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Abstract

The aim of this article is to propose a model, that is a planar version of the Full
Two-Body Problem, and discuss the existence and stability of a relevant periodic solution.
Consider two homogeneous ellipsoids orbiting around each other in fixed coplanar Keple-
rian orbits. Moreover, their respective spin axes are assumed to be perpendicular to the
orbital plane, that is also a common equatorial plane. The spin-spin model deals with the
coupled rotational dynamics of both ellipsoids. For a non-zero orbital eccentricity, it has
the structure of a non-autonomous system of coupled pendula. This model is a natural
extension of the classical spin-orbit problem for two extended bodies. In addition, we con-
sider dissipative tidal torques, that can trigger the capture of the system into spin-orbit and
spin-spin resonances. In this paper we give some theoretical results for both the conserva-
tive model and the dissipative one. The conservative model has a Hamiltonian structure.
We use properties of Hamiltonian systems to give some sufficient conditions in the space
of parameters of the model, that guarantee existence, uniqueness and linear stability of
an odd periodic solution. This solution represents a double synchronous resonance in the
conservative regime. Such solution can be continued to the dissipative regime, where it
becomes asymptotically stable. We see asymptotic stability as a dynamical mechanism for
the capture into the double synchronous resonance. Finally we apply our results to sev-
eral cases including the Pluto-Charon binary system and the Trojan binary asteroid 617
Patroclus, target of the LUCY mission.

Keywords: Celestial mechanics, Hamiltonian systems, Dissipative systems, Rotational
dynamics, Coupled oscillators, Two-Body problem.

1 Introduction

1.1 Motivation

The model we propose here is a natural extension of the well known spin-orbit problem of
celestial mechanics. The spin-orbit model is an elementary, but not trivial, model to study
the rotational dynamics of a satellite about its center of mass when it orbits around a planet.
Here the planet acts as a point mass and the satellite is an extended body whose spin axis
is perpendicular to the orbital plane. This model has the structure of a nearly integrable
and periodically forced pendulum. It has attracted much attention not only for its accurate
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physical implications but also for its mathematical richness. Some pioneer papers are [4] for
the conservative case and [20] for the dissipative case. This model contributes to explain the
synchronization of the rotational motion of the Moon and its orbital motion around the Earth.
In other words, the Moon is in a 1:1 spin-orbit resonance. This phenomenon is indeed very
common in the solar system for natural satellites that are close enough to their respective
planets, [30]. Besides, Mercury, as an orbiting body around the Sun, is locked in a 3:2 spin-
orbit resonance. According to [I3], in its chaotic evolution, Mercury could have reached large
orbital eccentricities that made possible the capture into this higher order resonance. It is
accepted that the phenomenon of capture into resonances is driven by dissipative torques,
caused by internal frictions within the satellite, [22]. The concept of stability of a resonance
in the conservative regime is linked to the concept of capture in the dissipative case and both
can be related. In one hand, [§] studies the KAM stability in the conservative case, whereas
[9] proves the existence of quasiperiodic attractors for the dissipative problem, that bifurcate
from the KAM tori of the conservative case. On the other hand, [29] proves the existence of
an asymptotically stable solution in 1:1 resonance that is a continuation of a linearly stable
odd periodic solution of the conservative case. The onset of chaos is another interesting feature
of this problem. The oblateness of the satellite produces chaotic regions in the phase space
that surround the libration regions of resonances. Chaotic zones can be very large due to
overlapping of different resonances, [10]. A large eccentricity emphasizes this behavior, as in
the case of Hyperion, [36], [35].

The Full Two-Body Problem (F2BP) deals with the dynamics of two extended bodies
interacting gravitationally. It has been extensively investigated, especially in the last two
decades, due to an increasing interest on binary systems. Due to its complexity, most of the
studies are numerical explorations of particular cases, see [I8] or [12]. There are some works
with a more analytical approach dealing with relative equilibria and stability, [31] and [23].
The spin-spin model is motivated mainly by [5], [32], [14] and [3]. In one hand, [5] is focused
on the evolution of the orbit and the spin axes of the bodies in the secular F2BP (averaging
over fast angles). This paper points out that the mutual influence in the spin dynamics is
contained in the terms of order 1/7° of the expansion of the potential energy of the system,
where 7 is the distance between the bodies. On the other hand, [32] studies the relative
equilibria and stability in the planar case, i.e., the spin axes of the bodies are perpendicular
to the orbital plane, that is also a common equatorial plane. [I4] studies the observability of
non-planar stable oscillations around the double synchronous equilibrium in binary asteroids.
In [32] and [14], only terms up to 1/73 of the potential energy are considered, so the resulting
system is equivalent to two uncoupled spin-orbit problems. The planar spin-spin coupling was
first studied in [3], making an analogous study as the classical paper [20] on the spin-orbit
coupling. Particularly, [3] studies the spin of the body 1, identified with two point masses
slightly separated from each other (dumbbell model), that moves in a circular orbit around the
body 2, an ellipsoid with uniform rotation. They focus on the case when the orbital motion is
slow and the angular velocity of the body 1 becomes commensurable with the angular velocity
of the body 2 (spin-spin resonance).

The model we propose in this paper deals with the complete coupled dynamics of the F2BP
in the planar and ellipsoidal case. As usual in the spin-orbit problem, we also assume that
the orbital motion takes place in Keplerian ellipses. This reduces the high dimensional phase
space of the F2BP to a problem of two degrees of freedom (spins) plus time-dependence (orbit).
For a small non-zero orbital eccentricity, it has the structure of a nearly integrable system of
coupled pendula that is periodically forced. This setting is suited to study the phenomena



Figure 1: The planar spin-spin problem.

related to spin-orbit and spin-spin resonances. Furthermore, the intrinsic dissipative nature of
the capture into resonances supports the relevance of this model. The reason is that the most
used family of dissipative torques, see [22], is of order 1/r® whereas the spin-spin coupling
appears at order 1/r°. In addition to the questions related to the spin-orbit problem, this
model of coupled oscillators opens new questions that were not possible to consider before. We
will discuss this in Section [6l

1.2 Setting of the model.

Consider two homogeneous ellipsoids £1 and &£ with respective masses M, j = 1,2, principal
moments of inertia A4; < B; < C; and corresponding principal semi-axes a; > b; > ¢;. Assume
that the orbital motion of the ellipsoids is the same as for two point masses, say, the centers of
the ellipsoids describe coplanar Keplerian orbits of eccentricity e € [0,1) with a common focus
at the center of mass of the system. Moreover, assume that the spin axis of each body is the
principal axis associated to c; and is perpendicular to the orbital plane.

Let us identify the orbital plane with the complex plane C. Consider the center of mass of
the system fixed at the origin and let the center of each ellipsoid be r;, then, Mirq 4 Mors = 0.
If we define the relative position vector r = ro — ry and choose the units of mass such that
My + My = 1, then, r;1 = —Mor and ro = Mjr. The orbital motion is defined by r, which
can be written as r = rexp(if) € C, where r > 0 and f are real functions of the time. Note
that r describes an ellipse of eccentricity e € [0,1) and semimajor axis a with focus at the
origin, so, the polar coordinates r and f vary periodically with time, and are known by the
Kepler problem. Let us take convenient units of time so that the period is 27. In the usual
terminology, f is called true anomaly and the time ¢ is the mean anomaly. There is a third
useful angle u, the eccentric anomaly, which is defined by the famous Kepler’s equation

t =wu— esinu, (1)
and let us determine the Keplerian ellipse simply by

r=a(l —ecosu). (2)



Also, using the graphical definition of the eccentric anomaly and some geometrical relations of
ellipses, we can write the position of r in terms of the eccentric anomaly as

rexp(if) = a(cosu —e+iy/1 — e?sinu). (3)

Note that for ¢ = 0 we assumed that f = v = 0, and consequently, f = u =7 when t = 7. The
expressions eqs. and relate the true and eccentric anomalies. Moreover, Equations (/1)
to define u = u(t,e), - = Z(t,e) and f = f(t,e) as analytic functions in both entries.

Recall Kepler’s third law for the Two-Body Problem

G(My + Mo) (;)2 = a?, (4)

where G is the Gravitational constant and 7 is the orbital period. In consequence, G = a? in

our units. For our model to be completely non-dimensional and adequate to the scale of the
system, we take convenient units of length such that C; +Cy = 1. In these units the semi-major
axes a; of the ellipsoids are of order 1, whereas a should be much larger. See Appendix @ for
specific conversion of units.

Let 6; be the polar angle of the principal direction associated to a; with respect to the
orbit’s major axis. See Figure The spin dynamics of the ellipsoids is modelled by the
following coupled system of ordinary differential equations

Cil; = TC(,01,02) + TP (t.0;),  j=1,2, (5)

where 7}0 and 7}D are respectively the conservative and dissipative torques acting on &;.
The conservative torque is derived from the potential gravitational energy, see Section
and it takes the form

a

3 A
7}C(t, 01,0,) = — <r(t)) % sin(20; — 2£(t))

a \° m; A1
() X T sinmer - @) + 2mal6 - 0). (O

where
2= {(m1,m) € Z*: |my| + |ma| < 2}.

In @ we have ignored terms of order (a/r(t))" with n > 7. The parameters A; and AJ:! are
positive small quantities depending on the physical parameters of the bodies and on a. These
parameters satisfy AJil = AZ"! < A; < 3C;. Note that if all the constants AJp! in @ vanish,
the system is formed by two uncoupled spin-orbit problems in 6; and 6. The coupling of
the system is contained in the terms (mq,mg) of type (+1,+1) and (£1, F1), whereas the rest
of them are high order spin-orbit terms.

On the other hand, the dissipative torque 7}D has different forms depending on the model.

We will use a linear MacDonald torque [22]

. a 6 . . a 6 | .
TP(t.0;) = —Cn, (@)) sin(2A4 (6, — 8) ~ —5,; (w) G- i), ()

where ) ; are constants depending on the parameters of the bodies. Here we assumed that
|At;(8; — f(t))] < 1 because the parameters At; and 0; are very small positive numbers.
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This type of torque has been extensively used, taking as reference [20] or [30], for example.
According to [16], to obtain , the dissipation is modelled by assuming that there is a time
delay between the deforming disturbance and the actual deformation of each body. That delay
is a small fixed amount At; (time lag), leading to an angular lag of (f(t,e) —0;)At; (geometric
lag). It is worth mentioning that there is no physical reason for both lags (or both d;) to match.

Note that if 7;-D = 0, the system has a Hamiltonian structure. The corresponding

Hamiltonian has two degrees of freedom and time dependence and it is given by

2 2
_ Dy, n Py,

H(917921p91ap927t) = 201 202

+V(t,01,02), (8)

where

3 2
V(t,6,,0,) = —i (“) 3" Ay cos(26; — 2/ (1))

) &

5

_ i <7“ELL‘)> Z HA%; cos(2mq (61 — f(t)) + 2ma(02 — f(1))).

(m1,m2)€E=E

Due to the explicit time dependence of the Hamiltonian, the energy of the system is not constant
even though 7;D = 0. However, if 7;-D = 0, the system will be called conservative, because
no dissipative forces are involved in the physical derivation of the model. On the other hand,
if 7;-D is not identically zero for all time, then we will call it dissipative. The italic font will
remark this point. In Section [2] we will see also a purely conservative version of the model
involving (7, f,01,62) as unknown functions of time.

There are solutions of that are especially relevant. Since the spin-orbit problem is a
particular case of , a solution satisfying 6;(t + 2mn,) = 61(t) + 2wns, with ng,n, € 7Z, is
called ng : n, spin-orbit resonance of the ellipsoid £. The same is true for &. Spin-spin
resonances arise when the spin rates of the two ellipsoids become commensurable. In [3] these
resonances were studied independently from the orbital rate. There are some solutions in
which the ellipsoids are simultaneously in a spin-orbit and a spin-spin resonance. The simplest
of these resonances is the double synchronous resonance of equation , that is, solutions
satisfying 0;(t + 2m) = 0;(t) + 2, for both j = 1,2. In other words, the spin of both ellipsoids
synchronize with the orbital motion at the same time.

1.3 Setting of our approach and results

We are going to deal with the capture into the double synchronous resonance. In the same way
as in [29], in this paper we will approach this phenomenon from an analytical point of view.
We will look for conditions resulting in the existence of a double synchronous solution of the
conservative model that can be continued to an asymptotically stable solution of the dissipative
model. In this context, the asymptotic stability of the solution represents the phenomenon of
capture into the resonance: solutions in the vicinity of the asymptotically stable solution get
closer and closer to it as t — +o0.



Let us take the change of variable ©; = 2(6; — f), such that the system (5)) turns into

6 3
. a . a .
Cj@j + (5]'Cj (7@) @j + (T‘(t)) Aj sin @]

5

+ (T?t)) Z m; A%é sin(m101 + moB2) = —2ij(t). (9)
(m1,m2)EE
The system @ models a couple of damped and forced pendula of variable length. Since
f(t +27) = f(t) + 27, then, double synchronous resonances correspond to solutions of @
satisfying ©;(t + 2m) = ©,(t).

In Section [2] we will make the derivation of the conservative model from the Lagrangian of
the physical system and obtain the expression of A; and A7}l in terms of physical parameters.
In Section |3, we will deal with the conservative system, say, @ with d; = 0,

3 5
Cj(:)j + <T'Elt)) Aj sin @j + (%) Z m; A%; sin(m1@1 + m2@2) = —Qij(t), (10)
(m1,m2)€EE

and discuss the existence, uniqueness and linear stability of an odd 27-periodic solution. This
solution is a continuation of the trivial solution O(¢) = 0 for e = 0. This will lead us to a region
of linear stability in the space of parameters of the system. In this section we will use some
properties of symmetric matrices and linear Hamiltonian systems with periodic coefficients.
We are interested in the linear stability of the periodic solution of because it will allow us
to find, by continuation, an asymptotically stable periodic solution for the dissipative case @[}
for 6; > 0. This will be proved in Section |4} provided that [A}}l| and |;] are small enough. In
Section [p| we will explain how to apply our results to real cases and use the Pluto-Charon system
and the binary asteroid 617 Patroclus as two representative examples. We will also compare
our estimates with some numerical experiments and with the spin-orbit problem. Finally in
Section [6] we will make a discussion about the model and our results.

2 Derivation of the conservative spin-spin model

In this section we will compute the equations of motion of the ellipsoids with respect to the
inertial frame with origin at the barycenter of the system. Section is devoted to find the
equations of motion of the full system of four variables (r, f, 01, 63), in terms of the gravitational
potential energy V' = V(r, f,01,602). In Section we fix the Keplerian orbit and obtain the
final model in terms of physical parameters of the system.

2.1 The planar Lagrangian model

Let the Lagrangian of the system be L = T — V, where T is the kinetic energy and V the
potential energy of the system. Recall that the positions of the bodies are ri = —Msr and
ro = Mjr, where the relative position vector is defined by r = ro — r; = rexp(if). Besides,
for each body, the angle ; defines the orientation of the axis associated to a;. We are going to
use r, f, 01 and 6», depicted in Figure[l] as the Lagrangian variables of our system. The total
orbital kinetic energy is given by

Tory = 5 (Mixs? 4 Mara?) = 52 = D% 4127,

1
2
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where p = MMy is the the reduced mass of the system (recall My + My = 1). While the
rotational kinetic energy is T = %Cléf + %(2293. See Appendix |B| for the derivation of the
full expression of the potential energy of the system V = V(r, f,01,62), equation . The
Euler-Lagrange equations corresponding to the Lagrangian L = T,.,(r, 7, f) + Tmt(Ol,Qg)
V(r, f,01,02) are
Ci61 = —0p,V, Cally = —0p,V, (11)

wit = prf? —8,v, f——uafV—Qf (12)

In Appendix we give the expansion of the potential energy. In the case of ellipsoids,
it has the form V = Y"°° Vb, where V5, is proportional to 1/r?"*1. The first terms of the
expansion are

vy GMMy
r
_GM. GM
Vo=~ (a1 +3dy cos(2(01 — f))) = 5+ (a2 + 3z cos(2(62 — f)))
3G
Vi=-35{ 1200+ B4R + 2427 + 47 d3 + 29763
+dq M, {[ OA’Z— + %]‘\17] cos(2(61 — f)) + 25M cos(4(6; — f))} (13)
+do M {[ 04t + %]‘\17] cos(2(02 — f)) + 25M cos(4(0y — f))}
+6d;1da cos(2(01 — 02)) + 70d1da cos(2(01 + 62) — 4f)},
where we defined the parameters
dj = Bj — Aj, q; =2C; — Bj — Aj. (14)

Note that d; is proportional to C’%%, whereas ¢; is proportional to C’%, where C’fl)m are the usual
coefficients in the expansion of the gravitational potential of the ellipsoid £;. The quantity
d;/C; measures the oblateness of the section of the ellipsoid in the plane of motion, whereas,
¢;/C; measures the flattening with respect to the plane. If A; < B; < Cj, then, ¢; > d; > 0.
Note that the term V[ contains the dynamics of two point masses, V5 the uncoupled spin-orbit
dynamics and Vj the spin-spin coupled dynamics between 6 and 6. The coupling terms appear
in the last line of .

2.2 The Keplerian assumption and the spin-spin model

The complete dynamics of the system is given by Equations and , with V' in . In
this paper we impose that the orbital motion is Keplerian, i.e., we keep only V{y in the orbital
part . Besides, in the spin part , we truncate V ignoring terms of order 1/r" and higher,
then V =~ Vi + V5 + V4. The resulting system is

Crby = =09, (Vo + Vo + Vi), Cobly = =0, (Vo + Vo + Vi), (15)

f

wi = urf? — o,.Vo, f= —M—afvo - 2r (16)

Note that, since 9y, Vo = 0, the system is now decoupled from (|15 . Its solution is r = r(t),
f = f(t) given by Equations (/1)) to and depends on the eccentricity of the orbit e and its
semi-major axis a.



Let us now write V5 and V} in a more convenient way. The quantity M; a? is a sort of orbital
moment of inertia of the body &;. Then, we can define

. d: i
di—= 29 5= 11 17
7 Mja*’ 9 Mja?’ (17)

so that dj measures the equatorial oblateness of £; with respect to the size of the orbit and ¢;
measures the flattening of £; with respect to the size of the orbit.

Taking into account that in our units G = a3, the terms V5 and V4 can be written in a
compact way as

3
Vo = _i <r?t)> (Ao 4+ A1 cos(201 —2f(t)) + Ag cos(202 — 2f(t))) (18)
and 5
1 a mi
Vi=—3 (<t>> <m1,%ea% cos(2ma (61 — F(1)) + 2ma(62 — (1)) (19)
where

E= {(mlamQ) € Z2 : ’T)’L1| + |m2‘ < 2}7

and the following A parameters are defined by

Ay =3d; My, Aoy = 3do My, (20)
1 19 . 0 0 S . .

Ag=Ay" = %(7% + 5¢1) A1, A=A = %(7(11 + 5¢2) A2, (21)

25 ~ 25
A2 =A% =240 A=A, = ==4,A 22
0 32d1 1, 9 “9 32d2 2 (22)

35 - 35 » 3 . 3 .
Al = AT =400 = ZdoA ATV =AL, = ZdiAy = = doAA 2
1 11 = Jgtifle = pdah, 1 1= Jgdife = pday (23)
9

. 15 - . 5 R
Ao = 1 Ma + g2 M, Af = 1Q1Q2M1 + E(Aldl + 6411 Ma + Aads + 6GagaMy).

With the last definitions we can write equations as Cjé = 7}0, where 7}0 = —0p;(Va+ Vi)
are the conservative torques of the spin-spin model shown in @ This can be checked with the
expressions and . Note that m;A7! is in all cases proportional to the corresponding
A;. Then, the equations of the conservative spin-spin model can be written in terms of

the physical parameters in the following symmetric way for j = 1, 2,

0=d + ﬁ{ <“)3Sin(29j = 2f(t)+

2 r(t)
5 A.
+ <r(at)> E (dgj + i%) sin(20; — 2£(t)) + 258d] sin(46; — 4f(t))

+ % sin(20; — 205_;) + 3523‘j sin(203_; + 20, — 4 f(t))} } (24)

where A p
o= 24 g% K
J C; 3 M.

e
<



It is worth mentioning that the terms with ¢; and cfj in were missing in the model
used in [3] due to the dumbbell simplification for one of the bodies in the derivation of the
equations. Not all the parameters appearing in are free because the following identities
hold R R

Ci1+Co=1, MAidy=Aadi, A1Go = A2gi. (25)
In consequence, our model depends on six independent parameters with physical meaning
(e;C1, A1, )\Q,cfl,(jl). Moreover, in we see that spin of the ellipsoid &; is affected by the
spin-spin coupling with a strength essentially given by dl, and vice versa.

3 Linear stability of the double synchronous resonance in the
conservative model

In this section we deal with the conservative system with the notation in , that is more
convenient for our purpose. The main result is Theorem It determines a region of linear
stability of the double synchronous resonance in the space of parameters of the system.

3.1 Existence of the odd 27-periodic solution

The system can be written as

CO + F(t,0) =0, (26)
where
O Ci O
0= . C= . Cj>0,
©9 0 Co

and F(t,0) is the bounded function given by

F(t,0) = <a)>5 A, sin ©;

T(t Ag sin @2
a 5 mi my . Cl
+ oy Z A sin(m101 +maO2) 4 2 (1) . (27)
r( ) (ml,mz)EE mo 62

Note that equation is invariant under the change (t,0) — (—t,—0), since f(—t) =
—f(t) and r(—t) = r(¢). Then, if O(t) is a solution of (26), so it is —O(—t). On the other
hand, for e = 0, we have f(t) =t and r(t) = a, meaning that the system is that of two
coupled free pendula. For this case, the trivial solution ©(t) = 0 is a stable equilibrium. Then,
for e # 0, it is natural to look for the 27m-periodic continuation of O(¢) = 0 in the family of the
odd solutions of (26)), say, solutions satisfying ©(—t) = —©(¢). This is equivalent to solve the
Dirichlet problem

CO+ F(t,0) =0,
0(0) = O(x) = 0.

(28)

It is well known from nonlinear analysis that the system has at least one solution
because F(t,0) is bounded. We can give a simple proof for this. Let O(t) = J(¢,v) be the



solution of (26) satisfying initial conditions ©(0) = 0, ©(0) = v € R2. Solutions of the problem
are in correspondence with the solutions of the equation ¥(m,v) = 0. From , we know
that ¢ satisfies the following integral equation

It,v) = vt — /0 (t —s)C1F(s,9(s,v)) ds. (29)

Let || - || be a norm in R?, for instance, the maximum norm or the Euclidean one. We will
employ the same notation for the corresponding induced matrix norm in R?*2. Since there
exists a positive number M > [|C1F (¢, ©)||, then

2
[|9(t,v) — vt|| < M;,
for each t € R. If we take t = m, then, ||®(v)|| < Mn/2, with ®(v) = v — J(m,v)/7 and
v € R2. Hence, we can apply Brouwer’s fixed-point theorem to guarantee that ®(v) has a fixed
point for some vy satisfying ||vg|| < M7/2. For such point we have that J(m,vp) = 0, and the
corresponding 9(¢, vg) satisfyies (28).

3.2 Uniqueness of the solution

We know now that the Dirichlet problem has a solution, however, it is not necessarily
unique. For instance, if A > 1, there is not a unique solution for the free pendulum equation
&+ Asinz = 0, x € R, with Dirichlet conditions z(0) = xz(7) = 0. See [27]. We would like
to determine sufficient conditions on the space of parameters of the system such that there is
uniqueness for the problem .

We can prove uniqueness by a contradiction argument. Define the following matrix

61/2— \/CT 0
0 VG

and its inverse C~1/2 = (C'/2)~1. Let ©()(¢) and @M (t) be two non-identical solutions of .
Then, we can check that y(t) = C'/2(0M(t) — ©)(t)) is a solution of the Dirichlet problem

g+ Alt)y =0, (30)
y(0) = y(m) =0,
with A(t) a symmetricﬂ matrix given by
1
CY2A(t)CY? = / Ao F(t,0MN (1)) d, (31)
0

where @V (1) = A0M (¢) 4 (1 — \)O©) (¢) and

OF) OF'

F(t.0) = Fi(t,©)  OoF(LO) 901 065
Fg(t @) OFy  OFs

’ 001 002

'In this paper we use properties of linear systems with symmetric coefficient matrices. C™'dg F(t,©) is not
symmetric, but we obtain the desired structure using C*/2. See [37].
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The statement of uniqueness is given in Theorem [l We can prove it by guaranteeing that
(30) has only the trivial solution. In the proof we are going to apply the following lemma to
(30) for a generic matrix A(t) € R?*?. But first we need some definitions. Let (-,-) be the
Euclidean inner product in R? and || - || its corresponding norm. Let 1 be the unit matrix in
Rdxd_

Definition 1 Let Ay, Ay € R¥™9 be two symmetric matrices. We say that Ay < Ao if, for the
corresponding quadratic forms, (A1y,y) < (Asy,y) for all y € RY.

Lemma 1 Assume that, for some v < 1, the matriz A(t) € R¥*? is such that A(t) < ~1 for
each t € [0,7]. Then, the only solution of §j + A(t)y = 0, y € R, with Dirichlet conditions
y(0) = y(m) = 0 is the trivial one.

Proof. Proceed by contradiction. Let y(t) be a non-trivial solution of § + A(t)y = 0,
y(0) = y(m) = 0, then,

integrating by parts it follows that

s . 27 s
/0 ()2 = /0 CA()(E), y(0).

Let yn(t) be the components of the vector y(t). From the Sobolev inequality [;" [y (t)]* <
Jo lim ()|, see [38] or [29], we get that

| wone < [ amu.vo.
This contradicts the hypothesis A(t) < 41 for some v < 1. Then, y(t) must be the trivial

solution. m )
Let us define the matrix A(t, ©) = C~1/20g F(t,0)C~1/2,

- 3 (A1 o0 0
A(t,@):<“> & !

r(t) 0 %COS@Q
2
a \’° %?; mymg
" <7"(t)) Z m“lm \/? A} cos(m1©1 +mp©3).  (32)

(m1,m2)EE /C.Cs [

We will use the maximum norm

Y1
llyl| = max{|y1],yl}, vy = ;

Y2

and its induced norm in matrices

All A12
|A]| = max {|A11] + [A12], [A21| + [A22|}, A=

Ag1 Ag

11



Theorem 1 Assume that e € [0,1) and the parameters of the problem satisfy

1 Ay Az
1> M}max{cl(l—}—al),@(l—}—ag)}, (33)

where

oo 1 3 m el (34)
7 (1-e)? Ci VGG ) ™

(m1,m2)€E

Then, there exists a unique solution of the Dirichlet problem (@, denoted by ©*(t).

Proof. Using the fact that a/r < 1/(1 —e) by , equations and imply that
1 > [|A(t,0)|| for all (t,0) € R3, where we use the maximum norm. Furthermore, if p(A)
is the spectral radius of A, the well known inequality ||A(t,0)|| > p(A(t,©)) guarantees that
1 > A(t,0) for some 4y < 1. Then, v1 > A(t) for A(t) defined in Now a direct
application of Lemma [I] finishes the proof. m

Remark 1 Note that, as in the spin-orbit problem, there are two special cases for which ©*
can be computed explicitly for some combination of parameters satisfying . If A; =0 and
A =0 for myma # 0, for each e € (0,1) the solution is the synchronous resonance of the
uncoupled system

O°(1) = 20t — f(t.¢)) 1 | (35)

On the other hand, if e = 0 the solution is ©*(t) = 0.

3.3 Linear stability of the solution

Now we are interested in the stability properties of the solution ©*(¢), which should be seen
as 2m-periodic and odd from now on. In the following we will find a region of parameters
guaranteeing stability of the (scaled) linearized system of at the periodic solution ©*, say,

i+ At)y =0, (36)
where we take the symmetric matrix A(¢) now defined by
A(t) = A(t,0%(t)) = C 206 F (t, 0% ())C V2,

and A(t,0) was defined in .

Recall from Section [I.2) that the conservative spin-spin model has a time-dependent Hamil-
tonian structure given by . The variational equations associated to periodic solutions, like
, are linear Hamiltonian systems with periodic coefficients. We will abbreviate them by
LPH systemsﬂ These systems have some special properties that we will use in the following.
For the general theory see [37] or [I7]. For example, assume that ¢ is a Floquet multiplier of
an LPH system. Then, its inverse ¢!, its complex conjugate @ and @~ ! are also multipliers
and have the same multiplicity as ¢. This is stated in Corollary 6 of Chapter 1.1 of [I7].
Let us point out two interesting consequences. First, a necessary condition for stability of an
LPH system is that all its Floquet multipliers must have modulus 1. Second, an LPH system
can never be asymptotically stable. In order to do continuation of periodic solutions to the
dissipative regime we will need the concept of strong stability for LPH systems.

2The linear system Cij + do F(t,0*(t))y = 0 is an LPH system in the general sense. However, for simplicity,
we particularize the general theory to .
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Definition 2 Let Ag(t) € R be a fired symmetric and T-periodic matriz. Assume that the
there exists a number € > 0 such that the equation jj+ A.(t)y = 0 is stable for all A.(t) € R4
symmetric and T-periodic satisfying fOT || Ax(t) — Ao(t)|| <e. Then, §+ Ao(t)y = 0 is strongly
stable.

In other words, if an LPH system is strongly stable, then, any sufficiently small perturbation
of it is stable. The perturbation should keep the Hamiltonian structure. Let us illustrate this
with an example of the so-called Mathieu equation. Consider the 2m-periodic equation

1
5c'+1(1+ecost)$:0, z € R.

For e = 0 it is stable, but not strongly stable, because we can always find a small number ¢ # 0
such that the corresponding equation is not stable. This is called parametric resonance, see [1J.

Strong stability can be characterized with the Floquet multipliers of the system. For ex-
ample, take an LPH system whose multipliers belong to the unit circle. If the multiplicity of
all the multipliers is one, then the system is strongly stable. However, the converse is not true.
M. Krein developed a theory to determine if a system is strong stable with further algebraic
properties of the multipliers. For our purpose of making continuation of periodic solutions the
following property is relevant.

Proposition 1 Assume that jj + A(t)y = 0, with A(t) € R™? symmetric and T-periodic, is
strongly stable. Then, neither 1 nor —1 are Floquet multipliers of the system.

We will not prove this property because it is a particular result of the general theory.
Nonetheless, it can be inferred by the paragraph previous to Theorem 10 in Chapter 1.2 of [17],
that is the main result of Krein’s theory.

Some sufficient conditions for strong stability of are given by the following Lyapunov-
like stability criterion, from Test 4, in [37], Chapter III, Section 7.

Stability test 1 The equation §j + A(t)y = 0, with A(t) € R¥™? symmetric and 2m-periodic,
is strongly stable provided that, for all x € R4\ {0},

/ 2W<A(t)1:,x> dt >0 and / 7 Tr(A(t)) dt < 2. (37)
0 0

s

This stability test is the main tool for the proof of the next theorem:.

Theorem 2 Assume that the parameters of the model satisfy the following conditions.

1 1 A1 Ag 1 m% m%
2 7 3\~ T A P E——— Sy T2 ) A
2 ~ (1 - 6)3 (Cl * CQ) * (1 — e)5 Z B < Cq + Cs ma? (38)

1 1 A1 A2 1 ‘mﬂ ‘mz’ m 46\/1—62
4>M::>3max{ }+( Z maX{Q A 1+7e

T 1-e Cl G (1—e)p _ Ct’C [ (1-e)t’
(m1,m2)€EE
(39)
A A A A
cos(2m2 M) min{cll,cj} > max {alcll,azcj}, (40)

with o defined in . Then the solution ©*(t) is strongly linearly stable.
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Note that the second condition of is guaranteed by . The first condition of is
a bit more complicated, but its proof is immediate by the following two lemmas.

Lemma 2 The components of the solution ©*(t) satisfy the following bounds |©7(t)| < 212 M,
\@j(tﬂ < 27 M provided that M > ||C™LF(t,0*(t))]].

Proof. Integrating the identity ©*(t) +C~'F(t,©*(t)) = 0 and taking the first component,

O35 (t) = O%(ty) — /tul CL1F(s,0%(s))ds,

to

where u; is the row vector (1,0). Then, for t € [to, to + 27],

. . to+2m .
©1(1)] < 1071(t0)] +/ IC™ F(s,0%(s))[| ds < |©7(to)| + 2 M,

to

where || - || indicates a matrix norm induced by a norm in R2. Since ©%(t) is 27-periodic, we
can choose tg such that ©3(tp) = 0. The same is applicable to ©y for a possibly different ¢,
consequently, |07 (?)| < 2rM for all t. Furthermore, since ©7(0) = 0,

o3 (1) = / O3 (s) ds,

and, due to the odd symmetry of ©F(¢), it is enough to consider ¢ € [0,7]. Then, |O7(t)] <
2m2M. The same is true for ©4(t). =

Lemma 3 The conditions (@) and @ are sufficient so that A(t) = A(t,0*(t)) > y1 for
some v > 0.

Proof. The proof this lemma is based on the following fact. Considering the partial
ordering of symmetric matrices given by Definition |1} the conditions (39)) and imply that
the term proportional to 1/73 in dominates the other term, that is proportional to 1/r°.
Let us prove it. We can compute the derivatives of f(¢) using Equations to and get

. 2ey/1— eZsin(u(t))
f(t) =— (1 — ecos(u(t)))*

where u is the eccentric anomaly. Using the maximum norm we see from and that
1/(47) > M > ||C"1F(t,©*(t))||. Furthermore, from Lemmawe know that [©7(¢)| < 22 M,
then, we can see graphically that

cos ©%(t) > cos(2m2M) > 0,

therefore,
% cos O7F (t) 0 9 C[A Ao
1 > cos(2m° M) min < —, == ¢ 1. (41)
0 2—22 cos O35 (t) €1 Co
On the other hand, let us define
m2
Y T ) i com6n(0) 4 s
B=-(5) T {am, V) smeostmieiin s meso)

(m1,m2)€E /C1Ca Co
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As we did in the Proof of Theorem [I} we can take the maximum norm and obtain that

A A
max ozl—l,ozgf2 > ||B|| > p(B)
C1 Co

where p(B) is the spectral radius of B, then,

max{al‘gll,a;é;} 1> B.

From this inequality, and the definition of A(t,©), we prove that A(t,0%(t)) > 41

with oA A A
v = cos(27* M) min {Cll’ 622} — max {a10117a2C22} > 0.

[
Now we see that Lemmaimplies the first condition of because (A(t)z, z) > ~||z||* > 0.

4 The synchronous resonance in the dissipative regime

Recall from @ that the dissipative spin-spin model takes the form of the system

) . 5
& + diag(6)D()® + C'F(t,0) =0, = |, §; >0, (42)
02

with D(t) = (a/7(t))®. We know from Theoremthat, for § = 0, there exists an odd 2m-periodic
solution ©*(t), that is strongly linearly stable in the set of the parameters space satisfying the
conditions given in Equations to .

The main result of this section is Theorem [l There we will see that the conservative
periodic solution ©*(¢) can be continued in the presence of friction to an asymptotically stable
periodic solution U*(¢,d). However, the odd symmetry of the solution is lost because is
not invariant under the change (¢,0) — (—t,—0) as in the conservative case. The proof of
Theorem 3| is mainly based on Theorem 2 in [29] and on classical results on continuation of
periodic solutions summarized in the next proposition.

Proposition 2 Let F be a real analytic function F = F(t,x,(), such that F(t + T, z,() =
F(t,z,0), witht € R, x € R", ¢ € R, Assume that the equation & = F(t,x,0) has a T-periodic
solution x = p(t).

1. Suppose that 1 is not a Floquet multiplier of the corresponding variational equation at
z = p(t),

Then, for ¢ # 0, with small enough norm ||C||, the equation & = F(t,x,() has a T-
periodic solution © = p.(t,() such that p.(t,0) = p(t). Moreover, p.(t,() is an analytic
function and it is unique of each (.

2. If additionally, p(t) is asymptotically stable, then this is also true for p.(t,().

For the detailed proof of this proposition, see Theorems 1.1 and 1.2 in Chapter 14, [11].
Now we can state the main theorem.
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Theorem 3 Assume that the parameters of the system satisfy the conditions in Theorem[3 If
|0;| are small enough, then there exists a function W*(t,8), analytic in both entries, satisfying

i) U*(t,0) = ©*(t) for each t € R.

i1) W*(t,0) is a 2m-periodic solution of (@) Moreover, if |Aj2}| are small enough, then,
U*(t, ) is asymptotically stable.

Proof. Recall that the conservative periodic solution ©*(t) is strongly linearly stable.
Proposition [1| guarantees that 1 is not a Floquet multiplier of the variational equation at
©*(t). Then, we can apply the first item of Proposition [2[ to make the analytic continuation
of the periodic solution from the conservative (6; = 0) to the dissipative regime (§; > 0).
We conclude that there exists a unique analytic 27-periodic solution ¥*(¢,d) of such that
U*(t,0) = ©*(t) for small enough §;.

Let us explain more in detail the proof that the continuation is asymptotically stable. If
At =0 for all (my,mz) € E, then takes the form of two uncoupled dissipative spin-orbit
equations

.. a 6 . Aj a 3 .
0; +§; (r(t)) 0; + c, <r(t)> sin®; = 0. (43)

Besides, conditions in Equations (38) to guarantee that, for A7}l = 0, the conservative
solution ©*(¢) is strongly linearly stable. We can see the solution ©*(¢) split in two components
@;- (t), each of them is a solution of the conservative spin-orbit proble with d; = 0. Now we
can apply Theorem 2 in [29] that guarantees that each equation in (43)) has an asymptotically
stable 2m-periodic solution ©7 ;. (t) provided that §; € (0,8;]. Here §; are small numbers
quantified in [29]. Moreover, ©F 5 (t) is the unique continuation of ©3(t) = 07 ,(t).

Let us consider as a system of two equations. This system has an asymptotically
stable 2m-periodic solution W*(¢,8) = (07 4 (t), 05 5, (t))T such that U*(¢,0) = ©*(t). If [A™2
are small, we can see as a perturbation of the system and apply the second item
of Proposition In this way we guarantee that WU*(¢,d) has a 2m-periodic continuation for
AL # 0 that is asymptotically stable if [A7}1] are small enough. m

Note that for asymptotic stability we require not only that |§;| should be small, but also
|ATt]. We would like to erase this condition on the coupling parameters Aj:l. However, from
a theoretical point of view, this is certainly difficult to address in general since we deal with
systems of differential equations. Let us explain this point. The variational equation of
near U*(t, ) is

5
i + diag(6)D(t)7 + C Y F(t, U (t,0))n =0, &= ' |. (44)
02

For e # 0, is a linear 27-periodic system of two equations of second order. In [29],
asymptotic stability was proved for the spin-orbit problem taking advantage of the following
fact. Any second order periodic equation & + a;1(t)& + ap(t)r = 0, z € R, an(t) = an(t +T),
can be converted into a Hill’s equation X + a(t)x = 0, a(t) = ag(t) — $a1(t)* — 3ai(t), by the
change of variables x(t) = z(t) exp(3 fg a1(s)ds). See [24]. We can see the dissipative problem
(a1(t) # 0) as a perturbation of the conservative one (a1(t) = 0). Assume that £+ag(t)z = 0 is
strongly stable, then ¥ + a(t)x = 0 is stable. Since it is a Hill’s equation (also a LPH system),
the modulus of the Floquet multipliers of ¥ + a(t)xy = 0 is 1. Now we undo the change of
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variables and conclude that the modulus of the Floquet multipliers of & + a1 (t)& + ag(t)z =0
is smaller than 1, therefore, it is asymptotically stable. However, it is not clear how to perform
an analogous procedure in . The main obstacle is the non-commutativity of matrices due
to the asymmetric nature of the dissipative problem (§; # d2). Actually, if we follow the same
steps, we end up with a system of equations that is no longer periodic for §; # 2. The numbers
0; depend on several parameters of the bodies and we do not see any good physical reason to
impose both dissipative parameters to be equal. In fact, if §; # s, in principle the dissipative
spin-spin model cannot be considered conformally symplectic as the spin-orbit problem. See
[7]. From this discussion, we conclude that this it is necessary a deeper theoretical study, but
it is beyond the scope of this paper.

On the other hand, let us see that for e = 0, the solution of is asymptotically stable. The
solution given by Theorem [3is U*(¢,8) = 0. Taking y = C'/?n, the corresponding variational
equation is

§ + diag(d)y + Ay = 0, (45)

where A is the symmetric constant matrix given by

2

& o Ao my mimg
A= 1 _ | G C1 N A
- - + 2 mo*
o & 0 A2 _\ mumg my
2 Co (ml,m2)€: /Clc2 Co

Note that, by conditions and (40f), A is a positive definite matrix. See Lemma The
characteristic polynomial of equation is

plw) = wh + (01 + 02)w® + (€1 + &o + 5102)w? + (€102 + E209)w + det A.

Equation is asymptotically stable if and only if all the roots of p(w) have negative
real parts. This can be checked with the Routh-Hurwitz criterion, see [19]. According to it,
all the roots of the polynomial have negative real parts if and only if the associated Hurwitz
determinants of the polynomial are strictly positive, say,

Dy =014+62, Do= (5%(52 + 5%51 + £161 + &0,

D3 = Dio? + 6102(D1(&162 + &202) + (&1 — &)%), Dy = Dz det A.

Since A is positive definite, we get asymptotic stability for all §; and Jo such that both are
non-negative and at least one is different from zero.

5 Applications

Recall from the end of Section[2]that our model depends on six independent physical parameters
(e;C1, A1, AQ,czl,(jl), where e is the orbital eccentricity, C; the moment of inertia of &; with
respect to the c;-axis, A\; = A;/C; is the oblateness of £; in the plane of motion, and ch and ¢;
are, respectively, the oblateness and the flatness of £; with respect to the size of the orbit.
We have two type of estimates. The first type in guarantees uniqueness of the syn-
chronous resonance in the conservative regime. The second one in Equations to
guarantees linear stability of the same solution. Our estimates depend on certain values «; in
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System Mj a; Cj )\j Cij ij a €
Pluto 0.890 1.65 097 3.3-107° 1.5-1077 1.2-10°°
27.2 2.0-1074
Charon 0.11 0.84 0.03 24-107% 35-1007 8.2-1077
Patroclus || 0.56 1.7  0.60 0.11 26-107% 1.2-1073
18.2+0.5 0.02 4 0.02
Menoetius || 0.44 1.6 0.40 0.14 2.107% 9.9.10¢

Table 1: Real physical parameters for two binary systems. For Pluto and Charon, we take the
largest values of A;, d;j and §; obtained from data in [21I]. The parameters of Patroclus and
Menoetius are obtained from data in [14] and the orbital parameters from [25].

. To write them in terms of the physical parameters, we use the definitions in Equations

to , then

m?2 25 . 25 5.
JAMT Y .
(m1,m2)€E
1
3 mima] oy 1L 1/ Ady = gﬂ/cﬁgdl, (47)
_ VGG T Co
(m1,m2)€EE

Im| % 5

1 gma 4
( Z)EH C] me )\ 8 d + 55 28 d3 ]+ 4q3 J ( 8)
m1,mz)ES

Now we are ready to apply our estimates to specific cases.

5.1 Real systems

In one hand, the Pluto-Charon binary is the largest known system that is in double synchronous
resonance. The physical parameters of the system relevant for the spin-spin model are shown
in Table [I} Pluto is almost twice the size of Charon, contains the 89% of the mass and the
97% of the body moment of inertia (C;) of the system. Besides, the size of the orbit is quite
large (a = 27.2) compared to the sizes of the bodies. This results in very small values of czj
of order 107, which means this is a certainly weak spin-spin coupling. The orbit has a very
small eccentricity e = 0.0002. Recall that the double synchronous resonance of the circular case
(e = 0) is the trivial solution ©(t) = 0, both for the conservative case and the dissipative
case @ The asymptotic stability of the solution for any value of the dissipative parameters
is easily guaranteed, as it was shown at the end of Section [4| using equation . For the real
eccentricity, the solution ©*(t) of oscillates very close to zero and our estimates guarantee
the uniqueness and linear stability of solution. Furthermore, Theorem [3| shows the existence
of an asymptotically stable solution W*(¢,d) of the dissipative model provided that 6;, ch and
¢; are small enough. Unfortunately, this last result is not quantified in this paper for the real
parameters.

On the other hand, the Trojan binary asteroid 617 Patroclus is a system whose components
are of similar size, mass and moment of inertia. See the physical parameters of its components,
Patroclus and Menoetius, in Table Each body has a diameter of around one hundred
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kilometres, almost ten times smaller than Charon. Patroclus and Menoetius have a more oblate
ellipsoidal shape than Pluto and Charon and the size of the orbit in this case (a = 18.2 £ 0.5)
is smaller. In consequence, the corresponding dynamical parameters A;, ch and ¢; are several
orders of magnitude larger. The orbital eccentricity is not measured with enough precision,
e = 0.02 £ 0.02. With our estimates, we are able to guarantee the uniqueness of the solution
©*(t) of for eccentricities up to e = 0.04. However, we fail to guarantee linear stability
even for e = 0. The main reason is that the stability test given by the conditions is not
fine enough for such large values of A;. In the following subsection we will explain what is the
range of parameters that is covered by our study.

5.2 Stability diagrams in the space of parameters

Note that all the terms appearing in Equations to are positive. Since ¢ > ci, and,
in order to reduce the parameters in the upper bounds for the expressions in Equations
to 1' we can take dj = ¢;. In this way, we reduce the independent parameters to five
(e; A1,A2,C1,G1). Note now that, to take ¢ = 0 is equivalent to break the coupling of the
system, resulting in two independent spin-orbit problems.

We will consider two special cases with three free parameters. In one hand, the case of
identical bodies, that we compare with the asteroid 617 Patroclus. Here the parameters are e,
Aj = Aand ¢; = ¢. On the other hand, the case when £ is twice the size of £, that we compare
with the Pluto-Charon system. Here we consider the same density and the free parameters are
e, Ay and 1, whereas the dependent parameters are \; = 2739 and go = 27°§;.

Figure [2| shows regions in the space of parameters for which there is uniqueness and linear
stability of the double synchronous resonance according to our theoretical estimates. We see
that we cover the Patroclus-Menoetius system (top panels) only for the uniqueness of the
solution but not for the linear stability. In contrast, the Pluto-Charon system (bottom panels)
is covered for linear stability as well. We can compare the diagrams of § = 0 and ¢ = 0
with the theoretical estimates obtained in [29], shown in Figure |3} We see that, although the
uniqueness region is similar, the stability region (in yellow) is considerably larger in Figure
than those in Figure [2l This shows that the mathematical techniques used in [29] are much
finer than in this paper. In [29] we used generalized Lyapunov criteria using LP-norms, with
p € [1,00], see [3§], and upper and lower solutions to bound the amplitude of the solution.
Instead, in this paper we use the stability test given by , that is of type L*°, and a rougher
bound for the amplitude of the solution in Lemma [2l Since the model is quite new, here we
initiate the analysis with a simpler approach. Besides, the mathematical tools are not as well
developed for systems of equations as for standard second order scalar equations.

We see in Figure [2] that an increase in the value of ¢ results in a global reduction of
the regions that we estimated theoretically, both for stability and uniqueness regions. This
behavior can be compared with the numerical plots in Figure 4l We focus only on the case of
equal bodies. Here we see how the instability region changes when we increase ¢. There are
some interesting phenomena.

1. For ¢ = 0 there is only one bifurcation point for the unstable solution in the A-axis at
(e,A) = (0,0.25). However, for ¢ > 0, it becomes two bifurcation points at (0, A(;)) and
(0, A(2)), with 0 < A3y < A(2) < 0.25. This opens a small window of stability at the points
(e, A) with e close to 0 and A € (A1), A2))-

2. For § = 0, apart from the instability region bifurcating from the A-axis, there is another
one bifurcating from the e-axis at (e, A) ~ (0.682,0). The existence of such bifurcation
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Figure 2: Stability diagrams in the (e, A)-plane of the synchronous resonance of the spin-spin
model. Top: both bodies are equal. Bottom: one body is double the size of the other. The
double synchronous resonance is unique under the dashed lines (right) and linearly stable under
the black lines (left) for the indicated value of ¢. In the left we see zoomed views of the stable
regions. The more yellow is the region indicates that stability is guaranteed for larger values of
G. The gray regions in the right are unstable for the uncoupled system (spin-orbit), i.e., with
qg=0.

0.8 | N
0.6 |- .

0.4 |- N

Figure 3: Stability diagram in the (e, A)-plane of the spin-orbit in [29], Figure 3.
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(& 0.682

Figure 4: Stability diagrams in the (e, A)-plane in the case of equal bodies. The six plots in the
left show the unstable region in gray for different values of . The image in the right shows the
six diagrams superimposed. Darker tones of gray indicate more overlapping between unstable
regions.

was studied in [29]. However, for ¢ > 0, it looks that the last bifurcation point moves to
the right, at the same time that the two instability regions merge into a single one. This
shows that turning on the coupling has a stabilizing effect of the synchronous resonance
for large e and small A\. This holds up to a critical § € (0.05,0.1) for which another
unstable region bifurcates from the e-axis. This region merges with the large one at some
G € (0.1,0.2). This leaves an island of stability for large e and small \.

3. In the right panel of Figure [4| we see that there are some regions (the darkest ones), that
remain unstable, not very affected by changes in ¢. Instead, the lighter regions show more
susceptibility to change their stability when ¢ changes.

In Figure |4 we have taken large values of ¢, compared to the real values in Table [I From
its definition in and we see that § < 1/a? for equal bodies (M = 0.5,C = 0.5). In
order to be consistent with the Keplerian orbit approximation, a should be quite larger than
1, that gives the scale of the objects. For example, a of order 10 would give an upper estimate
of ¢ of order 1072, In consequence, for more realistic parameters, we should not consider the
appearance of the additional instability region bifurcating from the e-axis from large q.

6 Discussion

In this paper we have proposed a simplified mathematical model for the rotational dynamics
in the Full Two-Body Problem. This model is a straightforward continuation of the spin-orbit
problem. In consequence, we hope it will be of interest for physical applications as well as
for theoretical studies. We have approached the problem from a theoretical point of view, but
always keeping what we think is the essence of the physical problem: the dissipative effects
are fundamental to explain the universe we observe today. In this sense, the spin-spin model
not only broaden the scope of the spin-orbit problem in a higher dimensional phase space, but
also contributes to fill the gap between the conservative and the dissipative effects considered
in the spin-orbit problem. More precisely, if the dissipative torque (of order 1/7%) is important
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in the evolution of a satellite, then, we should consider also the spin-spin interaction (of order
1/75). Of course this two effects are more important when the bodies are closer to each other.
In fact, in the spin-spin model the strength of the terms of order 1/r° is given by parameters
that compare the shape of the bodies with the size of the orbit, say, ch and ¢;. In contrast, the
spin-orbit problem only regards the equatorial oblateness of the satellite d;/C;. It is reasonable
to think that the different types of interactions, say, point-point, spin-orbit and spin-spin, must
have their own specific relevance in different ranges of parameters. This shows that the non-
Keplerian behavior of the full Lagrangian model , , should be investigated more deeply.
Here the full expansion of the potential energy, given in , may also play a role. Moreover,
as [14] shows, non-planar oscillations around solutions of the planar problem can be studied
and are of practical interest.

In the present research, we have made a brief theoretical study that allowed us to point
out the importance of the double synchronous resonance and compare it with the synchronous
resonance of the spin-orbit problem. Particularly, in a similar way than [29], we determine
sufficient conditions for the existence of an asymptotically stable periodic solution (capture
into resonance). Besides, note that our estimates do not pretend to be optimal at all. Instead,
we illustrate a way to extend to the spin-spin model the tools used for the spin-orbit model, as
well as to compare them. Furthermore, in this sense we have included some numerical diagrams
of linear stability in Figure [4] that show us how the spin-spin interaction alters the schemes of
the spin-orbit model.

We have applied our study to two real systems in double synchronous resonance. In one
hand, Pluto and Charon are representative of a large binary with one body much larger than
the other one, see [I5]. On the other hand, the binary asteroid 617 Patroclus is an archetype
of a small system of similar components, see [14], [25]. Here we propose a way how to make
an effective comparison between different systems. Note that the convenient choice of units
and parameters helps to clarify the comparison. As we expected, the best candidates to apply
the spin-spin model are binary asteroids. They are very abundant in the solar system, e.g.,
about 15% of the near-Earth asteroids are thought to be binaries. For a detailed discussion on
the applications of the general spin-spin model and its full Lagrangian version, we refer to [3]
and the bibliography therein. With our study on the double synchronous resonance we hope
to contribute to the study of the spin-spin resonances made in [3]. Whereas they focus on the
synchronization of both spins for slow circular orbital motion (f < éj), we consider the full
synchronization including the orbit with arbitrary eccentricity. According to [14], most of the
equal mass binaries are expected to be in the double synchronous state. In [30], Section 4.14,
they provide a formula for a critical mass ratio of the components for this state to be possible.
We want to remark also that, apart from the application to binary asteroids and large natural
satellites, the spin-spin interaction can be relevant for artificial satellites whose rotation state
along an orbit is important. For instance, communication satellites in equatorial orbits or even
spacecraft exploring small bodies.

Finally, we think that the theoretical interest of the model is large, even beyond the phe-
nomena already observed in the spin-orbit problem. For example, in the spin-orbit problem we
can apply the notion of KAM stability because KAM tori confine regions in the phase space.
However this does not happen in the spin-spin model due to the increase in the phase space
dimension (two degrees of freedom and time dependence). In fact, it is expected that Arnold
diffusion takes place in this case. In general, the weak coupling and the Hamiltonian character
of the system makes it suitable to apply perturbative techniques. Particular questions may
be investigated, such as chaos by overlapping of resonances, stochastic phenomena, normally
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Figure 5: Position vectors of the element of mass of an ellipsoid.

hyperbolic manifolds, scattering maps, among other phenomena, see [10].

A Units

If t, M and [ stand for time, mass and length respectively, the relation between our system of
units and any other one is the following

2m M [ My + My
tours = =+¢, Murzia lur:l 4 -
ours T ours M, + My ours CL + Cy

It is worth mentioning that, if I is any magnitude with units of moment of inertia, then the
conversion is given simply by

I
Iours = .
C1 +Co

The value of the gravitational constant GG in any system of units must respect Kepler’s third

law (4)).

B Derivation of the potential of the spin-spin problem

B.1 Potential of the Full Two-Body Problem

The expansion of the potential energy in the Full Two-Body Problem has been obtained in
several papers, see [34] for example. In this subsection, and in order to introduce some notation,
we present a short derivation of the spherical harmonics expansion, following the approach of
[23] and [6]. See also a similar approach in [26] and [12]. We start from the formula

G//dMl X1 dMQ(XQ)’

|x1 — X2

where each x; € R? is the position vector (with respect to the barycenter of the system) of
the mass element dM;(x;) corresponding to the ellipsoid £;. Making the change of variables
y; = X;j — rj, illustrated in Figure [5| and defining y = y1 — y2, we obtain

——G//dMl Y1 dM2(Y2)‘

r—y|

Recall that r = ro — r;. The usual expansion in spherical harmonics gives us

Yim (T
- —G Z le l ’l+1)’ (49)

(IL,m)er
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where
T={(l,m)eZ*: 0<|m|<I}

and the multipolar moments of the system (); ,,, are defined by

Quon = / / 1y i () dM (y1) dMa(ys), (50)

where the upper bar indicates complex conjugation. We use the Schmidt semi—normalizationﬂ
of the spherical harmonics in the same way as in [6]. Assume that, in the inertial frame, r has
spherical coordinates (r, ¥, ¢), then, the spherical harmonics are defined by

m |(L—m)!
}/lm(’ﬂa(ﬁ) = (_1) 7131 m(COSﬁ) exp(lmd))
’ (l+m)!
where the associated Legendre polynomials are given by
1 a2 Ao
Pl,m(x): (1—.%' ) ($ _1) , X E [_171]'

21 dglt+m
Note that, since y = y; — y2, we cannot factorize the integral in into factors that

involve quantities associated to each body separately. However we can express this integral as
a sum of factorized terms. For this we can define the auxiliary normalized solid harmonics

1% Yi,m (%)
VI =m) I+ m)l
and apply the translation formula, given in equation (313) in [33],

Vim¥1=¥2) = D> D Iy (V) Prouin (—¥2),

A1,11 A2,

x € R?,

yl,m<x) =

where \; and p; are integers running all the values such that
0N <L M+X=0L —XA<p; <A, pr+pz=
Then, using the parity relation Y ,,(—%) = (—1)'Y, (%), the expression becomes

A1 1) A2 72)
Q Z Z M1R 'z, " MR 2Z>\2 1o (51)
VI=m)ll+m)l = e — i)'+ i)' Vg — p2)! (A2 + pi)!

where, the complex Stokes coefﬁcientﬂ of each ellipsoid are given by

y 1 AV (e
250 = MJ'R?/W You(y;) dM;(y;), (52)

3With this choice, the Legendre polynomials can be written in terms of the spherical harmonics as

me )Yim(9)-

m=—1

4The quantities Zz] m brovide the expansion of the potential created for the body &£;. They are related to the

usual parameters CJ m and Sl]>m by

14 6m,0 (l+m) L

. +iSh, = (-1 m >0,

where 6y, is the Kronecker delta.
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and R; is the mean radius of &;.
Finally, since in the potential energy the summation range is 0 <[/ < 0o, —I < m <[, which
are all the possible terms, then, from and we can write

GM; M, A RA\™M [(R\™ 1 2 )
Vi=- Z (_1))\27&1:521 Z)xi,mZA;,mYM-*-)\mul-i-uz(r)v (53)

I VAN
1Lu1)EY
(A2,u2)€Y

where we defined the constants

i (AL + A2 — p1 — p2)! (A1 + Ao + pa + pio))!
A2tz (A1 =)' (M1 + p)! (N2 — p2)! (N2 + o)t

B.2 Potential of the ellipsoidal spin-spin model

Note that the terms in the expansion , and in particular Zi)u, have to be computed with
respect to the inertial frame. Let us call £;-frame to the fixed body frame of each ellipsoid,

)

formed by its center and its principal directions associated respectively to a;, b; and c;. Let Zi u
be the Stokes coefficients computed with respect to the £;-frame. The &£;-frame is rotated, with
respect to the inertial frame, with the rotation labelled by the Euler z-y-z angles («, 3,7) =
(05,0,0).

Let x € R3 be a vector with spherical coordinates (|x|,9;, ;) with respect to the £;-frame
and (|x|,?,¢) with respect to the reference frame formed by the center of the body &; and
the directions parallel to those of the inertial frame. The relation between spherical harmonics
Y, m (%) computed with respect to both systems of reference is the following

l
le,m(ﬂjaﬁb]): Z %,m’(ﬂv(b)va’L,m’(awBa’Y)

m/=—I

where D! («,3,7) is the (m,m’)-element of the Wigner D-matrix associated to the rotation
given by the Euler z-y-z angles («, 3,7), see [33]. Then, from (52)),

A
) _ A /)
Ziw - Z Dt (e, ,7) Zﬁ\,u’

W==A

From the definition of the Wigner D-matrices, see for instance equation (186) in [33], in our
planar case they are diagonal Dﬁyu,(Hj,O, 0) = 0, exp(—ip'd;), where 6, ,, is the Kronecker
delta. Then, ‘ A

7)), = 2]} exp(~ipb;).

Now we can express in terms of Zi)“. In [2] an expansion of the potential created by a
)

homogeneous ellipsoid was computed. Incidentally, a complicated general expression for Zi u
was computed there as well. In the next Proposition we summarize some remarkable properties
of those quantities.

Proposition 3 Let Z), be Stokes coefficients of an homogeneous ellipsoid computed in its
own fized body frame. They have the following properties
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1. Z)\“u € R.
2. Zy, =0 if either X or p are odd numbers.

3. Z) _on = Z)2n, with n integer.

We will not reproduce the whole proof here but it can be found in [28]. We just want
to remark that it is based on the symmetry properties of the spherical harmonics and the
geometrical symmetries of the ellipsoids.

Remark 2 Regarding these properties, a convenient expression to compute numerically Zoy op,
with k > 0 and n integers, is

3 [(2k-2n) y2m [@X)? + (BY)? + (c2)?)*
Zohan = e\ ok an)] / (a2 = Y)Y =+ vy

c/
X Pop.on (\/(aX)2 oY) (CZ)2> dXdY dZz,

where R is the mean radius of the ellipsoid, a, b and c are its principal semi-azes, Re indicates
the real part and B is the unit ball, defined by X?> +Y? + Z? < 1. Moreover, Zok,on can be
written only in terms of M and the principal moments of inertia because

a_\/5(—A+B+C) - [5(A—B+C) . [5(A+B—-0C)
N 2M ’ N 2M T 2M '

Recalling the definitions of q¢ and d in , the first non-vanishing Stokes coefficients are
given by

1 ¢ 3 d
Zo0=1 Zop = — -t Zya=1]2 —— 4
00 =% 207 "o MR 22 \/; MR?’ (54)
15 d? + 2¢° 15 /5 dg 15 /5 d?
Zy0= 22 T Zpo=—oq]2 T Zyg= ) — e 55
407 56 M2RY 427 T og\ 3 M2RY 4478\ 14 M2RY (55)

and it seems that, in general, Zoy, 2n, has the form of a homogeneous polynomial of degree k with
respect to q/(MR?) and d/(MR?).

In order to simplify expression , recall that r is the vector pointing from the center of
&1 to the center of &. Then, the spherical coordinates of r with respect to the inertial frame
are (r,9 = m/2,¢ = f). The non-vanishing terms of are such that \; = 2l; and p; = 2m.
Let us call from now on [ = l; + Iy and m = my + msy. We can apply the formula

(20 — 2m)!

P m 2im f
(20 + 2m)!" 22 (0)e™™,

Yorom(7/2, f) =

and the following property of the associated Legendre polynomials

(=™ (204 2m)!
A T=m)l+m)

Py 2m(0) =
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see for instance equation (68) in [33]. Then, we can write the potential keeping only the real
part of V', so that the final expression potential is

2l1
V=- GM1M2 > rgvz;( > (?) Z3) s Zay iy €08(2m1 (01— ) +2ma (02— ),
(l1,m1)€T
(lg,mQ)ET
(56)
where
I (—1)l=m (20 — 2m)!(21 + 2m)!

l2,mz a \/(2[1 - 27711) (2[1 + 2m1) (212 - 2m2) (2[2 + 2m2)' (l - )(l + m) . <57)

The first terms of the expansion can be computed using and . The terms
corresponding to [ = I3 + Iy, for [ = 0,1 and 2, are shown in (13).
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