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1 Introduction

In Section 49 of his famous memoir [7], Lyapunov considered the linear
equation

ẍ+ α(t)x = 0, (1)

where α(t) is T -periodic. After introducing a parameter ε and expanding
the solutions in terms of ε, he proved that this equation is stable if α(t) is
non-negative everywhere and the inequality below holds,

0 < T

∫ T

0
α ≤ 4.

This result was the first stability criterion for an equation with periodic
coefficients and it is in the origin of an extensive theory. See [9, 3] for more
information.

In this paper we will use Lyapunov’s criterion as a unifying theme and
we will obtain related stability criteria for two families of linear equations
having some unexpected connections. The first family is the dissipative
Hill’s equation

ẍ+ cẋ+ α(t)x = 0, (2)

1



where c > 0 is a constant. The second family is the linear prey-predator
system

ẋ1 = −a11(t)x1 − a12(t)x2, ẋ2 = a21(t)x1 − a22(t)x2, (3)

where all the coefficients aij(t) are T -periodic and positive. After these
results on linear equations we will look for applications to Lotka-Volterra
prey-predator systems of the type

u̇ = u(a(t)− b(t)u− c(t)v), v̇ = v(d(t) + e(t)u− f(t)v), u > 0, v > 0, (4)

where all the coefficients are T -periodic and b(t), c(t), e(t) and f(t) are pos-
itive. The insights in the paper by Dancer [4] will play an important role.
Periodic solutions of period T are sometimes called coexistence states and
the necessary and sufficient conditions for their existence are well under-
stood, see [8]. However many questions on the stability properties of these
solutions remain open. With the help of the linear criteria we will analyze
two aspects. First we will present a sufficient condition for the uniqueness
and asymptotic stability of the coexistence state. In a second part we will
follow the point of view in [4] and the periodic solution of (4) will be under-
stood as a solution of the reaction-diffusion p.d.e. system

∂u

∂t
= r1∆xu+u(a(t)− b(t)u− c(t)v),

∂v

∂t
= r2∆xv+v(d(t) + e(t)u−f(t)v),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× [0,∞[,

where u = u(x, t), v = v(x, t) are functions defined on Ω × [0,∞[, Ω ⊂ Rm
is a smooth bounded domain and the numbers r1 and r2 are positive. In
some cases Turing instabilities can appear, meaning that the coexistence
state is stable for the o.d.e but unstable for the p.d.e. This phenomenon
was described in [4] and we will review it to show the connection with a
well known phenomenon in dissipative Mechanics: some equations without
friction of the type (1) are stable but after adding friction the new equation
(2) is unstable.

In the previous discussions we have not paid attention to the regularity of
the coefficients appearing in the equations. In most cases it will be sufficient
to assume that they belong to the Banach space L1(R/TZ), composed by
all locally integrable and T -periodic functions. The associated norm is

||f ||L1(R/TZ) =

∫ T

0
|f |
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and the average will be denoted by f = 1
T

∫ T
0 f . Sometimes the class of

continuous and T -periodic functions, denoted by C(R/TZ), will appear.
Also Cω(R/TZ), the class of real analytic and T -periodic functions.

I thank Alfonso Ruiz-Herrera for reading a first version of the paper.
His comments have improved the manuscript, especially Section 5. Also, I
thank Carlos Barrera for reading the first manuscript. He has helped me
to eliminate several mistakes. Finally I would like to thank Carlota Rebelo
and Meirong Zhang for comments and corrections.

2 An oscillator with variable elasticity

Consider the differential equation (1) where α ∈ L1(R/TZ). This equation
appears in many physical contexts such as Hill’s Lunar theory or Quantum
Mechanics. Other mechanical and electric examples are described in Section
8.2 of [5]. As a simple interpretation (for positive α) we can think of a
harmonic oscillator with non-constant elasticity coefficient. The variation
in the elasticity will be produced by certain cyclic effects such as changes of
temperature.

In the presence of linear friction the modified equation (2) is considered,
where c > 0 is a constant parameter. The original equation (1) will be called
stable in the dissipative sense if the equation (2) is asymptotically stable for
each c > 0. This concept of stability is different from the traditional notion
of Lyapunov stability. In the next Section we will construct a function α
such that (1) is Lyapunov stable but (2) is unstable for some c > 0. At
first sight this may seem counter-intuitive because in this case friction has
a destabilizing effect.

Lyapunov’s criterion can be adapted to dissipative stability. In this
version of the criterion the function α can change sign and α+ denotes its
positive part.

Proposition 1 Assume that α ∈ L1(R/TZ) satisfies∫ T

0
α ≥ 0 and 0 < T

∫ T

0
α+ ≤ 4.

Then (1) is stable in the dissipative sense.

To prepare the proof of this result, let us introduce some terminology in-
spired by degree theory. The functions α0, α1 ∈ L1(R/TZ) will be called
homotopic if there exists a continuous family {αλ}λ∈[0,1] in L1(R/TZ) such
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that the bi-parametric family of equations

ẍ+ cẋ+ αλ(t)x = 0, λ ∈ [0, 1], c > 0 (5)

has no periodic solutions of period 2T excepting x ≡ 0.
The continuity of the family {αλ} means that, for each λ ∈ [0, 1],

lim
h→0
||αλ+h − αλ||L1(R/TZ) = 0.

The use of the double period 2T will be essential to establish a link between
homotopy and stability.

Lemma 2 Assume that α0 and α1 are homotopic and the equation (1) is
stable in the dissipative sense for α = α0. Then the equation for α = α1 is
also stable in the dissipative sense.

Proof. It is a consequence of general results (see [9, 2, 11]) but we present a
sketch to show how these results are adapted to our concrete equation. Let
X(t) be the matrix solution of

Ẋ =

(
0 1

−α(t) −c

)
X, X(0) = I,

where I denotes the 2 × 2 identity matrix. From Jacobi-Liouville formula
we know that

detX(T ) = e−cT .

Then it is not hard to deduce that (2) is asymptotically stable if and only
if the trace of the monodromy matrix X(T ) satisfies

|tr X(T )| < 1 + e−cT .

In the case of equality, |tr X(T )| = 1 + e−cT , the equation (2) has a non-
trivial 2T -periodic solution. Let us now take into account the dependence
of α with respect to the parameter. The continuity of {αλ} implies that the
function ∆(λ) = tr X(T, λ), λ ∈ [0, 1], is continuous. From the assumptions,
|∆(0)| < 1+e−cT and |∆(λ)| 6= 1+e−cT . We conclude that |∆(1)| < 1+e−cT .

Proof of Proposition 1. In view of the Lemma it will be sufficient to prove
that the function α is homotopic to a constant function α0 with 0 < α0 ≤ 4

T 2 .
We consider the family

αλ = λα+ (1− λ)α0, λ ∈ [0, 1]
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and assume, by a contradiction argument, that x(t) is a non-trivial 2T -
periodic solution of (5). We distinguish two cases.

Case (i): x(t) never vanishes

We can divide (5) by x(t) and integrate from t = 0 to t = 2T . After
integration by parts,

−
∫ 2T

0

ẋ2

x2
=

∫ 2T

0
(
ẍ

x
+ c

ẋ

x
) =

∫ 2T

0
αλ ≥ 0.

This is impossible unless ẋ ≡ 0. In such a case x(t) should be constant and,
from the equation, αλ ≡ 0. This is not compatible with the assumption∫ T
0 α+ > 0.

Case (ii): x(t) vanishes somewhere

Assume that x(τ) = 0 for some τ ∈ R. The uniqueness for the initial
value problem associated to (5) implies that ẋ(τ) 6= 0. In consequence,
x(τ) = x(τ + 2T ) = 0 and ẋ(τ) = ẋ(τ + 2T ) 6= 0. The periodicity of x(t)
implies the existence of an intermediate zero τ̂ ∈]τ, τ + 2T [. Taking either
τ1 = τ , τ2 = τ̂ or τ1 = τ̂ , τ2 = τ + 2T , we can assume the existence of
τ1 < τ2 ≤ τ1 + T such that x(τ1) = x(τ2) = 0. Let us now consider the
function y(t) = e

c
2
tx(t). It satisfies

ÿ + [αλ(t)− c2

4
]y = 0, y(τ1) = y(τ2) = 0.

We multiply this equation by y(t) and integrate by parts over the interval
I = [τ1, τ2], to obtain∫

I
ẏ2 =

∫
I
(αλ −

c2

4
)y2 <

∫
I
α+
λ y

2.

Next we invoke the inequality of Sobolev type

||ϕ̇||2L2(I) ≥
4

|I|
||ϕ||2L∞(I),

valid for any function ϕ ∈ H1
0 (I). See [18]. In particular, since the length

of the interval satisfies |I| ≤ T , for ϕ = y

4

T
||y||2L∞(I) < (

∫
I
α+
λ )||y||2L∞(I).
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This last inequality is not compatible with the assumption
∫ T
0 α+ ≤ 4

T
because ∫

I
α+
λ ≤

∫ T

0
α+
λ ≤

∫ T

0
(λα+ + (1− λ)α0) ≤

4

T
.

Remark. Using the ideas of Zhang and Li in [18] this proof can be modified
to obtain Lp-criteria (p > 1) for dissipative stability.

To finish this Section it may be worth to observe that dissipative stability
is not sufficient to guarantee the asymptotic stability of the more general
class of dissipative equations

ẍ+ c(t)ẋ+ α(t)x = 0, (6)

where c = c(t) is a positive and T -periodic function, say c ∈ L1(R/TZ). We
will construct an example in the next Section.

3 Two examples

First we will construct a function α(t) such that the equation (1) is stable
in the Lyapunov sense but the equation (2) is unstable for some c > 0. The
second example will show that dissipative stability does not extend to time
dependent friction.
First construction. Let us take a sequence of non-negative functions δn ∈
L1(R/TZ) with the property∫ T

0
δnφ→ φ(0) for each φ ∈ C(R/TZ).

We consider the equation

ẍ+ cẋ+ (ω2 + aδn(t))x = 0, (7)

and we are going to select positive constants ω∗, a∗ and c∗ such that, for
large n, (7) is stable if c = 0, ω = ω∗, a = a∗ and unstable if c = c∗, ω = ω∗,
a = a∗.

After the change of variables y = e
c
2
tx the equation is transformed to

ÿ + (β2 + aδn(t))y = 0, (8)

where β =
√
ω2 − c2

4 . We are assuming ω > c
2 . Let Mn be the monodromy

matrix of (8) for the initial time t0 = 0. The discriminant of (8) can be
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computed as the trace of Mn and it will be denoted by Dn = tr(Mn).
Sometimes it will be convenient to interpret Dn = Dn(c) as a function of c,
for fixed ω and a. We are interested in the inequalities, for large n,

|Dn(0)| < 2, Dn(c∗) > 2 cosh(
c∗
2
T ). (9)

At this point it is convenient to recall the proof of Lemma 2.
The sequence of functions δn converges in a weak sense to a periodic Dirac

measure. This measure is denoted by δ = δ(t) and it is defined rigorously
as the functional on C(R/TZ),

φ 7→ 〈δ, φ〉 = φ(0).

Letting n→∞ at (8) we obtain

ÿ + (β2 + aδ(t))y = 0. (10)

This is an equation of the type considered in [10], although the notation has
been changed. It can be interpreted as a classical equation with periodic
impulses. Namely,

ÿ + β2y = 0, t 6= nT, ẏ(nT+) = ẏ(nT−)− ay(nT ), n ∈ Z.

The monodromy matrix from t0 = 0− to t1 = T− is

M =

(
cos(βT )− a sin(βT )

β
sin(βT )

β

−β sin(βT )− a cos(βT ) cos(βT )

)
.

By continuous dependence it is possible to prove that Mn converges to M .
See [10] for more details. The discriminant of (10) is

D = 2 cos(βT )− asin(βT )

β
.

Sometimes D will be interpreted as a function of certain parameters, D =
D(c), D = D(c, ω),... As a first step we fix the frequency ω = ω0 by the
formula

ω0T = 2π.

After expanding in powers of c,

D(c) = 2 +
aT 3

32π2
c2 + · · · , 2 cosh(

c

2
T ) = 2 +

T 2

4
c2 + · · ·
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We select a large number a∗ and a small c∗ so that D(c∗) > 2 cosh( c∗2 T ) if
a = a∗. The parameters have been chosen appropriately in order to adjust
the discriminants to the conditions D(0, ω0) = 2, D(c∗, ω0) > 2 cosh( c∗2 T ).
The last step is to define the parameter ω∗ = ω0 + ε where ε is positive and
small enough. Then −2 < D(0, ω∗) < 2, D(c∗, ω∗) > 2 cosh( c∗2 T ). The
inequalities (9) are a consequence of the continuous dependence.

It is convenient to observe that the functions δn can be selected in the
class of real analytic positive functions,

δn ∈ Cω(R/TZ), δn(t) > 0 for each t ∈ R.

Also, the previous construction provides additional information on the Flo-
quet multipliers, denoted by µ1, µ2. For ω = ω∗, a = a∗ the equation (7) is
elliptic (µ1 = µ2, |µ1| = 1, µ1 6= ±1) if c = 0 and hyperbolic (|µ1| < 1 < |µ2|)
if c = c∗.

Second construction. Before presenting a concrete example, it is convenient
to perform some general computations on the equation (6). Let us split the

function c as c = c + c̃ with c = 1
T

∫ T
0 c. Then we can define the change of

variables y = e
C(t)
2 x where Ċ = c̃. The equation (6) is transformed in

ÿ + cẏ + [α(t)− cc̃(t)

2
− c̃(t)2

4
− ċ(t)

2
]y = 0. (11)

The stability properties of the equations (6) and (11) are the same because
C(t) is continuous and periodic. In particular this function and its derivative
are bounded and the change of variables preserves stability and asymptotic
stability.

In view of the previous computations we make a choice of c(t) and α(t).
Define

c = 1, c̃(t) = ε sin t, α(t) =
c̃(t)

2
+
ċ(t)

2
=
ε

2
(sin t+ cos t),

where ε > 0 will be adjusted. For the period T = 2π,∫ T

0
α = 0, T

∫ T

0
α+ = πε

∫ 2π

0
(sin t+ cos t)+ = 2

√
2πε.

Then α satisfies the assumptions of Proposition 1 if πε ≤
√

2. Under this
condition the equation

ẍ+
ε

2
(sin t+ cos t)x = 0
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is stable in the dissipative sense. In contrast, the equation with non-constant
positive friction

ẍ+ (1 + ε sin t)ẋ+
ε

2
(sin t+ cos t)x = 0

is unstable.
To prove the instability we observe that this last equation is in the class

(6) and the equivalent equation in the class (11) is

ÿ + ẏ − ε2 sin2 t

4
y = 0.

We will prove that there are unbounded solutions. Let y(t) be the solution
with initial conditions y(0) = 1, ẏ(0) = 0. The theory of differential inequal-
ities for higher order equations (see Section 15 in [17]) implies that y(t) ≥ 1,
ẏ(t) ≥ 0 for each t ≥ 0. After integrating the equation over the interval [0, t]
we obtain

ẏ(t) + y(t) ≥ 1 +

∫ t

0

ε2 sin2 s

4
ds→ +∞ as t→ +∞.

4 A class of linear systems in the plane

Let us now consider the system (3) where the coefficients aij belong to
L1(R/TZ) and satisfy

a11 ≥ 0, a22 ≥ 0 (12)

a12(t) ≥ δ, a21(t) ≥ δ a.e. t ∈ R (13)

for some δ > 0.
With the choice x1 = ẋ, x2 = x, the equations (1) and (2) are in this

class when α(t) is positive.
Next we present an adaptation of Lyapunov’s criterion to this setting.

Proposition 3 In the previous conditions assume also that the inequality
below holds (∫ T

0
a12

)1/2(∫ T

0
a21

)1/2

+
1

2

∫ T

0
|a11 − a22| ≤ 2. (14)

Then the system (3) is stable. Moreover, it is asymptotically stable if a11 +
a22 > 0.
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In the case a11 = a22 = 0 the previous result is essentially contained in
Lemma 5.2 of [14]. The proof in that paper employed the same ideas of
the previous proof of Proposition 1. We will present a different proof for
Proposition 3 which is somehow related to the proof of Lemma 3.4 in [12].

As in the previous Section it will be convenient to introduce homotopies.
We consider families of systems

ẋ = Aλ(t)x, λ ∈ [0, 1] (15)

where {Aλ}λ∈[0,1] is a continuous matrix in L1(R/TZ) whose coefficients

Aλ(t) =

(
−a11(t, λ) −a12(t, λ)
a21(t, λ) −a22(t, λ)

)
satisfy the conditions (12) and (13) for each λ.

The family {Aλ} defines a homotopy when the system (15) has no 2T -
periodic solutions excepting x ≡ 0. The same type of reasoning as in Lemma
2 allows to prove that stability is preserved by homotopies. This is also
the case for asymptotic stability whenever a11(·, λ) + a22(·, λ) > 0 for each
λ ∈ [0, 1].

Another tool for the proof will be the argument function associated to
each non-trivial solution. This argument will be defined with respect to a
system of elliptic-polar coordinates in R2 \ {0},

x1 =
√
µr cos θ, x2 =

1
√
µ
r sin θ,

where µ > 0 is a parameter that will be determined later. Given (x1(t), x2(t)),
non-trivial solution of (3), there is an absolutely continuous branch of the
argument θ = θ(t) satisfying the equation

θ̇ = µa21(t) cos2 θ +
1

µ
a12(t) sin2 θ + (a11(t)− a22(t)) cos θ sin θ. (16)

Note that θ(t) also depends continuously upon µ but this dependence will
not be made explicit.

An important property of this argument is that its crossings with the
lines θ = mπ

2 , m ∈ Z, are always positive. This means that (t − t0)(θ(t) −
mπ

2 ) > 0 if θ(t0) = mπ
2 and |t− t0| > 0 is small. In terms of the Cartesian

coordinates this means that the solution (x1(t), x2(t)) crosses the axes in the
counter-clockwise sense. To prove it assume for instance that x1(t0) = 1 and
x2(t0) = 0. Then d

dt(e
A22(t)x2(t)) = a21(t)e

A22(t)x1(t) > 0 almost everywhere
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in a small neighbourhood of t0. HereA22 is a primitive of a22. The conclusion
follows because the function eA22(t)x2(t) is increasing around t0.

We are ready for the proof.

Proof of Proposition 3. Let us start with the

Claim: the system (3) has no 2T -periodic solutions (excepting x ≡ 0) if the
conditions (12), (13) and (14) hold.

Let us assume, by a contradiction argument, that (x1(t), x2(t)) is a non-
trivial 2T -periodic solution. Then there exists an integer k ∈ Z such that
for every t ∈ R,

θ(t+ 2T ) = θ(t) + 2πk. (17)

The above discussions on the crossing with the axes allow to deduce that k
should be non-negative. We distinguish two cases.
Case i) k = 0
The solution (x1(t), x2(t)) must lie in one open quadrant, for otherwise some
crossing with the axes should be negative. There are two possibilities, either
x1(t) · x2(t) > 0 for every t ∈ R or x1(t) · x2(t) < 0. In the first case we
divide the first equation by x1 and integrate over a period to obtain

−a11 =
1

T

∫ T

0
a12

x2
x1
.

This identity is not consistent with (12) and (13). In the second case we
divide the second equation by x2 and integrate in order to obtain a second
inconsistent identity. We have proved that (17) cannot hold for k = 0.
Case ii) k > 0
The sets

C = {t ∈ R : | sin θ(t)| < | cos θ(t)|}, S = {t ∈ R : | cos θ(t)| < | sin θ(t)|}

have infinitely many connected components. In particular, for each m ∈ Z
there are intervals Im =]t0, t1[ and Jm =]τ0, τ1[ which are connected compo-
nents of C and S respectively and satisfy

θ(t0) = (m− 1

4
)π, θ(t1) = (m+

1

4
)π, θ(τ0) = (m+

1

4
)π, θ(τ1) = (m+

3

4
)π.

Since the crossings with the axes are positive it is clear that these compo-
nents are unique, although the sets C and S could have additional compo-
nents of different nature. The condition (17) can be invoked to infer that
the diameter of the set Im ∪ Jm ∪ Im+1 ∪ Jm+1 cannot be greater than 2T .
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From the equation (16) we deduce that the inequality below holds on
the interval Im,

θ̇ < Dµ(t) cos2 θ,

where Dµ := µa21 + 1
µa12 + |a11 − a22|. Then

2 =

∫ (m+ 1
4
)π

(m− 1
4
)π

dθ

cos2 θ
<

∫
Im

Dµ.

Analogous inequalities can be obtained on Jm. Therefore,

8 <

∫
Im∪Jm∪Im+1∪Jm+1

Dµ ≤
∫ 2T

0
Dµ.

For the choice µ =

(∫ T
0 a12∫ T
0 a21

)1/2

we conclude that

4 < 2

(∫ T

0
a12

)1/2(∫ T

0
a21

)1/2

+

∫ T

0
|a11 − a22|

and this is against (14). Note that this value of µ minimizes Dµ.
The claim has been proved and we are going to apply it to the family

(15) with
Aλ(t) = (1− λ)A(t) + λA,

where A is the averaged constant matrix

(
−a11 −a12
a21 −a22

)
. The coefficients

of Aλ satisfy (12) and (13). Also, from |a11 − a22| ≤ 1
T

∫ T
0 |a11 − a22| we

observe that the assumption (14) also holds. From the claim we deduce that
the family (15) has no 2T -periodic solutions excepting x ≡ 0. The proof is
complete because the system of constant coefficients ẋ = Ax is stable in all
cases and asymptotically stable when a11 + a22 > 0.

5 Asymptotic stability of coexistence states

Consider the system

u̇ = u(a(t)− bu− cv), v̇ = v(d(t) + eu− fv), u > 0, v > 0, (18)

with a, d ∈ L1(R/TZ) and b, c, e, f positive constants. This particular
situation allows to formulate the results in a more elegant way. At the
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end of the Section we will discuss the extension to general systems where
all the coefficients are time dependent. It is convenient to stress that we
will be interested in solutions lying in the first open quadrant, denoted by
int(R2

+) =]0,∞[×]0,∞[.
Let E ∈ R2 be the solution of the linear system

ME =

(
a

d

)

with E =

(
E1
E2

)
and M =

(
b c
−e f

)
. The point E can be interpreted

as the equilibrium of the averaged system and it plays an important role
in the dynamics of the periodic system. In fact it is well known that the
system (18) has a T -periodic solution if and only if E ∈ int(R2

+), see [6, 1].
Next we will impose an additional condition on E in order to guarantee the
uniqueness and asymptotic stability of the periodic solution.

Theorem 4 Assume that the equilibrium point satisfies E ∈ int(R2
+) and

T (
√
ceE1E2 +

1

2
(bE1 + fE2)) ≤ 2. (19)

Then the system (18) has a unique T -periodic solution and this solution is
asymptotically stable.

Remarks. 1. In [1] the condition E ∈ int(R2
+) was reformulated in terms

of the equivalent inequalities

a > 0, −e
b
<
d

a
<
f

c
.

2. I do not know if the periodic solution given by the Theorem is always
a global attractor. In [16] Tineo proved the existence of a globally asymp-
totically stable T -periodic solution when E ∈ int(R2

+) and some additional
conditions on the coefficients hold. Note that, in constrast to (19), Tineo’s
condition is independent of the period.
3. The number 2 is optimal in the inequality (19). We will be more precise
about this statement after proving the above result.

Proof of Theorem 4. The first step will be to observe that the equilibrium
coincides with the average of any T -periodic solution. Given (u(t), v(t)), T -
periodic solution of (18), we divide the first equation by u and the second by
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v. After integrating over a period we obtain the identity M

(
u
v

)
=

(
a

d

)
and therefore

(
u
v

)
= E .

The next step will be to analyze the stability properties of the variational
system

ẏ1 = (a(t)− bu(t)− cv(t))y1 − u(t)(by1 + cy2), (20)

ẏ2 = (d(t) + eu(t)− fv(t))y2 + v(t)(ey1 − fy2). (21)

As noticed in [4], the change of variables y1 = u(t)x1, y2 = v(t)x2 preserves
the stability properties and transforms the linear system into

ẋ1 = −bu(t)x1 − cv(t)x2, ẋ2 = eu(t)x1 − fv(t)x2. (22)

This new system is in the class considered in Section 4. In order to apply
Proposition 3 we observe that∫ T

0
|bu(t)− fv(t)|dt ≤ T (bu+ fv)

and u = E1, v = E2. The condition (14) is implied by the inequality (19).
At this point we know, by the linearization principle, that all T -periodic
solutions of (18) are asymptotically stable. It remains to prove that there is
only one of these solutions and this follows from a degree argument. Similar
proofs can be found in the recent paper [15]. With respect to degree we
follow the notation and terminology of [13]. Let P : int(R2

+) → int(R2
+) be

the Poincaré map associated to (18). The condition E ∈ int(R2
+) implies

the existence of Ω, an open and bounded subset of the plane, satisfying:
Ω ⊂ int(R2

+), all fixed points of P lie in Ω, deg(id − P,Ω) = 1. See [1] for
more details. Asymptotically stable T -periodic solutions produce isolated
fixed points of P whose fixed point index is one. In our situation this is the
case for all fixed points. In particular there is a finite number of them, say
ξ1, . . . , ξr ∈ Ω with I(P, ξk) = 1 for each k = 1, . . . , r. From the additivity
property of degree,

1 = deg(id− P,Ω) =

r∑
k=1

I(P, ξk),

and we must conclude that r = 1.

Once we have completed the proof of the Theorem we can explain why
the number 2 is optimal in the inequality (19). Let us fix δ > 0 and select an
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analytic, positive and T -periodic function αδ(t) such that the equation (1)

with α = αδ is unstable and T
∫ T
0 αδ < 4 + δ. This function exists because

the number 4 is optimal in Lyapunov’s criterion. Indeed it can be assumed
that the equation

ẍ+ αδ(t)x = 0 (23)

is hyperbolic, meaning that the Floquet multipliers do not lie in S1. We
consider a system of the type (18) with c = e = 1 and b = f = ε. The
functions a(t) and b(t) are adjusted so that u(t) = 1, v(t) = αδ(t) is a T -
periodic solution of (18). Then E1 = u = 1, E2 = v = αδ. The linearized
system is equivalent to (22),

ẋ1 = −εx1 − αδ(t)x2, ẋ2 = x1 − εαδ(t)x2.

For ε = 0 we obtain a system equivalent to the equation (23) with x = x2.
Due to the hyperbolicity of this equation we deduce that the perturbed
system is unstable for small ε. The quantity appearing in (19) becomes

T (α
1/2
δ +

1

2
ε(1 + αδ))→ Tα

1/2
δ , as ε→ 0.

Since Tα
1/2
δ < (4 + δ)1/2, we have constructed a system of the type (18)

having an unstable T -periodic solution and such that the inequality (19)
holds if 2 is replaced by (4 + δ)1/2.

To finish this Section we notice that the previous techniques can be
applied to a general prey-predator system of the type described by the
equations in (4), where a, d ∈ L1(R/TZ) and the coefficients b, c, e, f are
positive functions in C(R/TZ). It is well known that the existence of a
T -periodic solution of (4) is equivalent to the linear instability of the trivial
and semi-trivial states. See [8] for more details. From now on we assume
that (u(t), v(t)) is a T -periodic solution. The information on the average is
now less precise. After integrating in (4) we obtain the identities

a =
1

T

∫ T

0
bu+

1

T

∫ T

0
cv, d = − 1

T

∫ T

0
eu+

1

T

∫ T

0
fv.

In consequence the point

(
u
v

)
will belong to the set C composed by all

points E =

(
E1
E2

)
∈ int(R2

+) satisfying the linear inequalities

bLE1 + cLE2 ≤ a ≤ bME1 + cME2,
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−eME1 + fLE2 ≤ d ≤ −eLE1 + fME2.

Here bL = min[0,T ] b(t), bM = max[0,T ] b(t),...
In particular C is convex and non-empty. The same techniques of the pre-

vious proof can be applied to the system (4) if we assume that the inequality
TΦ(E1, E2) ≤ 2 is valid for each E ∈ C. Here Φ is the function

Φ(E1, E2) :=
√
cMeME1E2 +

1

2
(bME1 + fME2).

Taking into account that this function is increasing in each variable and the
geometry of the set C it is not hard to observe the the maximum of Φ over
C must be reached on a certain segment contained in the boundary. More
precisely, maxC Φ = maxC∩` Φ, where ` is the straight line with equation
bLE1 + eLE2 = a. In this way we have obtained an extension of Theorem 4.

Theorem 5 Assume that the system (4) has a T -periodic solution and the
inequality

TΦ(E1, E2) ≤ 2

holds for each E ∈ C∩`. Then this T -periodic solution is unique and asymp-
totically stable.

6 Turing instabilities for coexistence states

In [4] Dancer constructed an example of a prey-predator system having a
T -periodic solution which is asymptotically stable as a solution of the o.d.e.
system but it becomes unstable when it is interpreted as a solution of a
reaction-diffusion system. In this Section we will review Dancer’s example
and it will be observed that it is somehow linked to the phenomenon of
dissipative instability described in the first Example of Section 3.

Following along the lines of the previous Section we consider the system
(18) and the reaction-diffusion system

∂u

∂t
= r1∆xu+ u(a(t)− bu− cv),

∂v

∂t
= r2∆xv + v(d(t) + eu− fv),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× [0,∞[,

where u = u(x, t), v = v(x, t) are functions defined on Ω × [0,∞[, Ω ⊂ Rm
is a smooth bounded domain and the numbers r1 and r2 are positive.
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Since the boundary conditions are of Neumann type, every T -periodic
solution of (18) is also a periodic solution of the p.d.e. system. As we saw
in the previous Section, the variational system associated to this solution is

Ẏ = A(t)Y, Y =

(
y1
y2

)
, (24)

where A(t) is the 2 × 2 periodic matrix defined by the equations (20) and
(21).

Let R = diag(r1, r2) be the diagonal matrix determined by the diffusion
coefficients and let us assume that for some λ > 0 the system

Ẏ = (A(t)− λR)Y (25)

has a Floquet multiplier outside the unit disk, |µ| > 1. According to [4] we
know that the solution (u(t), v(t)) will be unstable with respect to the p.d.e.
system on some domain Ω. To explain why the system (25) plays a role we
assume that Y∗(t) is a non-trivial solution of (25) with Y∗(t + T ) = µY∗(t).
After selecting a domain Ω such that the Neumann problem

∆φ+ λφ = 0 in Ω,
∂φ

∂n
= 0 on ∂Ω

has a non-trivial solution, we observe that ξ(x, t) = φ(x)Y∗(t) is a solution
of the linearization of the parabolic system. Moreover, ξ(x, t+T ) = µξ(x, t).

Motivated by the above discussions we construct a system of the type
(18) having a T -periodic solution such that the Floquet multipliers of (24)
satisfy |µi| < 1, i = 1, 2 and the multipliers of (25) satisfy |µ1| < 1 < |µ2|
for some λ > 0.

The change of variables y1 = u(t)x1, y2 = v(t)x2 preserves the Floquet
multipliers and transforms (24) into the system

Ẋ = B(t)X, X =

(
x1
x2

)
, (26)

where B(t) is defined by (22). Similarly this change of variables transforms
(25) into

Ẋ = (B(t)− λR)X. (27)

Next we go back to the first example in Section 3 and select a positive,
analytic and T -periodic function α(t) such that (1) is elliptic and there
exists c∗ > 0 such that ẍ + c∗ẋ + α(t)x = 0 is hyperbolic. To define the
system (18) we take b = f = ε where ε > 0 is a small parameter, c = e = 1.
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The coefficients a(t) and d(t) are computed after imposing that u(t) ≡ 1,
v(t) = α(t) is a T -periodic solution of (18). Finally, the diffusion coefficients
in the p.d.e. are r1 = ε, r2 = 1. The system (26) is defined by the equations

ẋ1 = −εx1 − α(t)x2, ẋ2 = x1 − εα(t)x2. (28)

The corresponding multipliers µ1,ε, µ2,ε are the roots of a quadratic polyno-
mial with real coefficients. These coefficients are continuous functions of the
parameter ε. For ε = 0 we obtain the equation (1) with x = x2 and therefore
the multipliers are complex conjugate numbers. In consequence this prop-
erty is also valid for small ε, µ2,ε = µ1,ε, µ1,ε ∈ C \ R. The application of
Jacobi-Liouville formula to the system (28) implies that

|µ1,ε|2 = µ1,ε · µ2,ε = e−ε(T+
∫ T
0 α) < 1.

Therefore the system (28) is asymptotically stable and the same can be said
about (26).

Analogously the system (27) is defined by the equations

ẋ1 = −ε(1 + λ)x1 − α(t)x2, ẋ2 = x1 − (εα(t) + λ)x2. (29)

For ε = 0 and λ = c∗ we obtain the equation ẍ+c∗ẋ+α(t)x = 0 with x = x2.
We know that we are in the hyperbolic case and by continuous dependence
the system (29) will have a multiplier outside the unit circle when ε is small
and λ = c∗
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