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1. Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain

2. Department of Mathematics, Zhengzhou University, Zhengzhou 450001, PR China

Abstract— We analyze the non-degeneracy of the linear 2n-order differential equa-

tion u(2n) +
2n−1∑
m=1

amu
(m) = q(t)u with potential q(t) ∈ Lp(R/TZ), by means of new

forms of the optimal Sobolev and Wirtinger inequalities. The results is applied to ob-

tain existence and uniqueness of periodic solution for the prescribed nonlinear problem

in the semilinear and superlinear case.

Keyword—Non-degeneracy; Uniqueness; Superlinear; Semilinear; 2n-order differen-

tial equation.

MSC2000—34C25.

1 Introduction

Given q(t) ∈ Lp(ST), ST = R/TZ, 1 ≤ p ≤ ∞, am ∈ R, it is said that the linear periodic

boundary value problem

u(2n) +
2n−1∑
m=1

amu
(m) = q(t)u, t ∈ R, u ∈ R, (1.1)

u(i)(0) = u(i)(T ), i = 0, 1, · · · , 2n− 1, (1.2)

is non-degenerate, if problem (1.1)-(1.2) has only the trivial solution u(t) = 0. In this case, we also

say that q(t) is a non-degenerate potential of problem (1.1) and (1.2).

The periodic solution problem for the high-order differential equations has attracted much

attention (see for instance [1]-[3], [10]-[14]), however, the study on non-degenerate problems for
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high-order differential equation is not adequately covered in the related literature. The main

objective of this paper is to contribute to the literature with a new criterium of non-degeneracy in

the general case.

The interest of a good understanding of the non-degeneracy problem is twofold. Besides the

intrinsic theoretical interest, generally speaking a concrete non-degeneracy result can be applied

to obtain existence and uniqueness results for a nonlinear problem. For the second order equation,

such techniques have been widely developed for the semilinear case. This line of research can be

traced back at least to the seminal paper of Lasota and Opial [6] a present a number of variants,

see for instance [4, 8, 15] and the references therein. The superlinear case has been considered

in [9]. The analysis of higher-order problems with this technique is more rare. Just recently, Li

and Zhang [7] have used some Sobolev constants to explicitly characterize a class of potentials

q(t) ∈ Lp(0, T ) for which the beam equation with periodic boundary conditions
u(4)(t) = q(t)u(t), t ∈ (0, T ),

u(i)(0) = u(i)(T ), 0 ≤ i ≤ 3,
(1.3)

admits only the trivial solution. As an application of non-degeneracy, they obtain the uniqueness

of periodic solutions of a certain class of superlinear beam equations.

In this paper, we develop a novel non-degeneracy criterium for problem (1.1)-(1.2). Later,

inspired in the cited papers [7, 9, 15], such criterium is applied to the existence and uniqueness of

periodic solutions of the related nonlinear differential equation. In section 2, we present new forms

of optimal Sobolev and Wirtinger inequalities recently developed in [5]. In section 3, by using the

previous optimal Sobolev and Wirtinger inequalities, we get sufficient conditions for a potential to

be non-degenerate for (1.1)-(1.2). Section 4 and 5 are devoted to applications of the main result for

non-degenerate potentials to the nonlinear problem. Section 4 deals with the semilinear case and

applies the technique developed in [15]. In section 5, firstly, the classes C(σ;A,B) of nonlinearities

to be considered are given in Definition 5.1. These nonlinearities f(x) can grow superlinearly as

x→∞. Besides the existence for equations of Landesman-Lazer type [14] where the nonlinearities

are monotone, by mimicking the technique employed in [7] it is shown in Theorem 5.1 that, for

those classes of nonlinear equations, the periodic solution is unique.

We fix some notations. For a function h(t) in the Lebesgue space L1(ST ) of T-periodic function,

ST = R/TZ, the mean value of h(t) is h̄(t) = 1
T

∫ T
0
h(t)dt. Then L1(ST ) can be decomposed as

L1(ST ) = R ⊕ L̃1(ST ), where L̃1(ST ) = {h ∈ L1(ST ) : h̄ = 0} and R is identified as the set

of constant functions of L1(ST ). Analogously, the Hilbert space Hn(ST ) can be decomposed

as Hn(ST ) = R ⊕ H̃n(ST ), where H̃n(ST ) = Hn(ST ) ∩ L̃1(ST ). The uniform norm is as usual

||x||∞ = max |x(t)|. Finally, the positive and negative part of a function q(t) are given by q+(t) =
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max{q(t), 0}, q−(t) = max{−q(t), 0}.

2 Optimal Sobolev and Wirtinger inequalities.

In this section, we recall some novel Sobolev and Wirtinger inequalities recently proved in [5].

As a preparation, we explain briefly about Riemann zeta function, Bernoulli polynomial and

Bernoulli number. Riemann zeta function is a meromorphic function defined by

ζ(z) =
∞∑
n=1

n−z (Re z > 1).

Bernoulli polynomial bn(x) is defined by the following recurrence relation.

b0(x) = 1, b′n(x) = bn−1(x),
∫ 1

0

bn(x)dx = 0 (n = 1, 2, 3, · · · ).

Bernoulli number is defined by

BM = (2M)!(−1)M−1b2M (0) (M = 1, 2, 3, · · · ).

It can be obtained by the following recurrence relate
n−1∑
j=0

(−1)j

2n

2j

Bj = −n (n = 1, 2, 3, · · · )

B0 = −1

.

Bernoulli numbers are positive rational numbers.

Next lemmas have been proved in [5].

Lemma 2.1. (Sobolev) For each fixed M = 1, 2, 3, · · · and for every function u(x) ∈ H̃M (S1), we

have a suitable positive constant C which is independent of u(x) such that the following Sobolev

inequality holds (
sup

0≤y≤1
|u(y)|

)2

≤ C
∫ 1

0

∣∣∣u(M)(x)
∣∣∣2 dx.

Among such C the best constant CM := 2ζ(2M)
(2π)2M

= BM
(2M)! .

Lemma 2.2. (Wirtinger) For each fixed M = 1, 2, 3, · · · and for every function u(x) ∈ H̃M (S1), we

have a suitable positive constant Ĉ which is independent of u(x) such that the following Wirtinger

inequality holds ∫ 1

0

|u(x)|2dt ≤ Ĉ
∫ 1

0

∣∣∣u(M)(x)
∣∣∣2 dx.

Among such Ĉ the best constant ĈM := 1
(2π)2M

.
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Such inequalities are directly generalized to T -periodic functions through a time rescalling. If

φ(t) ∈ H̃n(ST ), we know that ψ(t) := φ(Tt) ∈ H̃n(S1). Since

||ψ||2L2(S1)
= T−1||φ||2L2(ST ), ||ψ(n)||2L2(S1)

= T 2n−1||φ(n)||2L2(ST ),

the previous inequalities are readily generalized as follows.

Lemma 2.3. (Sobolev inequality) Let x ∈ H̃M (ST ). Then we have

||x||2∞ ≤ CM
∫ T

0

∣∣∣x(M)(t)
∣∣∣2 dt, (2.1)

where CM := T 2M−1BM
(2M)! is the best constant for this inequality.

Lemma 2.4. (Wirtinger inequality) Let x ∈ H̃M (ST ). Then we have∫ T

0

|x(t)|2dt ≤ ĈM
∫ T

0

∣∣∣x(M)(t)
∣∣∣2 dt, (2.2)

where ĈM :=
(
T
2π

)2M
is the best constant for this inequality.

3 Sufficient conditions for a potential to be non-degenerate.

In this section the main result is stated and proved. To this purpose, let us define σ = {1, 2, . . . , n−

1} and the subsets

σ1 = {k ∈ σ : (−1)ka2k < 0}, σ2 = {k ∈ σ : (−1)ka2k > 0}.

Of course, one (or both) of these subsets can be empty. In this case, the usual convention
∑
∅

= 0

is used.

Theorem 3.1. Given q(t) ∈ Lα(ST ) for some α ∈ [1,∞], let us assume that one of the following

conditions holds

(1) n is even, q̄ > 0 and

CnT
1
α∗ ‖q+‖α < 1 + Cn

∑
k∈σ2

|a2k|C−1
k −

∑
k∈σ1

|a2k| Ĉn−k. (3.1)

where α∗ = α
α−1 .

(2) n is odd, q̄ < 0 and

CnT
1
α∗ ‖q−‖1 < 1 + Cn

∑
k∈σ1

|a2k|C−1
k −

∑
k∈σ2

|a2k| Ĉn−k. (3.2)

Then (1.1)-(1.2) is non-degenerate.
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Proof. We argue by contradiction. Assume that (1.1)-(1.2) has a non-trivial solution x ∈ H(ST ).

Let us write x = x̄+ x̃, where x̃ := x− x̄ ∈ H̃n(ST ). Now (1.1) for x̃ is

x̃(2n)(t) +
2n−1∑
m=1

amx̃
(m) = q(t)x̄+ q(t)x̃(t). (3.3)

Integrating this equation over one period, we have, by the T -periodicity of x̃,
∫ T
0
q(t)x̄dt +∫ T

0
q(t)x̃(t)dt = 0. Since q̄ 6= 0, one has x̄ = −

(∫ T
0
q(t)x̃(t)dt

)
/(T q̄). Multiplying (3.3) by x̄− x̃(t),

we have

x̄x̃(2n)(t)− x̃(t)x̃(2n)(t) + x̄

2n−1∑
m=1

amx̃
(m) − x̃(t)

2n−1∑
m=1

amx̃
(m) = q(t)x̄2 − q(t)x̃2(t).

Integrating this equation over one period and making use of the T -periodicity of x̃(t), we get

−
∫ T

0

x̃(t)x̃(2n)(t)dt−
2n−1∑
m=1

am

∫ T

0

x̃(t)x̃(m)dt

=− (−1)n
∫ T

0

(x̃(n)(t))2dt−
2n−1∑
m=1

am

∫ T

0

x̃(t)x̃(m)(t)dt

=T q̄x̄2 −
∫ T

0

q(t)x̃2(t)dt.

(3.4)

Note that integrating by parts one gets
∫ T
0
x̃(t)x̃(m)dt = 0 for every odd m. Then, by reindexing

m = 2k, (3.4) reads

− (−1)n
∫ T

0

(x̃(n)(t))2dt−
n−1∑
k=1

a2k(−1)k
∫ T

0

(
x̃(k)(t)

)2

dt = T q̄x̄2 −
∫ T

0

q(t)x̃2(t)dt. (3.5)

First, let us assume that (1) holds. Since n is even, we have∫ T

0

(x̃(n)(t))2dt+

(∑
k∈σ1

(−1)ka2k

∫ T

0

(
x̃(k)(t)

)2

dt+
∑
k∈σ2

(−1)ka2k

∫ T

0

(
x̃(k)(t)

)2

dt

)
=
∫ T

0

q(t)x̃2(t)dt−T q̄x̄2,

i.e.,∫ T

0

(x̃(n)(t))2dt−
∑
k∈σ1

|a2k|
∫ T

0

(
x̃(k)(t)

)2

dt =
∫ T

0

q(t)x̃2(t)dt−T q̄x̄2−
∑
k∈σ2

|a2k|
∫ T

0

(
x̃(k)(t)

)2

dt.

(3.6)

Using Wirtinger inequality in left-hand side of (3.6), we have∫ T

0

(x̃(n)(t))2dt−
∑
k∈σ1

|a2k|
∫ T

0

(
x̃(k)(t)

)2

dt ≥
∥∥∥x̃(n)

∥∥∥2

2
−
∑
k∈σ1

|a2k| Ĉn−k
∥∥∥x̃(n)

∥∥∥2

2

=

(
1−

∑
k∈σ1

|a2k| Ĉn−k

)∥∥∥x̃(n)
∥∥∥2

2
,

(3.7)

where Ĉk are the optimal constants defined in Lemma 2.4.
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On the other hand, by using now Sobolev inequality and q̄ > 0, the right-hand side of (3.6)

can be bounded above as follows∫ T

0

q(t)x̃2(t)dt− T q̄x̄2 −
∑
k∈σ2

|a2k|
∫ T

0

(
x̃(k)(t)

)2

dt

≤
∫ T

0

q+(t)x̃2(t)dt− ‖x̃‖2∞
∑
k∈σ2

|a2k|C−1
k

≤‖x̃‖2∞

(
‖q+‖1 −

∑
k∈σ2

|a2k|C−1
k

)

≤Cn

(
T

1
α∗ ‖q+‖α −

∑
k∈σ2

|a2k|C−1
k

)∥∥∥x̃(n)
∥∥∥2

2
.

(3.8)

Therefore,(
1−

∑
k∈σ1

|a2k| Ĉn−k

)∥∥∥x̃(n)
∥∥∥2

2
≤ Cn

(
T

1
α∗ ‖q+‖α −

∑
k∈σ2

|a2k|C−1
k

)∥∥∥x̃(n)
∥∥∥2

2
.

Under assumption (4.3), it is necessary that ||x̃(n)||2 = 0. Thus x̃(n−1) is constant. Since x̃ ∈

H̃n(ST ), one has x̃(t) ≡ 0. Now x̄ = −
(∫ T

0
q(t)x̃(t)dt

)
/(T q̄) = 0. Thus x = 0, which contradicts

the assumption x 6= 0.

Under assumption (2), an analogous argument can be done. As n is odd, then (3.6) reads∫ T

0

(x̃(n)(t))2dt−
∑
k∈σ2

|a2k|
∫ T

0

(
x̃(k)(t)

)2

dt = T q̄x̄2−
∫ T

q(t)x̃2(t)dt−
∑
k∈σ1

|a2k|
∫ T

0

(
x̃(k)(t)

)2

dt,

and the proof follows the same steps as before.

4 Semilinear case

As a direct application of general non-degenerate potentials, one can obtain reasonable existence

results for periodic solutions of nonlinear beam equation

u(2n) +
2n−1∑
m=1

amu
(m) = pu+ h(t, u), (4.1)

here h(t, u) grows semilinearly when |u| → ∞. Denote

ϕ(t) = lim sup
|u|→∞

|h(t, u)|
|u|

exist in the sense that for any given ε > 0, there is ψε(t) ∈ L1(ST ) such that

|h(t, u)| ≤ (ϕ(t) + ε)|u|+ ψε(t), for all x ∈ R, a.e. t ∈ [0, T ],
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and ϕ ∈ L1(ST ).

The proof of the main result of this section follows the strategy adopted by [15] for the second-

order equation. Let us consider an m-th order systems of the form
x(m) = g

(
x, x′, . . . , x(m−1)

)
+ h

(
t, x, x′, . . . , x(m−1)

)
, t ∈ [0, T ],

x(i)(0) = x(i)(T ), i = 0, 1, . . . ,m− 1,
(4.2)

where

g
(
kx, kx′, . . . , kx(m−1)

)
= kg

(
x, x′, . . . , x(m−1)

)
for all k > 0,

(
x, x′, . . . , x(m−1)

)
∈ Rmn, and suppose that

ϕ∗(t) = lim
|x|+|x′|+···+|x(m−1)|→∞

∣∣h (t, x, x′, . . . , x(m−1)
)∣∣

|x|+ |x′|+ · · ·
∣∣x(m−1)

∣∣
exists and ϕ∗ ∈ Lp(ST ).

Lemma 4.1. ([15]) Assume that

(H1) The problem 
x(m) = g

(
x, x′, . . . , x(m−1)

)
, t ∈ [0, T ],

x(i)(0) = x(i)(T ), i = 0, 1, . . . ,m− 1,

has no T -periodic solution other than x = 0; and

(H2) deg(g̃, B(0, r), 0) 6= 0 for some r > 0, where g̃(x) = g(x, 0, . . . , 0), deg means the Brouwer

degree and B(0, r) = {x ∈ Rn : |x| < r}.

Then there is a constant c0 > 0 such that if

||ϕ∗|| < c0,

the problem (4.2) has at least one T -periodic solution.

The main result of this section is as follows.

Theorem 4.1. Let us assume that one of the following conditions holds

(1) n is even, p > 0 and

CnT |p| < 1 + Cn
∑
k∈σ2

|a2k|C−1
k −

∑
k∈σ1

|a2k| Ĉn−k. (4.3)

(2) n is odd, p < 0 and

CnT |p| < 1 + Cn
∑
k∈σ1

|a2k|C−1
k −

∑
k∈σ2

|a2k| Ĉn−k. (4.4)

Then there is a constant c0 > 0 such that if

||ϕ|| < c0,

the problem (4.1) has at least one T -periodic solution.
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Proof. Comparing (4.1) to (4.2), we have

g
(
u, u′, . . . , u(2n−1)

)
= −

2n−1∑
m=1

amu
(m) + pu, h

(
t, u, u′, . . . , u(2n−1)

)
= h(t, u).

Obviously, it is easy to see that

g
(
ku, ku′, . . . , ku(2n−1)

)
= k

(
−

2n−1∑
m=1

amu
(m) + pu

)
= kg

(
u, u′, . . . , u(2n−1)

)
.

Besides,

ϕ∗(t) = ϕ(t) = lim
|u|→∞

|h(t, u)|
|u|

.

Firstly, let us consider the linear problem
u(2n) +

2n−1∑
m=1

amu
(m) = pu,

u(i)(0) = u(i)(T ), i = 0, 1, . . . ,m− 1,
(4.5)

From Theorem 3.1, we know that if n is even, p > 0 and

CnT |p| < 1 + Cn
∑
k∈σ2

|a2k|C−1
k −

∑
k∈σ1

|a2k| Ĉn−k,

or alternatively if n is odd, p < 0 and

CnT |p| < 1 + Cn
∑
k∈σ1

|a2k|C−1
k −

∑
k∈σ2

|a2k| Ĉn−k,

then (4.5) is non-degenerate, therefore condition (H1) holds.

On the other hand, g̃(u) = g(u, 0, . . . , 0) = pu. Therefore, we have trivially deg(g̃(u), B(0, r), 0) 6=

0. Then, condition (H2) holds and the result is a direct consequence of Lemma 4.1.

5 Superlinear case

In this section, we will give an application of the class of non-degenerate potentials constructed

above to the study of existence and uniqueness of T -periodic solution for equations with superlinear

term. We will combine techniques from [14] and [7, 9]. Let us consider the nonlinear differential

equation

u(2n) +
2n−1∑
m=1

amu
(m) = f(u)− s+ h̃(t), (5.1)

where s ∈ R, h̃ ∈ L̃1(ST ), and the nonlinearity f : R→ R is a continuous and monotone function.

The parameter s is the mean value of the external term −s+ h̃(t).
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It is easy to find a necessary condition for existence of T -periodic solutions. In fact, integrating

(5.1) on [0, T ], we have

s = T−1

∫ T

0

f(u(t))dt = f(u(t∗)) ∈ R(f) := {f(x) : x ∈ R}. (5.2)

The proof of the existence of periodic solution of (5.1) follows the strategy adopted by [14].

Let us consider an m-th order equation of the form

y(m) + am−1y
(m−1) + · · ·+ a1y

′ + g(t, y) = p(t) (m > 1). (5.3)

where a1, · · · , am−1 is real constants. g : R × R → R be continuous and T -periodic in its first

variable; i.e., g(t + T, y) = g(t, y) for all t, y. We define two measurable functions µ+, µ− : R →

R ∪ {−∞,∞} by

µ+(t) = lim inf
y→∞

g(t, y), t ∈ R;

µ−(t) = lim inf
y→−∞

g(t, y), t ∈ R.

Let us denote

Ly ≡ y(m) + am−1y
(m−1) + · · ·+ a1y

′.

The following lemma is the main result of [14].

Lemma 5.1 ([14]). Assume that g(t, y) is bounded below for y ≥ 0 and bounded above for y ≤ 0,

and the following conditions hold

(c1) The only T -periodic solutions to the equation Ly = 0 are the constants.

(c2) There are numbers α1 and β1 such that for all (t, y) ∈ R×R, |g(t, y)| ≤ g(t, y)+α1|y|+β1.

(c3)
∫ T
0
µ−(t)dt <

∫ T
0
p(t)dt <

∫ T
0
µ+(t)dt.

Then there is a number ε > 0 such that (5.3) has a T -periodic solution provided α1 ≤ ε.

Our existence result is the following one.

Proposition 1. Suppose that f : R → R is bounded below for u ≥ 0 and bounded above for

u ≤ 0, s ∈ intR(f), and there are two non-negative constants α and β such that

|f(u)| ≤ f(u) + α|x|+ β.

Assume that one of the following conditions holds

(1) n is even, and
∑
k∈σ1

|a2k|Ĉn−k < 1.

(2) n is odd, and
∑
k∈σ2

|a2k|Ĉn−k < 1,

Then there exists a positive constant α0 such that (5.1) has at least one T -periodic solution provided

α ≤ α0.
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Proof. Comparing (5.1) to (5.3), we have

g(t, y) = f(u), p(t) = −s+ h̃(t).

It is evident to see that (c2) and (c3) hold. It remains to prove that condition (c1) is satisfied.

Assume first that n is even. Let φ(t) be a T -periodic solution of the equation

φ(2n)(t) +
2n−1∑
m=1

amφ
(m)(t) = 0. (5.4)

Multiplying both sides of (5.4) by φ(t) and integrating over [0, T ], we have

(−1)n
∫ T

0

|φ(n)(t)|2dt+
∫ T

0

2n−1∑
m=1

amφ
(m)(t)φ(t)dt = 0.

Note that
∫ T
0
φ(m)(t)φ(t)dt = 0 for every odd m. By reindexing m = 2k and using the definition

of σ1, σ2 from Section 3, we have

(−1)n
∫ T

0

|φ(n)(t)|2dt+
n−1∑
m=1

a2k(−1)k
∫ T

0

|φ(k)(t)|2dt = 0.

Since n is even and
∑
k∈σ1

(−1)ka2k < 0,
∑
k∈σ2

(−1)ka2k > 0 by definition, we get

∫ T

0

|φ(n)(t)|2dt = −
∑
k∈σ1

(−1)ka2k

∫ T

0

|φ(k)(t)|2dt−
∑
k∈σ2

(−1)ka2k

∫ T

0

|φ(k)(t)|2dt

≤ −
∑
k∈σ1

(−1)ka2k

∫ T

0

|φ(k)(t)|2dt.

Therefore, from Lemma 2.4, we have∫ T

0

|φ(n)(t)|2dt ≤
∑
k∈σ1

|a2k|
∫ T

0

|φ(k)(t)|2dt

≤
∑
k∈σ1

|a2k|Ĉn−k
∫ T

0

|φ(n)(t)|2dt.

Since
∑
k∈σ1

|a2k|Ĉn−k < 1, we get ||φ(n)||22 = 0. From ||φ(n−1)||2 ≤
(
T
2π

)
||φ(n)||2, we know

||φ(n−1)||2 = 0. As φ(n−1)(t) is continuous, we get φ(n−1)(t) ≡ 0. Hence, we have φ(t) ≡ c,

here c is a constant. Therefore, (c1) holds. From Lemma 5.1, we know that there exists a positive

constant α0 such that if α0 ≥ α, (5.1) has at least one T -periodic solution.

On the other hand, if n is odd, the proof follows the similar steps as before.

In the following, we will consider the uniqueness problem. Let us introduce the following

definition from [9].
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Definition 5.1. Given σ ∈ [1,∞) and A, B ∈ [0,∞).

We say that f satisfies the condition C(σ;A,B) if(
f(x1)− f(x2)

x1 − x2

)σ
+

≤ A
(
f(x1) + f(x2)

2

)
+B (5.5)

for every x1, x2 ∈ R, and x1 6= x2. Here ϕ+ = (ϕ)+ = max(ϕ, 0) for y ∈ R.

Or we say that f satisfies the condition C∗(σ;A,B) if∣∣∣∣∣
(
f(x1)− f(x2)

x1 − x2

)
−

∣∣∣∣∣
σ

≤ A
(
f(x1) + f(x2)

2

)
+B (5.6)

for every x1, x2 ∈ R, and x1 6= x2. Here ϕ− = (ϕ)− = min(ϕ, 0) for y ∈ R.

The main result for uniqueness is as follows.

Proposition 2. Assume that one of the following conditions holds

(1) n is odd, f ∈ C∗(σ;A,B) is non-increasing. Suppose that s ∈ R(f) satisfies

As+B <
(M ′(σ∗, n))σ

T
, and

∑
k∈σ2

|a2k|Ĉn−k < 1, (5.7)

where M ′(σ∗, n) :=
1+Cn

∑
k∈σ1

|a2k|C−1
k −

∑
k∈σ2

|a2k|Ĉn−k

CnT
1
σ∗

.

(2) n is even, f ∈ C(σ;A,B) is non-decreasing. Suppose that s ∈ R(f) satisfies

As+B <
(M(σ∗, n))σ

T
, and

∑
k∈σ1

|a2k|Ĉn−k < 1, (5.8)

where M(σ∗, n) :=
1+Cn

∑
k∈σ2

|a2k|C−1
k −

∑
k∈σ1

|a2k|Ĉn−k

CnT
1
σ∗

.

Then (5.1) has at most one T -periodic solution.

Proof. Firstly, assume that n is odd. Let x1(t) and x2(t) be two different T -solutions of (5.1), we

have

x
(2n)
i (t) +

2n−1∑
m=1

amx
(m)
i = f(xi(t))− s+ h̃(t), a.e. t, i = 1, 2. (5.9)

Integrating (5.9) on [0, T ], we get∫ T

0

f(xi(t))dt = Ts, i = 1, 2. (5.10)

The difference x(t) := x1(t) − x2(t) is a non-trivial T -periodic solution of the equation (1.1)

with

q(t) =
f(x1(t))− f(x2(t))

x1(t)− x2(t)
,

which is well defined for all t ∈ I := {t ∈ R : x(t) 6= 0}, which is a non-empty open subset of R. It

is easy to see that q(t) ∈ C(I), and q(t) = 0 on J := R \ I. Obviously, q(t) is measurable. As f(x)

is non-increasing in x, one has q(t) ≤ 0 for all t. Moreover, for all t ∈ I, we have from (5.6) that

|q(t)|σ ≤ A(f(x1(t)) + f(x2(t)))/2 +B ≤ C (5.11)

11



where C is a constant and C ≥ 0, since f(x) is continuous and the xi(t) are T -periodic. Therefore,

q(t) ≤ 0 for all t and q ∈ L∞(ST ). From (5.11), we have

||q||σσ =
∫
I∩[0,T ]

|q(t)|σdt ≤
∫
I∩[0,T ]

(A(f(x1(t)) + f(x2(t)))/2 +B)

≤
∫
I∩[0,T ]

(A(f(x1(t)) + f(x2(t)))/2 +B) +
∫
J∩[0,T ]

(A(f(x1(t)) + f(x2(t)))/2 +B)

=
A

2

(∫ T

0

f(x1(t))dt+
∫ T

0

f(x2(t))dt

)
+BT

= (As+B)T,

and then ||q||σ ≤ ((As+B)T )
1
σ . From (5.7), we get ||q||σ < M ′(σ∗, n).

Under assumption (5.7), if we have q̄ < 0, by Theorem 3.1, we have x(t) ≡ 0, contradicting

with the assumption x1 6= x2. Then q̄ = 0. As q(t) ≤ 0, we know that q(t) ≡ 0. Therefore,

x(2n)(t) +
2n−1∑
m=1

amx
(m)(t) = 0. (5.12)

Multiplying both sides of (5.12) by x(t) and integrating over [0, T ], we have

(−1)n
∫ T

0

|x(n)(t)|2dt+
∫ T

0

2n−1∑
m=1

amx
(m)(t)x(t)dt = 0.

Note that
∫ T
0
x(m)(t)x(t)dt = 0 for every odd m. By reindexing m = 2k and using the definition

of σ1, σ2 from Section 3, we have

(−1)n
∫ T

0

|x(n)(t)|2dt+
n−1∑
m=1

a2k(−1)k
∫ T

0

|x(k)(t)|2dt = 0.

From n is odd and
∑
k∈σ1

(−1)ka2k < 0,
∑
k∈σ2

(−1)ka2k > 0, we have

∫ T

0

|x(n)(t)|2dt =
∑
k∈σ1

(−1)ka2k

∫ T

0

|x(k)(t)|2dt+
∑
k∈σ2

(−1)ka2k

∫ T

0

|x(k)(t)|2dt

≤
∑
k∈σ2

(−1)ka2k

∫ T

0

|x(k)(t)|2dt.

So, from Lemma 2.4, we have∫ T

0

|x(n)(t)|2dt ≤
∑
k∈σ2

|a2k|
∫ T

0

|x(k)(t)|2dt

≤
∑
k∈σ2

|a2k|Ĉn−k
∫ T

0

|x(n))(t)|2dt.

Since
∑
k∈σ2

|a2k|Ĉn−k < 1, we get ||x(n)||22 = 0. From ||x||2 ≤
(
T
2π

)n ||x(n)||2, we know ||x||2 = 0.

As x(t) is continuous, x(t) ≡ 0 and the proof is done.

On the other hand, if n is even, the proof follows the similar steps as before.
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In the following we consider equations of the Landesman-Lazer type.

Theorem 5.1. Suppose that f : R→ R is bounded below for u ≥ 0 and bounded above for u ≤ 0,

and there are two non-negative constants α and β such that

|f(u)| ≤ f(u) + α|x|+ β.

Assume that one of the following conditions holds

(1) n is odd, f ∈ C∗(σ;A,B) is strictly decreasing and s ∈ R(f) satisfies (5.7).

(2) n is even, f ∈ C(σ;A,B) is strictly increasing and s ∈ R(f) satisfies (5.8).

Then there exists a positive constant α0 such that (5.1) has exactly one T -periodic solution provided

that α ≤ α0.

Proof. It follows directly from Propositions 1 and 2.

We conclude the paper with some illustrative examples.

Example 5.1. Theorem 5.1 can be applied to the example f(x) = exp(x) ∈ C(1; 1, 0) in a direct

way. In this case, one has R(f) = (0,∞). Hence the equation

x(8) +
7∑

m=1

(
1
2

)m
x(m) = exp(x)− s+ sin t (5.13)

has at least one 2π-periodic solution for each s > 0. Obviously, n = 4 is even, T = 2π and

am =
(

1
2

)m, m = 2k, σ1 = 1, 3, σ2 = 2. Besides |ex| ≤ ex + 5, here α = 0, β = 5. Then,

C4 =
T 2n−1Bn

(2n)!
=

(2π)7 · 1
30

(8)!
=

π7

9450
,

∑
k=σ2

|a2k|C−1
k =

(
1
2

)4

× C−1
2 =

1
16
×
(
π3

90

)−1

=
45
8π3

.

and ∑
k∈σ1

|a2k|Ĉn−k =
(

1
2

)2

× Ĉ3 +
(

1
2

)6

× Ĉ1 =
1
4

+
1
64

=
17
64

< 1.

Hence, condition (5.8) is

s <
M(∞, 4)

T
=

1 + π4

1680 −
17
64

π7

9450 × 2π
=

315× (4935 + 4π4)
448× π8

. (5.14)

Theorem 5.1 asserts that for s > 0 satisfying (5.14), eq. (5.13) has exactly one T -periodic solution.

Example 5.2. Let p ∈ (1,∞). The function f(x) = xp+ ∈ C(p∗; pp
∗
, 0) is non-decreasing, but is

not strictly increasing. Theorem 5.1 can be applied to the following superlinear equation:

x(2n) +
2n−1∑
m=1

amx
(m) = xp+ − s+ h̃(t) (5.15)
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in an indirect way, here am ∈ R. For this case, one have R(f) = [0,∞), |xp+| ≤ xp+ + 4, here

α = 0, β = 4, α0 ≥ 0. Then (5.15) has at least one T -periodic solution for each s > 0 and

each h̃ ∈ L̃1(ST ). Note that the function f(x) = xp+ is strictly increasing in x ∈ (0,∞), Cn =
T 2n−1Bn

(2n)! , Ĉn−k =
(
T
2π

)2(n−k)
. After a modification of the proof of Theorem 5.1, we conclude that

if n is even,

0 < s <
(M(p, n))p

∗

pp∗ · T
, and

∑
k∈σ1

|a2k|Ĉn−k < 1. (5.16)

If n is odd

0 < s <
(M ′(p, n))p

∗

pp∗ · T
, and

∑
k∈σ2

|a2k|Ĉn−k < 1 (5.17)

then for each h̃ ∈ L̃1(ST ), (5.15) has exactly one T -periodic solution. The reasons are as follows.

Note that the second inequality of (5.16) (or (5.17)) corresponds to (5.8) (or (5.7)) for f(x) = xp+.

Example 5.3. Consider the following superlinear equation:

x(4) +
3∑

m=1

(−1)mx(m) = x+ + x2
+ − s+ h̃(t). (5.18)

Here x+ + x2
+ ∈ C(2; 4, 1), T < 2π, n = 2 is even, am = (−1)m, m = 2k, σ1 = 1, σ2 = 0,

|x+ + x2
+| ≤ x+ + x2

+2|x| + 3, here α = 2, β = 3, α0 > 2. C2 = T 2×2−1B2
4! = T 7× 1

30
4! = T 3

720 ,∑
k=σ2

|a2k|C−1
k = 0 and

∑
k=σ1

|a2k|C−1
k = Ĉ1 = T

2π < 1. Then,

M(2, 2) =
1− T

2π
T 3

720 · T
1
2

=
360× (2π − T )

π × T 7
2

Condition (5.8) are now s > 0 and

4s+ 1 <
(M(2, 2))2

T
=

129600× (2π − T )2

π2 × T 8
.

In order to obtain reasonable conditions, T should be satisfy 129600 × (2π − T )2 > π2 × T 8. We

conclude that when

129600× (2π − T )2 > π2 × T 8, 0 < s <
129600× (2π − T )2 − π2 × T 8

4π2 × T 8
. (5.19)

Then (5.18) has exactly one T -periodic solution for each h̃ ∈ L̃1(ST ). Different from the case for

(5.14) and (5.16), we have now a restriction on the period T in (5.19).

References

[1] Z. B. Cheng and J. L. Ren, Periodic solutions for a fourth-order Rayleigh type p-Laplacian

delay equation, Nonlinear Anal. TMA 70 ( 2009), 516-523.

14



[2] F. Z. Cong, Q. D. Huang, S. Y. Shi, Existence and uniqueness of periodic solution for (2n+1)th-

order differential equation, J. Math. Anal. Appl. 241 (2000) 1-9.

[3] F. Z. Cong, Periodic solutions for 2kth order ordinary differential equations with nonresonance,

Nonlinear Anal. TMA 32 (1998) 787-793.

[4] A. Fonda, J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems

for non-linear second order ordinary differential equations, Proc. Royal Soc. Edinburgh Sect.

A 112 (1989), 145-153.

[5] Y. Kametaka, H. Yamagishi, Riemann zeta function, Bernoulli polynomials and the best

constant of Sobolev inequality, Scientiae Mathematicae Japonicae Online e-2007 63-89.

[6] A. Lasota, Z. Opial, Sur les solutions périodiques des equations differentielles ordinaires, Ann.

Polon. Math. 16 (1964), 69-94

[7] W. Li, M. R. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear

beam equations, Appl. Math. Lett. 22 (2009) 314-319.

[8] G. Meng, P. Yan, X. Y. Lin, M. R. Zhang, Non-degeneracy and periodic solutions of semilinear

differential equations with deviation, Adv. Nonlinear Stud. 6 (2006) 563-590.

[9] R. Ortega, M. Zhang, Some optimal bounds for bifurcation values of a superlinear periodic

problem, Proc. Royal Soc. Edinburgh Sect. A 135 (2005) 119-132.

[10] L. J. Pan, Periodic solutions for higher order differential equations with deviating argument,

J. Math. Anal. Appl. 343 (2008) 904-918.

[11] J. L. Ren, Z. B. Cheng, On high-order delay differential equation, Comput. Math. Appl. 57

(2009) 324-331.

[12] J. L. Ren, Z. B. Cheng, Periodic Solutions for Generalized High-order Neutral Differential

Equation in the Critical Case, Nonlinear Anal. 71 (2009) 6182-6193.

[13] K. Wang, S. P. Lu, On the existence of periodic solutions for a kind of high-order neutral

functional differential equation, J. Math. Anal. Appl. 326 (2007) 1161-1173.

[14] J. R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations,

Proc. Amer. Math. Soc. 81 (1981) 415-420.

[15] M. R. Zhang, An abstract result on asympotitically positively homogeneous differential equa-

tions, J. Math. Anal. Appl. 209 (1997) 291-298.

15


