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1 Introduction

Assume that K ⊂ R2 is a nonseparating Peano continuum. In addition, K has an empty interior.
The complement of K on the Riemman sphere S2 = R2 ∪ {∞} is a simply connected domain,
denoted by Ω = S2\K. The space of Carathéodory prime ends, P = P(Ω), is homeomorphic to
the unit circle. Intuitively speaking, each prime end in P describes one way of approaching the
continuum K from outside.

Let us now assume that h : R2 −→ R2 is a planar homeomorphism such that K is invariant
under h; that is,

h(K) = K.

The dynamics of h on K is rather simple. There exists an integer N ≥ 1 such that all orbits lying
in K are convergent either to a fixed point or to a periodic orbit with minimal period N . Together
with the dynamics on K, h induces a homeomorphism on prime ends denoted by h∗ : P −→ P.
For simple continua, say finite graphs without loops, the dynamical properties of h∗ are similar to
those of the restricted map h : K −→ K. However, this is not always the case for general continua.
The goal of this paper will be to construct a continuum K in the previous conditions and a planar
and dissipative homeomorphism h such that K is the global attractor of h and the induced map
h∗ has a dynamics of Denjoy type. This shows that the dynamics induced on prime ends can be
substantially more complex than the original dynamics on the continuum.

In some aspects our construction will be reminiscent of the Cantorian Sun introduced in several
papers [5, 7, 11]. The continuum in those papers is constructed as a set of rays connecting the
origin with all the points of a Cantor set placed at the unit circle. The dynamics on the set of rays
is of Denjoy type. This continuum is not suitable for our paper since it is not locally connected.
We will construct a simpler Sun, where the rays connect the origin to a countable set of points
converging to the origin. The dynamics on the set of rays will be produced by an ergodic rotation
but, to our surprise, the dynamics on prime ends will be of different type.

The rest of the paper is organized in two Sections. First we discuss the dynamical properties of
a general homeomorphism on an invariant Peano continuum K. Later we construct the example
mentioned above.

2 Dynamics on Peano continua

From now on K ⊂ R2 is a compact, connected and locally connected set. In addition, K contains
more than one point, has an empty interior in R2 and the complement R2\K is connected.

The class of all planar homeomorphisms will be denoted by H(R2). Given h ∈ H(R2) and
x ∈ R2, the complete orbit {hn(x)}n∈Z is well defined. The corresponding ω-limit set will be
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denoted by Lω(x, h). For each integer N ≥ 1, a periodic orbit with minimal period N will be
called an N -cycle.

Proposition 2.1. Assume that h ∈ H(R2) is such that h(K) = K. Then, there exists an integer
N ≥ 1 such that for each x ∈ K, the limit set Lω(x, h) is either a fixed point or an N -cycle

Remarks: 1.- The set of periods of K is either {1} or {1, N}. The alternative {N} is excluded
by a result due to Cartwright-Littlewood and Bell ([2, 1]). The homeomorphism h always has at
least one fixed point lying on K. This fixed point principle will be used several times.

2.-In the above Proposition the map is defined on the whole plane and this is essential. The
conclusion does not hold for a general homeomorphism of K. As an example assume that K is the
5-star shown in Figure 1.

a1a3

a2

b1 b2

Figure 1

Define a homeomorphism h : K −→ K such that a1 7→ a2 7→ a3 7→ a1 and b1 7→ b2 7→ b1. Then
a 2-cycle and a 3-cycle coexist and, according to Proposition 2.1, h cannot be extended to a map
in H(R2). Homma’s theorem [6] says that a homeomorphism of K can be extended to a map in
H(R2) if and only if the orientation of all Y -sets is simultaneously preserved or reversed. In the
previous example the orientation of the Y -set with final points {a1, a2, a3} is preserved and the
orientation of {a1, b1, b2} is reversed.

We will prove Proposition 2.1 as an application of the theory of prime ends. Following the
exposition by Mather in [8] and due to the nice properties of our continuum, we observe that each
prime end P ∈ P can be described by an arc γ ending at a point ξ ∈ K and such that γ\{ξ} ⊂ Ω.
The point ξ is called the principal point of P. All points in K are principal points of some prime
end. Two of these arcs produce the same prime end if they can deformed homotopically in Ω (the
common final point ξ remains fixed through the process).

The disjoint union Ω̂ = Ω∪P becomes a surface with boundary P. In fact the pairs (D,S1) and
(Ω̂,P) are homeomorphic. Note that

D = {z ∈ C : |z| ≤ 1} and S1 = {z ∈ C : |z| = 1}.

Given h ∈ H(R2) with h(K) = K, the homeomorphism induced on prime ends is defined by the
rule

h∗ : P → P, h∗(Pγ) = Ph(γ),

where Pγ denotes the prime end defined by the arc γ.

The map ĥ : Ω̂ −→ Ω̂,

ĥ =

{
h on Ω
h∗ on P
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is also a homeomorphism. In consequence, h∗ preserves the orientation in P if and only if ĥ has
this property in Ω̂. Since ĥ and h coincide on the open set Ω, the same can be said for h.

The map Π : P → K sending each prime end into its principal point is continuous and onto.
From the definition of h∗ we can deduce that the following diagram is conmutative,

P h∗ //

Π
��

P

Π
��

K
h
// K

In consequence, Π defines a semi-conjugacy. This implies that

Lω(x, h) = Π(Lω(P, h∗)) (2.1)

for each x ∈ K and P ∈ P with Π(P) = x. Moreover, we observe that when P ∈ P is a periodic
point of h∗ with period N ≥ 1, then x = Π(P) is a periodic point of h with minimal period N ′ ≥ 1,
with N ′ some divisor of N .

After these preliminaries we are ready for the proof.

Proof of Proposition 2.1. First of all we recall that if Lω(x, h) is contained in Fix(h), the
set of fixed points of h, then Lω(x, h) is either a singleton or a continuum (see [3] or Proposition
2 in Chapter 3 of [10]). In particular, if Lω(x, h) is finite and Lω(x, h) ⊂ Fix(h) then it is a
singleton. From the identity

Lω(x, h) =

N−1⋃
k=0

Lω(h
k(x), hN )

we can also deduce that if Lω(x, h) is finite and Lω(x, h) ⊂ Fix(hN ) then Lω(x, h) is a N ′-cycle
with N ′ some divisor of N .

Assume now that h ∈ H(R2) is orientation reversing. Then, also h∗ is orientation reversing and
the general theory of dynamics on S1 implies that for each P ∈ P, the limit set Lω(P, h∗) is either
a 2-cycle or a fixed point. In view of (2.1) we find three possible configurations for Lω(x, h), a
2-cycle, one fixed point or two fixed points. The third possibility is excluded by the above remark.
Therefore, the conclusion of Proposition 2.1 holds with N = 2 or N = 1.
From now on we assume that h is orientation preserving. In this case h∗ has a well defined rotation
number, interpreted as an angle ρ = ρ(h∗) ∈ T, with T = R/2πZ. We distinguish three cases:

Case 1: ρ = 0 = 2πZ.
Every limit set Lω(P, h∗) is a single fixed point and from (2.1), we deduce that the same can
be said for Lω(x, h).

Case 2: ρ = 2πM
N + 2πZ with 0 < M < N and N,M integers relatively primes.

In this case, Lω(P, h∗) is an N -cycle for all P ∈ P. From (2.1) we deduce that for each
x ∈ K, Lω(x, h) is finite and contained in Fix(hN ). In consequence Lω(x, h) is an N ′-cycle
with N ′|N . We will prove that either N ′ = N or N = 1. Assume by contradiction that
1 < N ′ < N . Thus, hN ′

has more than one fixed point lying in K. Moreover, hN ′ ∈ H(R2),

hN ′
(K) = K and ρ(hN ′

) = 2πMN ′

N + 2πZ ̸= 0.

This situation in not compatible with the following consequence of a result due to Cartwright
and Littlewood (Corollary 2 in [2]): Assume that f ∈ H(R2) is orientation preserving with
ρ(f) ̸= 0 and f(K) = K, then f has exactly one fixed point in K. The application of this
result to f = hN ′

leads to the searched contradiction.
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Case 3: ρ = ω + 2πZ, ω
2π ̸∈ Q.

The general theory says that h∗ can be conjugate to an ergodic rotation or to a Denjoy map.
The first step will be to discard the rotation.

By a contradiction argument assume that all orbits of h∗ are dense in P. Then we select
a point y ∈ K with h(y) = y and a prime end Q ∈ P with Π(Q) = y. Since Π(hn

∗ (Q)) =
hn(Π(Q)) = y for each n ∈ Z, we deduce that Π is constant on the dense set {hn

∗ (Q) : n ∈ Z}.
By continuity, we deduce that Π(P) = y for every P ∈ P. This is absurd since K is not a
singleton.

Once we know that h∗ is a Denjoy map, we find the Cantor set C ⊂ P such that

Lω(P, h∗) = C (2.2)

for every P ∈ P. Again take a fixed point y ∈ K of h and Q ∈ P so that Π(Q) = y. A similar

reasoning implies that Π(Q̂) = y for every Q̂ ∈ Lω(Q, h∗). Therefore, Π(C) = {y}.
For an arbitrary x ∈ K and P ∈ P with Π(P) = x, we combine (2.1) and (2.2) to obtain

Lω(x, h) = Π(Lω(P, h∗)) = Π(C) = {y}.

Summing up, we can say that h has a unique fixed point in K attracting all orbits on this
continuum.

In the next Section we construct an example corresponding to the third case of the previous proof.

3 A curious attractor

A map h ∈ H(R2) is called dissipative if there exists a bounded set B such that all compact sets
are eventually attracted by B; that is, for each compact set A ⊂ R2 there exists an integer n∗
such that hn(A) ⊂ B if n ≥ n∗. The attractor Ah is the largest compact and invariant set. It is
well known that the attractor is a continuum and the results of the previous Section are applicable
when Ah is locally connected and it has empty interior in R2.

The following result is a consequence of the previous definitions and it will be useful later.

Lemma 3.1. Assume that h ∈ H(R2) is dissipative and K ⊂ R2 is a continuum with h(K) = K.
In addition,

hn(x) → K, h−n(x) → ∞ as n → +∞

for each x ∈ R2\K. Then Ah = K.

The aim of this Section is to construct a dissipative homeomorphism h whose attractor is a
Peano continuum K in the conditions of the paper such that h∗ : P → P is a Denjoy map.

Assume that ω ∈ R is not commensurable with 2π; that is, ω
2π ̸∈ Q, and let us fix an orbit of

the rotation of angle ω,
Oω = {θn : θn = θ0 + nω, n ∈ Z}.

We consider the continuum
K =

⋃
n∈Z

σn

where each σn is the segment joining the origin to the point

pn =
1

1 + |n|
eiθn .
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See Figure 2 for a pictorial description of K.

0
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1
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
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2p 1p

2p
1p

0

Figure 2

We observe that K is locally connected because the lengths of the rays tend to 0. The space of
prime ends P associated to the domain S2\K has a curious structure, that can be better understood
if we split the continuum in three parts. More precisely,

K = P1 ∪ P2 ∪ P∞

with P1 = {pn : n ∈ Z}, P2 = ∪n∈Zσ̇n, P∞ = {0}. Here σ̇n denotes the open segment σn\{0, pn}.
For points in P1, there is a unique prime end denoted by p̂n ∈ P with Π(p̂n) = pn. To each point
x ∈ σ̇n there correspond two prime ends P±

x ∈ P with Π(P±
x ) = x. The paths defining these prime

ends are described in Figure 3.

x

P

npx

x

P

ˆ
np

0

Figure 3

All the remaining prime ends satisfy Π(P) = 0. They can be of two kinds. For each θ ∈ T\Oω,
Pθ will be the prime end defined by the ray ending at the origin and having argument θ, see Figure
4.


P

Figure 4
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Given θn ∈ Oω we construct two prime ends denoted by P±
n . They are defined by paths in

S2\K ending at the origin and having the property (for P+
n ): for any k ∈ Z such that θk lies in

the arc connecting θn and θn+1, the path will eventually enter into the cone of points in the plane
with arguments between θn and θk, see Figure 5.

n

P

np

kp

1np 

Figure 5

Arcs are taken in the counter-clockwise sense. For P−
n , the arc θnθn+1 is replaced by θn−1θn.

It is convenient to be more precise on the construction of the arc defining P+
n . For each

m = 0, 1, 2, ... we consider Dm the closed disk with center at the origin and radius rm = 1
m+1 . The

set ∂Dm\
⋃

|k|≤m σk has a finite number of connected components. For each m ≥ |n|, exactly two

of them will be open arcs in ∂Dm having the point rmeiθn as one of the extreme points of the arc.
These arcs will be denoted by Λ+

m,n and Λ−
m,n, depending on whether rmeiθn is the initial or the final

extreme. For a fixed n ∈ Z we pick up a sequence of points {zm,n}m≥|n| with zm,n ∈ Λ+
m,n. The

arc defining P+
n is constructed by a juxtaposition of arcs connecting these points. More precisely,

γm,n is an arc connecting zm,n and zm+1,n with the additional property

γ̇m,n = γm,n\{zm,n, zm+1,n} ⊂ (int(Dm)\Dm+1) ∩ (R2\K).

See Figure 6.

𝑧𝑚,𝑛

𝑧𝑚+1,𝑛

𝑝𝑛
𝛾𝑚,𝑛

Figure 6

The arc defining P+
n is γ =

⋃
m≥|n| γm,n.

Experts in the theory of prime ends will notice that the choice of the points zm,n is irrelevant for
the definition of the prime end. Indeed, P+

n is defined by the sequence of cross-cuts {Λ+
m,n}m≥|n|.

To achieve a complete description of the set P we must also prove that there are no additional
prime ends. This is clear when the principal point is not the origin. Let us take an arbitrary P ∈ P
with Π(P) = 0. We can find an associated parameterized arc γ : [0, 1] → R2 with γ(t) ∈ R2\K
if t ∈ [0, 1[ and γ(1) = 0. For m large enough this arc will intersect the set ∂Dm\

⋃
|k|≤m σk.

In principle γ(t) can touch several components but we are interested in the last one, denoted
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by Λm(P). This means that Λm(P) is the component of ∂Dm\
⋃

|k|≤m σk such that there exists

τ ∈]0, 1[ satisfying γ(τ) ∈ Λm(P) and |γ(t)| < rm if t ∈]τ, 1].
The sequence of cross-cuts {Λm(P)} provides an alternative way to define P. Each arc Λm(P)

can be projected into the space of angles,

Θm(P) = {θ ∈ T : rmeiθ ∈ Λm(P)}.

The closure of each Θm(P) is a compact subset of T. Moreover, cl(Θm+1(P)) ⊂ cl(Θm(P))
and the diameter of these sets goes to zero as m → ∞. In consequence these sequence defines a
point φ ∈ T as the limit, ⋂

m

cl(Θm(P)) = {φ}.

Assume first that φ ̸∈ Oω. Then rmeiφ ∈ Λm(P) and the arc is equivalent to the ray of argument
φ. This implies that P = Pφ.

Otherwise φ = θn for some n. Then, for large m the angle φ is one of the boundary points of
Θm(P) for all m. As the sequence {Θm(P)} is decreasing, this boundary point cannot alternate.
Either it is always the first (P = P+

n ) or the last (P = P−
n ).

From the previous discussion it is not hard to prove also that the prime ends {Pθ}θ∈T\Oω
and

{P±
n }n∈Z are different.
Now we have a complete description of the set P. To understand its topology we first observe

that Π−1 unfolds the segment σn in two adjacent arcs σ+
n and σ−

n . They are arcs connecting p̂n to
P+
n and P−

n , see Figure 7.

0p̂

0

P

0p0

K

0

P

0


0






Figure 7

The arcs σ±
n are closed and the corresponding open arcs will be denoted by σ̇±

n . The set

V =
⋃
n∈Z

(σ̇+
n ∪ σ̇−

n ∪ {p̂n})

is a disjoint union of open arcs. Let us now prove that V is dense in P. First note that P\V =
Π−1(0). Given P ∈ P\V we consider the sequence {Θm(P)} defined above. Let θm = θm(P) be
the final point of Θm(P) and let σ(m) ∈ Z be the integer such that the point rmeiθm lies in the
segment [0, pσ(m)]. Then p̂σ(m) is in the closed neighborhood of P defined by the crosscut Λm(P).
In consequence p̂σ(m) → P. Since p̂σ(m) belongs to V , we conclude that P is in the closure of V .

The complement C = P\V is a Cantor set. Moreover, C = A ∪ I, where

A = {P±
n : n ∈ Z}
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is the accessible set and
I = {Pθ : θ ∈ T\Oω}

is the unaccessible set.
The previous discussions can be summarized as follows: The map Π defines the homeomor-

phisms between σ±
n and σn while the Cantor set C is collapsed to the origin.

Before we start the construction of the map h it will be convenient to recall a preliminary result
on the extension of maps on sets homeomorphic to S1. Assume that an orientation has been fixed
on X ∼= S1. The cyclic order on X is defined as follows, given x1, x2, x3 ∈ X, x1 ≺ x2 ≺ x3 means
that x2 belongs to the open arc going from x1 to x3.

Lemma 3.2. i) Assume that D1 is a dense subset of X and φ : D1 → X preserves the cyclic
order. Then φ admits an extension φ̂ : X −→ X that also preserves the cyclic order.
ii) In addition, assume that D2 = φ(D1) is also dense in X. Then the extension φ̂ is unique and
it becomes a homeomorphism of X.

This result is inspired by Lemma 3.3, page 140, in [4]. The proof is based on the same ideas
and will be presented at the end of the paper.

We will apply this lemma with X = P. The orientation will be chosen by the rule

P−
x ≺ p̂n ≺ P+

x if x ∈ σ̇n.

To start the construction we take a sequence of homeomorphisms Hn : cl(σn) ∼= cl(σn+1) with
Hn(0) = 0. Then we define the map H : V ∪A → V ∪A,

H(P±
x ) = P±

Hn(x)
if x ∈ σ̇n, H(p̂n) = p̂n+1, H(P±

n ) = P±
n+1.

This map is bijective and continuous. Moreover,

Π(P1) = Π(P2) ⇐⇒ Π(H(P1)) = Π(H(P2)) (3.1)

for any P1,P2 ∈ V ∪A.
Since Hn is an order preserving map from σn to σn+1, the cyclic order is preserved by H on

each arc σ̇+
n ∪ σ̇−

n ∪ {p̂n}. Indeed, H preserves the cyclic order on the whole domain V ∪ A. The
reason for this is in the way we have chosen the sequence Oω. Since the rays σn have been labelled
according to a rotation, the cyclic order is preserved in the space of rays. As a consequence, an
ordering of the type

σ+
n ∪ σ−

n ≺ σ+
m ∪ σ−

m ≺ σ+
n+1 ∪ σ−

n+1

implies
σ+
n+1 ∪ σ−

n+1 ≺ σ+
m+1 ∪ σ−

m+1 ≺ σ+
n+2 ∪ σ−

n+2.

We know that V ∪ A is dense in P so that Lemma 3.2 can be applied to deduce that H can be
extended to a homeomorphism Ĥ : P −→ P. Since Π−1(0) = C and C is invariant under Ĥ,

property (3.1) is also valid for Ĥ and arbitrary prime ends P1,P2 ∈ P.
Define the map Υ : P → T,

Υ(P) =

{
θn if P ∈ σ+

n ∪ σ−
n

θ if P = Pθ, θ ∈ T\Oω.

This map is continuous and onto. It defines the semiconjugacy

P Ĥ //

Υ
��

P

Υ
��

T
Rω

// T
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with Rω(θ) = θ + ω. In particular, the rotation number of Ĥ is ω.

Our next step will be to extend Ĥ to a homeomorphism of Ω̂ such that all compact subsets of
Ω̂\{∞} are attracted by P. This can be made in many way and we describe one of them.

Since Ω̂ is homeomorphic to

E = {z ∈ C : |z| ≥ 1} ∪ {∞},

we take a homeomorphism Ψ : Ω̂ −→ E. In particular, Ψ(P) = S1. After this change of variables
we make a radial and contractive extension. In polar coordinates z = reiφ,

Ĥ : E −→ E, eiφ1 = ΨĤΨ−1(eiφ), r1 =
1

2
+

1

2
r.

For any orbit in E, rn+1 = 1
2 + 1

2rn. This implies that rn −→ 1 as n −→ ∞ and all orbits are

attracted by S1. Also, if r0 > 1, then rn −→ +∞ as n −→ −∞. The map H = Ψ−1 ◦ Ĥ ◦ Ψ has
the searched dynamics.

Consider now the map

R : Ω̂\{∞} −→ R2, R = id on Ω, R = Π on P.

Since K is locally connected this map is continuous and onto. We define h in terms of the following
commutative diagram

(R2,K)

h

��

(Ω̂\{∞},P)
R

oo

H
��

(R2,K) (Ω̂\{∞},P)
R

oo

See Figure 8 for an illustration of the behaviour of R.

0p̂

1p̂

0p

R
2p̂

𝓟𝟎
+

𝓟𝟎
−

Figure 8

The extension of property (3.1) to all prime ends implies that h is well defined, continuous
and one-to-one. The most delicate point is the continuity of h at the points of the continuum.
Assume that {xn} is a sequence in S2\K converging to some ξ ∈ K. Since h maps bounded sets
into bounded set it is enough to prove if the sequence {h(xn)} is also convergent then the limit
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must be h(ξ). First we observe that the sequence {yn} with yn = R−1(xn) is not necessarily

convergent in Ω̂. Anyway, the limit set of {yn} will be contained in P and, more precisely, in
Π−1(ξ). Let us extract a sub-sequence {yσ(n)} converging to some P ∈ P with Π(P) = ξ. Then,

h(xσ(n)) = h(R(yσ(n))) = R(H(yσ(n))) → R(H(P)). Since H = Ĥ and R = Π on P, the limit of

{h(xσ(n))} is Π(Ĥ(P)) = h(Π(P)) = h(ξ). Therefore, the whole sequence {h(xn)} will converge to
h(ξ). At this moment we know that h is a continuous embedding, but since it is obviously onto,
the theorem of invariance of the domain implies that h ∈ H(R2). The restrictions of h to R2\K and

Ĥ to {|z| > 1} are conjugate. This implies that h is orientation preserving. Also, h is dissipative
because the set

B = R(Ψ−1({z ∈ E : 1 ≤ |z| ≤ 2}))

attracts all compact subsets of R2. Given x ∈ R2\K we know that if n → +∞,

dist(Hn(x),P) → 0, H−n(x) → ∞.

Since R is continuous, also

dist(hn(x),K) → 0, h−n(x) → ∞.

We can know invoke Lemma 3.1 to deduce that the global attractor is K.
It remains to prove that the induced map on prime ends coincide with the Denjoy map Ĥ.

From the definition of H, we know that h∗ = H on V . The density of V in P implies that h∗ = Ĥ
everywhere.

To finish our discussion on the dynamics of the map h we observe that the fixed point x = 0
attracts all orbits but it is unstable in the Lyapunov sense. The theory of unstable attractors is
one of the topics of interest in the research of Professor Sanjurjo (see [9]).

Appendix: Proof of Lemma 3.2. First of all we observe that any map preserving the cyclic
order is one-to-one. Given x ∈ X we take two points ξ, η ∈ D1 with ξ ≺ x ≺ η and define the sets

L = {y ∈ D1 : ξ ≺ y ≺ x} and R = {y ∈ D1 : x ≺ y ≺ η}.

The point x is in the accumulation of both sets because D1 is dense in X. We claim that the limits
below exist,

φ(x−) = lim
y→x
y∈L

φ(x) and φ(x+) = lim
y→x
y∈R

φ(x).

To prove the existence of φ(x−) we take any sequence {yn} satisfying yn ∈ D1, yn → x and

ξ ≺ y0 ≺ y1 ≺ ... ≺ yn ≺ yn+1... ≺ x.

Then,
φ(ξ) ≺ φ(y0) ≺ φ(y1) ≺ ... ≺ φ(yn) ≺ φ(yn+1)... ≺ φ(η).

In consequence φ(yn) has a limit lying in the arc between φ(ξ) and φ(η). It is not hard to prove
that this limit is independent of the chosen sequence {yn}.

Once we have established the existence of φ(x−) and φ(x+), we observe that the role of the
points ξ and η in the previous discussion can be played by arbitrary points in D1. In consequence
we obtain the property

ξ, η ∈ D1, x ∈ X, ξ ≺ x ≺ η ⇒ φ(ξ) ≺ φ(x±) ≺ φ(η).



11

Also, either φ(x−) = φ(x+) or

φ(ξ) ≺ φ(x−) ≺ φ(x+) ≺ φ(η). (3.2)

For points x lying inD1 one of the following three cases must hold, φ(x) = φ(x−), φ(x) = φ(x+)
or φ(x−) ≺ φ(x) ≺ φ(x+). To prove i) it is enough to define

φ̂(x) =

{
φ(x) if x ∈ D1

φ(x−) if x ∈ X\D1.

To prove ii) we observe that the continuity of φ̂ at x ∈ X is equivalent to φ(x+) = φ(x−). We
claim that this is the case for all points x ∈ X. Otherwise, φ(x−) ̸= φ(x+) for some x and condition
(3.2) will hold. The arc γ going from φ(x−) to φ(x+) is such that φ(D1) ∩ (γ\{φ(x)}) = ∅. This
is impossible if D2 = φ(D1) is dense in X.

This indirect argument proves that φ̂ is continuous. Since it is also one-to-one and X is
homeomorphic to S1, we conclude that φ̂ is indeed a homeomorphism.
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Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-233.

[5] L Hernández-Corbato, R Ortega, FRR del Portal, Attractors with irrational rotation number,
Mathematical Proceedings of the Cambridge Philosophical Society 153 (2012), 59–77.

[6] T Homma, An extension of the Jordan curve theorem, Yokohama Math. J. 1 (1953), 125–129.

[7] N Levinson, Transformation theory of non-linear differential equations of the second order,
Annals of Mathematics 45 (1944), 723–737. Correction: Annals of Mathematics 49 (1948),
738.

[8] J Mather, Topological proofs of some purely topological consequences of Caratheodory’s
theory of prime ends. Selected Studies: physics-astrophysics, mathematics, history of science,
pp 225–255, North-Holland, Amsterdam-New York 1982.

[9] M Morón, J Sánchez-Gabites, J Sanjurjo, Topology and dynamics of unstable attractors,
Fundamenta Mathematicae 97 (2007), 239–252.

[10] R Ortega, Periodic differential equations in the plane: A topological perspective, De Gruyter
Series in Nonlinear Analysis and Applications, 29, Berlin 2019.

[11] RB Walker, Periodicity and decomposability of basin boundaries with irrational maps on
prime ends, Transactions of American Mathematical Society 324 (1991), 303–317.



12

Rafael Ortega
Departamento de Matemática Aplicada
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