1, T1 + τ1].
By the definition of p(t) and as a direct consequence of the variant of Lemma 2.1
for equation (3.21) we have the following property: For all continuous path,

γ : [0, 1] −→ R2

with
γ(0) ∈ {(x, y) ∈ R2 : F2(x, y) = E2},

γ(1) ∈ {(x, y) ∈ R2 : F2(x, y) = Ẽ2},
there is a subinterval [R0, R

′
0] ⊂ [0, 1] so that the curve

β(t) = (x(T1 + τ1, (T1, γ(t))), x′(T1 + τ1, (T1, γ(t))))

satisfies that
β([R0, R

′
0]) ⊂ Q2

with β(R0) ∈ {(x, y) ∈ Q2 : F2(x, y) = e2} and β(R′0) ∈ {(x, y) ∈ Q2 : F2(x, y) =
ẽ2}.

Step 3: Stretching property in the interval [T1 + τ1, T1 + τ1 + T2].
In this step we prove the following stretching property: Given a path

γ : [0, 1] −→ Q2

with
γ(0) ∈ {(x, y) ∈ Q2 : F2(x, y) = e2}

γ(1) ∈ {(x, y) ∈ Q2 : F2(x, y) = ẽ2},
there is a subinterval [M0,M

′
0] ⊂ [0, 1] such that

π ◦ Φ2(γ(t)) ⊂ J

with π ◦ Φ2(γ(M0)) ∈ {(x, y) ∈ J : F1(x, y) = e1} and π ◦ Φ2(γ(M ′
0)) ∈ {(x, y) ∈

J : F1(x, y) = ẽ1}. We denote by Φ2 the Poincaré map associated to (3.39).
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Figure 11: Left: A path γ : [0, 1] −→ Q2 joining the sides {(x, y) ∈ Q2 : F2(x, y) =
e2} and {(x, y) ∈ Q2 : F2(x, y) = E2}. Right: Illustration of π ◦ Φ2(γ(t))

To see this claim, we recall that, by definition of T2 (see a1-a3), π ◦ Φ2(γ(0))
and π ◦ Φ2(γ(1)) belong to different components of

X\{(x, y) : e1 ≤ F1(x, y) ≤ ẽ1}.

In addition, clearly π ◦ Φ2(γ(t)) ∈ {(x, y) : ẽ2 ≤ F2(x, y) ≤ e2, x ≥ σ, y > 0} for all
t ∈ [0, 1]. From these facts, the proof is clear.

Step 4: Behaviour in the interval [T1 + T2 + τ1, T1 + T2 + τ1 + τ2].
Reasoning as in Step 2, we obtain that for all continuous path γ(t) : [0, 1] −→ J
with γ(0) ∈ {(x, y) ∈ J : F1(x, y) = e1}, γ(1) ∈ {(x, y) ∈ J : F1(x, y) = ẽ1}, there
exists a sub-interval [C0, C

′
0] ⊂ [0, 1] so that the curve

β(t) = (x(T1+τ1+T2+τ2; (T1+T2+τ1, γ(t))), x′(T1+τ1+T2+τ2; (T1+T2+τ1, γ(t))))

satisfies that

β([C0, C
′
0]) ⊂ Q1,

with β(C0) and β(C ′0) lying on different connected components of Q−1 .
Step 5: Conclusion
Putting all the information together and using (3.46) we deduce that π ◦ P with P
the Poincaré map associated to (3.21) has the properties

(Ki, π ◦ P) : Q̃1 m−→Q̃1

for i = 0, 1. Finally we apply Theorem 5.2.
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4 Further examples and Remarks

In connection with our results on chaotic dynamics we point out the general method
of linked twist maps has following advantages:

• All the parameters involved can be estimated.

• A quantitative estimation of regions of initial data where the chaotic behaviour
occurs can be performed.

• The method is robust under small perturbations. Since the method is of
topological nature, any type of conservation of energy or hamiltonian structure
is not essential. This means that our main results holds if a small friction
coefficient is added in the equation, or more important, if the impact rule
includes a restitution coefficent λ > 0 such that

x(t0) = 0 =⇒ x′(t+0 ) = −λx′(t−0 ).

This introduces a dissipation in the model, but if λ is close to 1 our results
are preserved.

Concerning the singular equation, the original equation considered by Lazer and
Solimini in [25] is

x′′ =
−1
xγ

+ p(t) (4.49)

with p(t) continuous and T -periodic. For equation (4.49) with γ ≥ 1 and p(t) of
class C1 and T -periodic, the same regularization technique can be applied and our
results are valid in order to obtain the analogous conclusion. Notice that we need
to adapt (in a direct way) the results taken from [33]. On the order hand, the
weak singularity case 0 < γ < 1 is more simple and has been considered in [38].
In this case, the collision velocity is finite and the solution can be continued by a
simple elastic rule, hence the regularization in not necessary and analogous results
are verified. It is important to observe that a similar construction like in Section 2
can be detected in (4.49).

5 Appendix: Background on chaotic dynamics

In this section we introduce the definition of chaos and the topological tools which
are used throughout this paper. For the reader’s convenience, we present all the
notions in the framework of the applications.

Definition 5.1. Consider (J , d) a metric space and take D an open set. We say
that a continuous map ψ : D → J induces chaotic dynamics on two symbols
if there exist two disjoint compact sets K0,K1 ⊂ D such that, for each two-sided
sequence (si)i∈Z ∈ {0, 1}Z, there exists a corresponding sequence (ωi)i∈Z ∈ (K0 ∪
K1)Z such that

ωi ∈ Ksi and ωi+1 = ψ(ωi) for all i ∈ Z, (5.50)
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and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si, ∀ i ∈ Z) for some
k ≥ 1, there exists a k-periodic sequence (ωi)i∈Z ∈ (K0 ∪ K1)Z satisfying (5.50).

Definition 5.1 guarantees natural properties of complex dynamics such as sen-
sitive dependence on the initial conditions or the presence of an invariant set Λ
being transitive and semi conjugate with the Bernoulli shift. In addition we must
note that our definition of chaos ensures as well the existence of periodic points
of any period n ∈ N. In relation to other definitions of chaos we notice that if a
concrete map is chaotic according to our definition is also chaotic in the sense of
Block Coppel and in the sense of coin tossing , see [1], [24]. Next we collect some
important properties of Definition 5.50.

Theorem 5.1. ( [29, Theorem 2.2]) Assume that ψ, K0 and K1 are as in Definition
5.1 and set

K := K1 ∪ K0.

Defining the nonempty compact set

I∞ =
∞⋂

n=0

ψ−n(K), (5.51)

then there exists a nonempty compact set

I ⊂ I∞ ⊂ K,

on which the following are fulfilled:

i) I is invariant for ψ, (i.e. ψ(I) = I).
ii) ψ|I is semi-conjugate to the Bernoulli shift on two symbols, that is there exists

a continuous map g of I onto Σ+
2 := {0, 1}N, endowed with the distance

d(s′, s′′) :=
∑

i∈N

d̃(s′i, s
′′
i )

2i+1
, for s′ = (s′i)i∈N, s′′ = (s′′i )i∈N ∈ Σ+

2

(where d̃(·, ·) is the discrete distance on {0, 1} : d̃(s′i, s
′′
i ) = 0 for s′i = s′′i and

d̃(s′i, s
′′
i ) = 1 for s′i 6= s′′i ), such that the diagram

Λ Λ

Σ+
2 Σ+

2

-ψ

?

g

?

g

-
σ

commutes, where σ : Σ+
2 −→ Σ+

2 is the Bernoulli shift defined by σ((si)i) :=
(si+1)i for all i ∈ N.
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iii) The set P of the periodic points of ψ |I∞ is dense in I and the pre-image
g−1(s) ⊂ I of every k-periodic sequence s = (si)i∈N ∈

∑+
2 contains at least

one k-periodic point.

Furthermore, from property ii) it follows that:

iv) htop(ψ) ≥ htop(ψ |I) ≥ htop(σ) ≥ log(2), where htop is the topological entropy.

v) There exists a compact invariant set Λ ⊂ I such that ψ |Λ is semi-conjugate to
the Bernoulli shift on two symbols, topologically transitive and has sensitive
dependence on initial conditions.

Our next aim is to derive a method to prove the presence of chaotic dynamics
in concrete examples. With this respect, we give the following definitions.

Definition 5.2. Consider a set R homeomorphic to [0, 1]× [0, 1]. We say that the
pair R̃ = (R,R−) is an oriented topological rectangle if R− = R−l ∪R−r where
R−l , R−r are two disjoint compact arcs contained in the boundary of R.

Definition 5.3. Take (X, d) with X =]0,∞[×R and d the Euclidean distance.
Given two oriented rectangles R̃ := (R,R−), B̃ := (B,B−) with R,B ⊂ X and a
compact set K ⊂ R we say that a continuous map

ψ : D ⊂ X −→ X

(K, ψ) stretches R̃ to B̃ along the paths and write

(K, ψ) : R̃ m−→B̃,

if the following condition holds:

For every path γ : [0, 1] −→ R such that γ(0) ∈ R−l and γ(1) ∈ R−r there
exists a subinterval [t′, t′′] ⊂ [0, 1] so that

γ(t) ∈ K, ψ(γ(t)) ∈ B
for all t ∈ [t′, t′′] and moreover, ψ(γ(t′)) and ψ(γ(t′′)) belong to different
components of B−.

As a next step we link the definition of stretching along paths with the notion of
chaotic dynamics on two symbols.

Theorem 5.2. ( [29, Theorem 2.3]) Consider ψ : D −→ X a continuous map and
R̃ = (R,R−) an oriented topological rectangle as above. Assume that there are two
disjoint compact sets K0,K1 with K0 ∪ K1 ⊂ R and such that

(Ki, ψ) : R̃ m−→R̃, for all i = 0, 1

then ψ induces chaotic dynamics on two symbols relatively to K0 ∩ (ψ−1(K0 ∪K1))
and K1 ∩ (ψ−1(K0 ∪K1)). It follows that the map ψ has the properties of Theorem
5.1.
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Remark 5.1. To be precise, it is needed to say that the previous theorem is not
exactly Theorem 2.3 in [29] because R 6⊂ D. However, as ψ(K0∩(ψ−1(K0∪K1))) ⊂
R, ψ(K1 ∩ (ψ−1(K0 ∪ K1))) ⊂ R the proof is exactly the same as in that theorem.
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[49] K. Wójcik, Remark on complicated dynamics of some planar system, J.
Math. Anal. Appl. 271 (2002), 257–266.

[50] V. Zharnitsky, Invariant curve theorem for quasiperiodic twist mappings
and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13 (2000),
1123–1136.
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