
A dissipative Kepler problem with a family of

singular drags

Alessandro Margheri∗

Fac. Ciências da Univ. de Lisboa e

Centro de Matemática, Aplicações Fundamentais e Investigação Operacional,

Campo Grande, Edif́ıcio C6, piso 2, P-1749-016 Lisboa, Portugal.

e-mail: amargheri@fc.ul.pt

Mauricio Misquero†

Department of Mathematics, University of Rome Tor Vergata,

Via della Ricerca Scientifica 1, 00133 Rome, Italy.

e-mail: misquero@mat.uniroma2.it

November 7, 2019

Abstract

In this work we consider the Kepler problem with a family of singular dissipations of
the form − k

|x|β ẋ, k > 0, β > 0. We present some results about the qualitative dynamics

as β increases from zero (linear drag) to infinity. In particular, we detect some threshold
values of β, for which qualitative changes in the global dynamics occur. In the case β = 2,
we refine some results obtained by Diacu and prove that, unlike for the case of the linear
drag, the asymptotic Runge-Lenz vector is discontinuous.

Keywords: Kepler problem, drag, singularity, asymptotic Runge-Lenz vector

1 Introduction

The aim of this paper is to investigate the changes that occur in the forward dynamics of
a Kepler problem with the family of singular dissipative forces Fβ(x, ẋ) := − k

|x|β ẋ, as the

positive parameter β increases. We assume that k is a fixed positive number and (x, ẋ) ∈
(R3 \ {0})× R3. The corresponding equation is
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ẍ+
k

|x|β
ẋ = − x

|x|3
. (1)

In general, dissipative forces in celestial mechanics are crucial for the understanding of
the time-asymptotic motion of celestial bodies, and they are also important during planetary
system formation (see [9] for a comprehensive survey on the topic). These forces may be due to
the motion of a body in a fluid, as it is the case for a satellite moving in the Earth’s atmosphere
([2]), or for a very small particle of dust moving in a gas ([9]). It is usual to take these forces
proportional to the velocity, as, for example, in equation (1). In particular, the case β = 0
corresponds to the so-called Stokes drag or linear drag, which is valid for homogeneous viscous
fluids and small Reynolds numbers.

Dissipation may also be of electromagnetic nature, due for instance to re-radiation of pho-
tons by small bodies ([3], [9]). In this class one can find the dissipation which corresponds to
equation (1) with β = 2, called Poynting-Plummer-Danby (PPD) drag ([1], [7]) or, sometimes,
Poynting-Robertson drag ([9]).

The linear drag and the PPD drag generate two very different global dynamics, whose main
features we recall below. Some of our results will provide insights on the role of the parameter
β in the transition between them.

We note that (1) is a member of the larger class of dissipative Kepler problems considered
by Poincaré in [20], namely

ẍ+ Pα,β(x, ẋ)
ẋ

|ẋ|
= − x

|x|3
, x ∈ R2 \ {0}, (2)

where Pα,β(x, ẋ) = h|x|−β|ẋ|α, h is a positive fixed real number, and the parameters α and β
are positive. Essentially, Poincaré found that orbits with negative energy spiral towards the
singularity with increasing velocity1. Moreover, for α and β sufficiently large, after each revo-
lution their eccentricity decreases, leading to the circularization of orbits. Poincaré presented
also a qualitative argument supporting that this effect occurs for a general dissipative force.
However, it tuns out that such circularization of orbits does not take place for the linear drag
(α = 1, β = 0) and the PPD drag (α = 1, β = 2).

In the first case, the results presented in [13] and [14] show that, although some orbits
circularize as they spiral down toward the singularity, for an open set of initial conditions, the
value of the eccentricity of the corresponding orbit converges to a positive constant, being all
values in ]0, 1[ attainable. Geometrically, these trajectories are spirals made of asymptotically
self similar ellipses which shrink to the singularity. Moreover, it turns out that these spirals are
traveled with an angular velocity which increases exponentially with time. These results are
obtained from the existence and continuity on the phase space of a first integral I, defined as
the limit along the solutions of the Runge-Lenz vector. We recall that this vector, also called
eccentricity vector, is a first integral of the conservative Kepler problem, and that it defines the
type of conic section corresponding to the orbit (its modulus is the eccentricity of the orbit) as
well as its orientation (it is parallel to the axis containing the focus). Then, we can think of I
as an asymptotic eccentricity vector.

In [14] it is proved that the range of I is the closed unit disk in the plane. This property
expresses that all the non rectilinear orbits are of elliptic type, meaning that, eventually, their
energy becomes negative. This last fact is stated in [12], where it is also established that the

1This fact had already been mentioned by Euler when discussing the motion of a planet in a resistive medium,
see [8].
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singularity is a global attractor, reached in infinite time by non rectilinear motions and in finite
time by rectilinear ones. In each case, it is proved that the velocity tends to infinity.

The fact that the linear drag does not circularize orbits has been observed previously in
[10].

In the case of the PPD drag (see [1], [3], [6], [7]) all the orbits which tend to the singularity
spiral only a finite number of times around it and achieve an asymptotic direction. This last
property implies that their eccentricity tends to one. Moreover, all collisions occur in finite
time and with finite velocity. Also, for this drag there exist solutions which escape to infinity.
Essentially, these results are obtained in [7] by means of a qualitative study of (1). The fact
that collision orbits are asymptotically rectilinear was previously observed in [1], where a more
a general class of drags is treated using a suitable transformation (called generalized Robertson
transformation) to find explicit analytic solutions. The first step of such transformation is the
Binet change of variables, exploited in [15], [17] to transform (1) with β = 2 into a forced
harmonic oscillator, so obtaining a closed form for the orbit equation.

In Section 4 we show that a careful analysis of such orbit equation allows to find another
interesting difference between the linear drag and the PPD drag. More precisely, we prove in
Theorem 8 that for the PPD drag the first integral I, although well defined on the whole phase
space, presents jump discontinuities on the set of parabolic solutions (solutions which escape to
infinity with energy tending to zero). The discontinuity arises as we cross this set going from
collision solutions to hyperbolic ones (solutions which escape to infinity with positive energy).
In Theorem 8, we show also that the range of I is the exterior of the open unit disk in the
plane.

In Section 3 we present an analysis of the dynamics as β increases. In particular, we
detect some thresholds for different global behaviors, for non rectilinear motions as well as for
rectilinear ones.

We show that the global attractiveness of the singularity and the unboundedness of the
angular velocity of solutions, which hold for β = 0, can be continued, respectively, for β ∈]0, 1]
and for β ∈]0, 1[ (see, respectively, Theorem 1 and Theorem 5). These results suggest that,
when β ∈]0, 1[, all solutions collide with the singularity winding faster and faster infinite times
around it, as they do in the case of the the linear drag. In Theorem 1 we also prove that escape
solutions exist for any β > 1, and in Theorem 3 we show that the variation of their polar angle
must be less than 2π.

The case β ∈ [3
2 ,+∞[ is addressed in Theorem 6, where we give a fairly complete description

of the qualitative dynamics of collision orbits. Namely, we show that when β > 3
2 such orbits

are asymptotically rectilinear, a behavior that, as already mentioned above, was observed for
β = 2 in [1] and [7]. Moreover, we prove that the approach to zero occurs in finite time if and
only if β ∈]3

2 , 3[, and that β = 2 is the threshold for the value of the terminal velocity. When
β crosses this value, the terminal velocity passes from −∞ to 0. We extended these results to
β = 3

2 , but only imposing that k > 2
√

2. This restriction is related to the fact that β = 3
2 is the

only case in which it is not possible to rescale the variables so as to eliminate k from equation
(1). We do not know if this constraint on k is just a technical condition which arises due to
our technique of proof, or if it reflects some deeper aspects of the dynamics.

Unfortunately, we could not provide any result about the rotational properties, collision
time or terminal velocity of non rectilinear solutions when β ∈ [1, 3

2 [. However, in Section 5 we
present some conjectures about the dynamics at collision for β ∈]0, 3

2 [.
Still in Section 3, we present two results valid for any β > 0 (actually, they hold for more

general dissipations, see Remark 1). In the first, Theorem 2, we prove that escape and collision
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solutions are the only kind of solutions that can occur for (1). In the second, Theorem 4, we
show that non rectilinear collision orbits of (1) are such that their angular momentum tends
to zero and their energy tends to −∞.

Concerning rectilinear collisions, in Theorem 7 we present a complete description, as β
increases, of their collision time (discussing whether it is finite or not), and of the asymptotic
behavior of their velocity and energy. We postpone its proof to the Appendix. Theorem 7
implies that the asymptotic expansions of solutions around the collision time given for β = 0 in
[12] still hold when β ∈]0, 1

2 [. However, we show that, unlike for the case β = 0, the presence of
the singularity in the dissipation does not allow to regularize collisions by means of a Levi-Civita
type transformation (see Remark 3).

Some preliminary facts and notations are established in Section 2.

2 Some preliminaries

In this section we present some preliminary considerations and establish some notation for the
dissipative Kepler problem (1). We rewrite equation (1) in an equivalent form as the first order
system 

ẋ = v

v̇ = − k

|x|β
v − x

|x|3
,

(3)

defined in the phase space Ω = (R3\{0}) × R3. Given an initial condition (x0, v0) ∈ Ω, the
unique maximal solution of (3) such that x(0) = x0 and v(0) = v0 will be denoted by (x(t), v(t))
or by φt(x0, v0), where φt is the flow of the system (3). The corresponding interval of definition
will be indicated by ]α, ω[.

The energy E and the angular momentum M, defined respectively by

E(x, v) =
1

2
|v|2 − 1

|x|
, M(x, v) = x ∧ v,

are no longer conserved quantities for (3), since their derivatives along any solution of (3) satisfy

Ė(t) = −k |v(t)|2

|x(t)|β
, Ṁ(t) = − k

|x(t)|β
M(t). (4)

It follows that the energy is strictly decreasing along the solutions of (3), and that the
angular momentum of any solution satisfies

M(t) =M0e
−

∫ t
0

k

|x(s)|β
ds
, M0 := x0 ∧ v0. (5)

Then, either M(t) ≡ 0 on ]α, ω[, and the corresponding orbit is rectilinear, or M(t) 6= 0 on

]α, ω[, and the corresponding orbit is planar since M(t)
|M(t)| is a conserved vector. In this second

case, |M(t)| is strictly decreasing.2

Due to the invariance of our problem with respect to the group of isometries of R3, we can
study the dynamics of (3) in the phase space Ω = {(x, v) ∈ (C \ {0}) × C}, where we have

2Jacobi, in his book on mechanics [11], had already a considered the dissipative Kepler problem corresponding
to (2) with drag P1,β , finding that the motions are planar and have decreasing energy and decreasing scalar
angular momentum. We note that these properties actually hold for any dissipation opposite to the velocity.
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set x = x1 + ix2, v = v1 + iv2. Moreover, denoting by M = x1v2 − x2v1 the scalar angular
momentum of a solution, in order to study the rotational properties of non rectilinear motions,
it will be sufficient to restrict ourselves to the set Ω+ = {(x, v) ∈ Ω : M > 0}. The manifold
Ω0 = {(x, v) ∈ Ω : M = 0} corresponds to rectilinear motions.

We rewrite now system (3) using polar coordinates in C \ {0}. Considering the change of
variables x = reiθ we see that the new coordinates satisfy the system

ṙ = u

u̇ = rϕ2 − k u
rβ
− 1

r2

ϕ̇ = −k + 2urβ−1

rβ
ϕ,

(6)

where ϕ = θ̇ ≥ 0 and u ∈ R. Of course, motions in Ω+ will correspond to ϕ > 0, whereas the
equality ϕ = 0 singles out the rectilinear motions in Ω0. When dealing with rectilinear motions
in Subsection 3.4, we will identify Ω0 with the set {(r, u) : r > 0, u ∈ R}.

In what follows, we will consider just the forward dynamics of (1). Accordingly, all the
solutions will be considered on their right maximal interval [0, ω[.

Throughout the paper, the subscript ω attached to a time dependent function will denote
the limit of that function as t → ω−. For simplicity, we will generally omit the dependence of
such limit on initial conditions (x0, v0). For example, since the energy and the scalar angular
momentum are decreasing along the solutions of (1) we will write

Eω = lim
t→ω−

E(φt(x0, v0)) ∈ [−∞, E(0)] and Mω = lim
t→ω−

M(φt(x0, v0)) ∈ [0,M(0)].

Throughout the paper we will make use of the following definition.

Definition 1 A solution of (1) defined on the right maximal interval [0, ω[ is called a collision
solution if

lim
t→ω

x(t) = 0. (7)

We will say that the collision occurs in finite time if ω is finite, and that it occurs in infinite
time if ω = +∞.

3 Forward dynamics

3.1 A threshold for the existence of escape orbits and non existence of os-
cillatory ones

In this subsection we first address the problem of the existence of escape orbits for (1). From
[12] we know that escapes do not exist for β = 0, since in this case the singularity is a global
attractor. However, the influence of the singularity at infinity becomes weaker and weaker as β
increases, and escapes are expected to exist when β crosses some threshold value. The results
in [7] show that escape rectilinear orbits exist for β = 2, implying that such threshold is less
than or equal to 2. In Theorem 1 below we show that the threshold is β = 1. We also show,
in Theorem 2, that no oscillatory solutions exist for (1). We first give the following auxiliary
lemma. We point out that this result holds for ω finite or infinite.

Lemma 1 For any β > 0, let x(t) be a solution of (1) defined on the right maximal interval
[0, ω[.
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i) If lim inft→ω− |x(t)| < +∞, then

lim inf
t→ω−

|x(t)| = 0. (8)

ii) If x(t) is bounded on [0, ω[, then it is a collision solution.

Proof. To prove i), we argue by contradiction. Assume that there exists a positive real
number δ∗ such that

lim inf
t→ω−

|x(t)| = 2δ∗. (9)

Then, there exists a sequence {tn} ⊂ [0, ω[ that satisfies tn → ω, |x(tn)| → 2δ∗, and

|x(tn)| ≥ δ∗, for any n. (10)

Since the energy is decreasing along solutions, from (10) we have

|v(tn)|2

2
≤ E(0) +

1

|x(tn)|
≤ E(0) +

1

δ∗
, (11)

for any n. It follows that there exists (x∗, v∗) ∈ Ω which is a limit point of (x(tn), v(tn)). By the
general theory of ODEs and the maximality of (x(t), v(t)), we conclude that ω = +∞. Then,
we can apply the extension of La Salle’s principle to singular systems given in [14], Proposition
2.2, with V = E, and conclude that

Lω(x, v) ∩ Ω = ∅, (12)

where Lω(x, v) is the ω-limit set of the solution t 7→ (x(t), v(t)). Since (x∗, v∗) ∈ Lω(x, v) ∩ Ω
we get a contradiction, and our proof of i) is concluded.

To get ii) we start by noticing that, if ω = +∞, the conclusion follows immediately as in
[14]. If ω < +∞, we show that

lim sup
t→ω−

|x(t)| = 0, (13)

arguing by contradiction. Assume that (13) does not hold, and let 2δ∗ > 0 be the value of
the upper limit. Then, there exists a sequence {tn} ⊂ [0, ω[ converging to ω as n → ∞, such
that |x(tn)| → 2δ∗ and |x(tn)| ≥ δ∗. Now, the same argument already used in i) leads to the
contradiction that ω = +∞. Our proof is concluded.

Theorem 1 If 0 < β ≤ 1 all the orbits of (1) tend to the singularity, whereas if β > 1 there
are also escape orbits. Escapes occur in infinite time with a finite velocity, which can have an
arbitrarily large modulus, and with non-negative finite energy.

Proof. We start the proof of the first claim by showing that for 0 < β ≤ 1 all the solutions
are bounded in the future.

Let w = |ẋ| and consider the following family of functions

Λβ(r, w) :=


k

1−β r
1−β + w if 0 < β < 1,

k ln r + w if β = 1.

Let t 7→ x(t) be a solution of (1) defined on the right maximal interval [0, ω[. Define r0 := r(0)
and w0 := w(0). We will show that

Λβ(r(t), 0) ≤ Λβ(r0, w0), t ∈ [0, ω[,
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which implies immediately that r(t) is bounded for all t ∈ [0, ω[. We argue by contradiction.
Assume that there exists t1 ∈ [0, ω[ such that r1 := r(t1) satisfies

Λβ(r1, 0) > Λβ(r0, w0) ≥ Λβ(r0, 0).

Then, r1 > r0, and, if we let w1 := w(t1) we have

Λβ(r1, w1) > Λβ(r0, w0). (14)

Let Λβ(t) := Λβ(r(t), w(t)). If t ∈ [0, t1] is such that ṙ(t) > 0, then

Λ̇β(t) = k
ṙ

rβ
− k w

rβ
− ṙ

r2w
< 0, 0 < β ≤ 1.

The inequality holds since w ≥ ṙ. Moreover, let t′ and t′′ be two values such that 0 < t′ < t′′ ≤ t1
and r(t′) = r(t′′), then, from E(t′′) < E(t′), it follows that w(t′′) < w(t′), and consequently,
Λβ(t′′) ≤ Λβ(t′). By Lemma 6 in [5], applied with a = 0, b = t1, y(t) = r(t) and z(t) = −Λβ(t),
we get that

−Λβ(t1) = −Λβ(r1, w1) ≥ −Λβ(0) = −Λβ(r0, w0),

contradicting (14). We conclude that all solutions of (1) are bounded on [0, ω[. The first part
of the statement follows now from ii) of Lemma 1.

In order to prove the second claim, we rewrite system (6) introducing the scalar angular
momentum M = r2θ̇ as a variable, getting the following system:

ṙ = u

u̇ =
M2

r3
− k u

rβ
− 1

r2

Ṁ = −kM
rβ
.

(15)

Consider the set
B := {(r, u,M) : r > 1, u ∈ R,M ≥ 0},

and the following family of functions fc : B → R depending on the positive parameter c:

fc(r, u,M) := c+
1

ln r
− u.

We claim that, fixed c > 0, there exists r∗ > 1 such that the set

Bc := {(r, u,M) ∈ B : r ≥ r∗, fc(r, u,M) ≤ 0}

is positively invariant with respect to the flow of system (15). Denote by V(r, u,M) the vector
field associated to (15) and by φt(r, u,M) the corresponding flow. A computation shows that
on the surface fc(r, u,M) = 0 we have

(V · ∇fc)|fc=0 = − c

r ln2 r
− 1

r ln3 r
− M2

r3
+
kc

rβ
+

k

rβ ln r
+

1

r2
,

where the dot denotes the euclidean inner product. As β > 1, it follows that there exists a suffi-
ciently large r∗ > 1 such that, for any initial condition (r, u,M) ∈ Bc satisfying fc(r, u,M) = 0,
the following inequality holds

d

dt
fc(φ

t(r, u,M))t=0 = (V · ∇fc)(r, u,M) < 0.
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Since for (r∗, u,M) ∈ Bc we have that u = ṙ > 0, and since the set {M = 0} ∩ B is positively
invariant, we conclude that Bc is positively invariant for φt. Taking into account that M(t) is
decreasing, we have

u̇ =
M2

r3
− k u

rβ
− 1

r2
≤ M2(0)

r3
− kc

rβ
− k

rβ ln r
− 1

r2
,

and, by choosing if necessary a larger r∗, we may assume that u̇ < 0 in Bc. Consider now a
solution of (15) with initial condition in Bc. Then, u(t) is decreasing on [0, ω[ and

c ≤ lim
t→ω

u(t) = uω ≤ u(0).

If ω were finite, from ṙ = u we would get that r∗ ≤ r(t) ≤ r(0) + u(0)ω on [0, ω[. Since on this
interval it holds also 0 ≤ M(t) ≤ M(0), we would have a maximal solution of (15) contained
in a compact set of the phase space. We conclude that ω = +∞, and then

r∗ + ct ≤ r(t)→ +∞

as t→ +∞. The existence of escape solutions is proved.
By the identity

|v(t)|2 = u2(t) + r2(t)θ̇2(t) = u2(t) +
M2(t)

r2(t)
,

and the boundedness of M(t), we see that the value of the asymptotic velocity for escapes is
exactly uω. For initial conditions in Bc, we get that uω ≥ c, where c may be fixed arbitrarily
large. Furthermore, the limit energy verifies Eω = u2

ω/2. Our proof is concluded.

The arguments used in Lemma 1 to prove the attractiveness of the singularity can be
adapted to show that collisions and escapes are the only possible types of solutions for (1).
This is done in the next result.

We recall that a solution t 7→ x(t) of (1), defined on the right maximal interval [0, ω[, is
called oscillatory if it satisfies

lim sup
t→ω−

|x(t)| = +∞, lim inf
t→ω−

|x(t)| = 0. (16)

Actually, in the definition of an oscillatory solution, it is usually required only that the
lower limit of |x(t)| is finite, but Lemma 1 rules out any value different from zero.

Theorem 2 Equation (1) does not admit oscillatory solutions.

Proof. If β ∈]0, 1] the statement is trivially true, since all solutions are collision solutions.
The case β > 1 can be proved arguing by contradiction. If x(t) is an oscillatory solution, there
exist a d > 0 and a sequence {tn} ⊂ [0, ω[ converging to ω such that |x(tn)| = d for any n.
Then, we get a contradiction in the same way as in the proof of the item ii) in Lemma 1. We
omit the details.
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Remark 1 According to Lemma 1, a bounded solution is attracted to the singularity. Actu-
ally, a closer look at the proof shows that this behavior, as well as the statement of Theorem
2, hold for any (sufficiently regular) drag such that the energy along the motions is strictly
decreasing. In our framework, a general example is provided by a force of the form −D(x, ẋ)ẋ,
where the function D is strictly positive and sufficiently smooth on Ω. In fact, in this case
Ė(t) = −D(x(t), ẋ(t))|ẋ(t)|2 < 0, t ∈ [0, ω[. We conclude that, for such class of dissipations,
the only attractor is the singularity.

It may be interesting to observe that a dissipative Kepler problem with a different kind of
attractor is obtained in [4], where a simplified model of tidal dissipation is discussed. The gen-
eral class of dissipations considered there is radial, as illustrated by the example of dissipative
force −ε(x · ẋ)x. For this dissipative Kepler problem, each orbit is attracted to a circular orbit
depending on the initial conditions.

3.2 Non-rectilinear motions

In this subsection we focus on some qualitative properties of the non rectilinear motions of
(1). We show that, for any β > 1, an escape solution cannot make a full turn around the
singularity. As to collision solutions, we prove several facts. Firstly, for any β > 0, their
angular momentum tends to zero and their energy goes to −∞. Secondly, if β ∈]0, 1[, their
angular velocity is unbounded. Thirdly, collision solutions are asymptotically rectilinear for
β > 3

2 . In this case we discuss the time to collision and the terminal velocity as β increases.
We are able to extend our results to the case β = 3

2 , but just for k sufficiently large. This is
due to the fact that 3

2 is the only value of the parameter β for which k cannot be eliminated
from equation (1) by a rescaling of the solutions.

3.2.1 Variation of the polar angle of escape orbits

In order to prove our result about escapes, we rewrite (1) using the well known Binet trans-
formation, which we recall here. Since for any solution in Ω+ we have M(t) = r2(t)θ̇(t) > 0,
for any t ∈ [0, ω[, the function t 7→ θ(t) is an increasing diffeomorphism between Jt = [0, ω[
and the interval Jθ = [θ0 := θ(0), θω = θ(ω−)[. The inverse function θ 7→ t(θ) is then used to
re-parameterize the solutions of system (6), in which r is replaced by the new variable ρ = 1

r .
Then, the maximal solutions t 7→ (x(t), v(t)), t ∈ Jt, of (3) in the set Ω+ are transformed
into the maximal solutions θ 7→ y(θ) = (ρ(θ), ζ(θ), θ,M(θ)), θ ∈ Jθ, of the differential system

y′ = g(y) :=

(
ζ,

1

M2
− ρ, 1,− k

ρ2−β

)
, (17)

where the prime denotes derivation with respect to θ and

y = (ρ, ζ, θ,M) ∈]0,+∞[×R× R×]0,+∞[.

The previous transformation may be defined by the time rescaling t = t(θ) and by the
change of variables

(x, v) = U(y) :=

(
1

ρ
er(θ),−Mζer(θ) + ρMeθ(θ)

)
, er(θ) = eiθ, eθ(θ) = ier(θ), (18)

where we identify θ modulo 2π.
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The first two equations of system (17) are equivalent to the second order scalar equation
of a forced linear oscillator, namely ρ′′ + ρ = 1

M2 . Given an initial condition (x0, v0) ∈ Ω+,
we set y0 := (ρ0, ζ0, θ0,M0) = U−1(x0, v0), in which θ0 = arg x0 is defined modulo 2π. In what
follows we will consider θ0 ∈ [0, 2π[. By the variation of constants formula we see that the
corresponding solution satisfies the coupled system

ρ(θ) = ρ0 cos(θ − θ0) + ζ0 sin(θ − θ0) +
∫ θ
θ0

sin(θ−η)
M2(η)

dη

ζ(θ) = ρ′(θ)

M(θ) = M0 −
∫ θ
θ0

k
ρ2−β(η)

dη

(19)

on [θ0, θω[. We can rewrite the first equation as

ρ(θ) = −κ sin(θ − α0 − θ0) + Φ(θ), (20)

where α0 = arccos
(
− ζ0

κ

)
∈]0, π[ is the angle between x0 and v0, and where we have defined

Φ(θ) :=

∫ θ

θ0

sin(θ − η)

M2(η)
dη, κ =

√
ρ2

0 + ζ2
0 . (21)

Note that a solution of y′ = g(y) defined on [0, θω[ corresponds to an escape solution of (1)
if and only if

ρ(θ) > 0 on [0, θω[ and lim
θ→θ−ω

ρ(θ) = 0.

We are now in a position to prove our result about escapes. To simplify our notations, we
assume that θ0 = 0.

Theorem 3 Escapes can only occur during the first turn around the origin. Moreover, the
limit angle θω satisfies

θω < α0 + π.

If a solution does more than one turn, then it corresponds to a collision orbit.

The theorem will be an immediate consequence of the following lemma, whose proof is
based on the fact that M(θ) is a strictly decreasing function.

Lemma 2 The function Φ defined in (21) satisfies the following properties:

i) Φ(θ) > 0 for all θ ∈]0, θω[.

ii) If θω > 2π, then Φ(θ) > Φ(θ − 2π) for all θ ∈ [2π, θω[.

Proof. From the sign of sin(θ − η) we see that

I1 :=

∫ θ

θ−π

sin(θ − η)

M2(η)
dη > 0, I2 :=

∫ θ−π

θ−2π

sin(θ − η)

M2(η)
dη < 0.

By the second inequality, it follows that

|I2| =
∫ θ−π

θ−2π

| sin(θ − η)|
M2(η)

dη =

∫ θ

θ−π

| sin(θ − η̄ + π)|
M2(η̄ − π)

dη̄ =

∫ θ

θ−π

sin(θ − η̄)

M2(η̄ − π)
dη̄.

Since 1
M(η) is strictly increasing, we have I1 > |I2|, and then

10



∫ θ

θ−2π

sin(θ − η)

M2(η)
dη = I2 + I1 > 0, for any θ ∈ [0, θω[.

This inequality implies both assertions of the lemma.
Proof. (of Theorem 3)
If a solution of (1) makes one complete turn around the origin, it follows that

ρ(θ) > 0, for any θ ∈ [0, 2π] ⊂ [0, θω[.

Property ii) of Lemma 2 implies

lim inf
θ→θω

ρ(θ) ≥ ρ(θω − 2π) > 0,

and |x(θ)| = 1
ρ(θ) is bounded on [0, θω[. From Remark 1, such solution is a collision solution.

To end our proof, we observe that i) of Lemma 2 and (20) imply that, for an escape solution,
θω ∈]α0, α0 + π[.

3.2.2 Asymptotic behavior of energy and angular momentum of collision orbits

Next result collects some general facts about collision solutions of (1).

Theorem 4 Collisions always occur with zero angular momentum and energy equals to minus
infinity.

Proof. From the expression of the energy

E(t) =
u2(t)

2
+
r2(t)θ̇2(t)

2
− 1

r(t)
=
u2(t)

2
+
M2(t)

2r2(t)
− 1

r(t)
,

we see that in the case of a collision, since r(t)→ 0+ as t→ ω−, it must be Mω = 0. Otherwise,
we would get Eω = +∞, which is not possible since E(t) is a decreasing function.

To prove the second part of the statement, we start by observing that, by (5),

M(t) = M(0)e−k τ(t),

where

τ(t) =

∫ t

0

ds

rβ(s)
. (22)

Since Mω = 0, we get that, for collision solutions,

τω =

∫ ω

0

ds

rβ(s)
= +∞. (23)

Now we can conclude our proof arguing by contradiction. Assume that Eω ∈ R. Since for a
collision solution there exists a t0 ∈ [0, ω[ such that

E(t) > Eω ≥
1

2
− 1

r(t)

for all t ∈ [t0, ω[, then, on this interval,

11



|v(t)|2 = 2E(t) +
2

r(t)
> 1.

As a consequence, we get

Ė(t) = −k |v(t)|2

rβ(t)
< − k

rβ(t)
.

Integrating this inequality from t0 to t, we get E(t) < E(t0) − k τ(t). But now, from (23) we
get Eω = −∞, contradicting the assumption. Then, Eω = −∞ and our proof is complete.

Remark 2 Note that Theorem 2 and Theorem 4 imply that Ω+ can be partitioned in the
following three sets: the set of initial conditions of collisions orbits

Ω+
C := {(x, v) ∈ Ω+ : Eω = −∞},

the set of initial conditions of hyperbolic escapes, and the set of initial conditions of parabolic
escapes, defined respectively by

Ω+
H := {(x, v) ∈ Ω+ : Eω > 0} and Ω+

P := {(x, v) ∈ Ω+ : Eω = 0}.

The last two sets are empty when β ∈ [0, 1].
Of course, an analogous partition holds for Ω, but we will not need this fact in what follows.

3.2.3 A rotational property of collision orbits for β ∈]0, 1[

Next result shows that the rotational property of solutions obtained for the linear drag in
Proposition 2.5 in [12] continue to hold when β ∈]0, 1[.

Theorem 5 Let β ∈]0, 1[. Given a non rectilinear solution t 7→ x(t) = r(t)eiθ(t), there exists a
sequence tn → ω− such that

θ̇(tn)→ +∞.

Proof. We start by regularizing system (3) using the time rescaling dµ = dt
r2 . We obtain

the C1 system 

dr

dµ
= r2u

du

dµ
= −kur2−β + r3ϕ2 − 1

dϕ

dµ
= −(kr2−β + 2ur)ϕ

(24)

on the set r ≥ 0, u ∈ R, ϕ > 0.
Then, multiplying the first equation by kr−β, adding it to the second equation and inte-

grating the result, we obtain that any solution µ 7→ (r(µ), u(µ), ϕ(µ)) satisfies the following
equality:

u(µ) + k
r1−β(µ)

1− β
=

∫ µ

0
r3(σ)ϕ2(σ)dσ + C0 − µ, (25)

where C0 := u(0) + k r
1−β(0)
1−β , on its right maximal interval Iµ = [0, µω[.

Now we argue by contradiction. Assume that ϕ(µ) is bounded on Iµ. Then, it must be
µω = +∞. Otherwise, if we assume that µω < +∞, we are led to a contradiction as follows.

12



From (25) we infer that u(µ) is bounded on Iµ. As a consequence, from the third equation
of the system we see that ϕ(µ) is bounded away from zero on Iµ. But then the solution µ 7→
(r(µ), u(µ), ϕ(µ)) is contained in a compact set of the phase space for all µ ∈ Iµ, contradicting
its maximality. We conclude that µω = +∞. Now the argument proceeds as in [12]. Since
r(µ) → 0 as µ → +∞, there exists a sequence µn → +∞ such that u(µn) → 0. By the
boundedness of ϕ on Iµ, there exists µ̄ such that r3(σ)ϕ2(σ) < 1

2 for any σ ≥ µ̄. Then, from
(25) we get that for any µn > µ̄ it holds the inequality

u(µn) + k
r1−β(µn)

1− β
≤
∫ µ̄

0
r3(σ)ϕ2(σ)dσ +

µn − µ̄
2

+ C0 − µn.

Taking the limit for n → +∞, we get the contradiction 0 ≤ −∞. We conclude that ϕ(µ) is
unbounded on [0,+∞[, and the same property holds for θ̇(t) on [0, ω[.

3.2.4 Asymptotic dynamics of collision solutions for β ≥ 3
2

To get our next results we start with a suitable rescaling of time in system (6), given by
dτ = dt

|x|β . We obtain the following equivalent system in the new time τ

dr

dτ
= rβu,

du

dτ
= −ku+ rβ+1ϕ2 − rβ−2,

dϕ

dτ
= −(k + 2urβ−1)ϕ.

(26)

The associated vector field is non singular for β ≥ 2. In this case, it can be extended continuously
to the collision manifold r = 0, on which it possesses a unique equilibrium r = 0, u = 0, ϕ = 0.
For β ≥ 3 the vector field is C1 on the set r ≥ 0, u ∈ R, ϕ ≥ 0.

By (23), collision solutions in Ω+ are defined on the right maximal interval [0, τω = +∞[,
and on such interval, ϕ(τ) = θ̇(t(τ)) > 0. Since τ 7→ t(τ) is an increasing diffeomorphism, the
polar angle θ(t(τ)) is an increasing function of τ and, moreover, by (22) we get

dθ

dτ
= θ̇

dt

dτ
= θ̇(t(τ))rβ(t(τ)) > 0. (27)

Theorem 6 The following properties hold for collision orbits:

i) If β > 3
2 , or if β = 3

2 and k > 2
√

2, there exists a limit polar angle at collision, achieved
with zero angular velocity.

ii) If 3
2 < β < 3, or if β = 3

2 and k > 2
√

2, collisions occur in finite time, whereas if β ≥ 3
they occur in infinite time.

iii) If 3
2 < β < 2, or if β = 3

2 and k > 2
√

2, the limit velocity at collision is infinite, if β = 2,
the limit velocity is finite and with modulus 1

k , and if β > 2 the limit velocity is zero.

Proof.
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i) Since Eω = −∞ and r is bounded for collision orbits, we can take initial conditions such
that E(0) < 0 and 0 < r(t) < 1 on [0, ω[. Then,

u2(t)

2
− 1

r(t)
< E(t) =

|v(t)|2

2
− 1

r(t)
< 0,

or equivalently, u2r < 2. It follows that, for any β ≥ 3
2 , we have

u2r2β−2 < 2r2β−3 ≤ 2,

which implies

urβ−1 > −
√

2r
2β−3

2 ≥ −
√

2, for any β ≥ 3

2
. (28)

Consider now the evolution of the angular velocity given by the last equation of (26). By
(28) we get the inequality

dϕ

dτ
= −(k + 2urβ−1)ϕ < −(k − 2

√
2)ϕ, (29)

and hence

0 < ϕ(t(τ)) < ϕ(0)e−(k−2
√

2)τ . (30)

Taking into account that ϕ = θ̇ and (27), we can integrate (30) obtaining

θ(t(τ)) < θ(0) + ϕ(0)

∫ τ

0
rβ(t(τ̄))e−(k−2

√
2)τ̄dτ̄ .

For k > 2
√

2 the integrand function in the right hand side of the inequality is integrable
on [0,+∞[, since r is bounded on this interval. Then, τ 7→ θ(t(τ)) is an increasing
function, bounded from above on [0,+∞[. We conclude that, if β ≥ 3

2 and k > 2
√

2,
there exists limτ→+∞ θ(t(τ)) = limt→ω− θ(t) = θω, and is finite. Moreover, (30) implies
that limτ→+∞ θ̇(t(τ)) = limt→ω− θ̇(t) = 0+.

To finish the proof of i), we show that, if β > 3
2 , the restriction on the values of k may be

removed. In fact, one can check that, when β 6= 3
2 , fixed arbitrarily two different values

of k, the solutions of the two corresponding equations (1) can be transformed ones into
the others by a suitable scaling of the form x̃(t) = p x(qt), p, q > 0. In particular, for

β > 3
2 , let us consider k = k1 ≤ 2

√
2. Then, the scaling x̃(t) = p x(p−

3
2 t), with p > 0

and pβ−
3
2 > 2

√
2/k1, transforms any solution of (1) with k = k1 into a solution of the

same equation with k = k2 = pβ−
3
2k1 > 2

√
2. Since the scaling preserves the asymptotic

behavior of the solutions as well as the orientation of time, the proof of i) is concluded.

ii) To study if ω is finite or not, it will be convenient to deal directly with system (6). As
above, without loss of generality, we may assume that E(t) < 0 , 0 < r(t) < 1 on [0, ω[.
Moreover, since we are considering β > 3

2 or β = 3
2 and k > 2

√
2, by (30) we may assume

also 0 < ϕ(t) = ϕ(τ(t)) < 1 on [0, ω[.

From the second equation in (6) we see that, whenever u ≥ 0, it holds
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u̇ = −k u
rβ

+ r

(
ϕ2 − 1

r3

)
< −k u

rβ
+ r

(
1− 1

r3

)
< 0.

Then, there exists t1 ∈]0, ω[ such that u(t) < 0 on [t1, ω[. As a consequence, r(t) is a
decreasing function on [t1, ω[, and we can take r as independent variable by considering
the time rescaling t = t(r), r ∈]0, r1 := r(t1)]. It follows that ω satisfies the equality

ω − t1 =

∫ 0

r1

dr

u(t(r))
.

Since r3ϕ2 → 0 as t → ω−, we can assume that r3(t)ϕ2(t) < 1/2 on [t1, ω[. Then, from
(6) we get the inequality

r2du

dr
=
r3ϕ2

u
− k

rβ−2
− 1

u
> − k

rβ−2
− 1

2u
. (31)

Integrating (31) on any interval of the form [r∗, r1], with 0 < r∗ < r1, we obtain

r2
1u(t1)− r2

∗u(t(r∗))− 2

∫ r1

r∗

r u(t(r))dr > −k
∫ r1

r∗

dr

rβ−2
− 1

2

∫ r1

r∗

dr

u(t(r))
. (32)

By the inequality u2r < 2, it follows that, for all γ > 1/2, urγ → 0 as r → 0+. Then,
the left hand side of (32) has a finite limit, say l∗, when r∗ → 0+. Passing to the limit in
(32), we arrive to the following inequality:

l∗ > −k
∫ r1

0

dr

rβ−2
+

1

2
(ω − t1).

Now, if β < 3, the integral is convergent, and then it must be ω < +∞.

In the case β ≥ 3, we can proceed analogously, by integrating on the interval [r∗, r1] the
inequality

r2du

dr
=
r3ϕ2

u
− k

rβ−2
− 1

u
< − k

rβ−2
− 1

u
,

and then taking the limit as r∗ → 0+. We obtain the inequality

l∗ < −k
∫ r1

0

dr

rβ−2
+ (ω − t1),

where l∗ denotes the finite limit of the left hand side of the integrated inequality. Since
when β ≥ 3 the integral is divergent, it must be ω = +∞.

The proof of ii) is concluded.

iii) We know that, if β > 3
2 , or if β = 3

2 and k > 2
√

2, the limit velocity at collisions
depends only on the radial component u, because the angular component rϕ goes to
zero. Additionally, in the previous item it was proved that u gets eventually negative.
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To prove our claims we will use the second equation of system (26). Note that rβ+1ϕ2 → 0
as r → 0+ for any β > 0, but the behavior of the term rβ−2 will depend on the sign of
β − 2.

If β < 2, we have that rβ−2 → +∞ as r → 0+. Then, for any a > 0, we can take initial
conditions such that, for all τ > 0,

du

dτ
= −ku+ rβ+1ϕ2 − rβ−2 < −ku− a,

or, equivalently,

d

dτ

(
uekτ

)
< −aekτ .

Integrating this inequality we get

u(t(τ)) < −a
k

+
(
u(0) +

a

k

)
e−kτ ,

which implies

lim sup
τ→+∞

u(t(τ)) ≤ −a
k
.

Since a can be chosen arbitrary large, we conclude that u→ uω = −∞.
On the other hand, if β > 2, we have that rβ−2 → 0 as r → 0+. Then, for any a > 0 we
can take initial conditions such that, for all τ > 0,

du

dτ
= −ku+ rβ+1ϕ2 − rβ−2 > −ku− a.

Analogously to the previous case, we conclude that

−a
k
≤ lim inf

τ→+∞
u(t(τ)) ≤ 0,

for any arbitrarily small a. Then, u→ uω = 0.

Finally, for the threshold value β = 2, since r3ϕ2 → 0, fixed any arbitrarily small positive
ε, we can use the inequality 0 < r3ϕ2 < ε in the second equation of (26). We obtain, in
a similar manner than above, that

−1

k
≤ lim inf

τ→+∞
u(t(τ)) ≤ lim sup

τ→+∞
u(t(τ)) ≤ −1− ε

k
,

which leads to the conclusion that u→ uω = −1/k.
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3.3 Rectilinear motions

In order to give a more complete description of the forward dynamics of (1), in this subsection
we address the rectilinear collisions of (1).

We recall that the rectilinear motions of (1) verify the second order equation

r̈ + k
ṙ

rβ
+

1

r2
= 0, (33)

equivalent to the following first order system (which, of course, corresponds to the first two
equations of system (6) with ϕ = 0),{

ṙ = u

u̇ = −k u
rβ
− 1

r2 ,
(34)

on the phase space Ω0 = {(r, u) : r > 0, u ∈ R}.

We have the following result.

Theorem 7 The terminal time ω, the terminal velocity uω and the terminal energy Eω of
collision solutions depend on β according to the following table:

β ]0, 1/2[ [1/2, 2[ 2 ]2, 3[ [3,∞[

ω finite +∞
uω −∞ − 1

k 0

Eω finite −∞

The corresponding proof is given in the Appendix.

Remark 3 From the previous theorem, we see that, when β ∈]0, 1
2 [, the collision time, as

well as the corresponding energy, are finite. It is not difficult to prove that also the ejection
time and ejection energy3 are finite. These properties are sufficient to infer that the asymptotic
expansions of solutions around collision and ejection times obtained in [12] for β = 0 are still
valid for β ∈]0, 1

2 [. Namely, at collision we have

r(t) =

(
9

2

)1/3

(ω − t)2/3 +O((ω − t)4/3), t→ ω−, (35)

ṙ(t) = −2

3

(
9

2

)1/3

(ω − t)−1/3 +O((ω − t)1/3), t→ ω−. (36)

The analogous expansion at ejection is obtained just by replacing ω − t with t− α and by
reversing the sign of ṙ in (36). We point out that these expansions hold also for the rectilinear
motions of a periodically forced Kepler problem ([19]), as well as for a perturbed two body
problem, with a perturbation of the form P (t, x, ẋ). which, unlike in our case, is bounded
([21]).

3An ejection solution is a solution such that limt→α+ x(t) = 0, and α is the ejection time.
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However, unlike in the case of the linear drag, when β ∈]0, 1
2 [ the ejection-collision solutions

cannot be embedded in a regular flow. Let us explain this point. The Levi-Civita transfor-
mation, developed in the conservative setting, was used effectively in [12] to regularize the
dynamics of (1) for β = 0. But, for β > 0, the natural generalization of this transformation
leads to a system that, although non singular, does not define a flow. To show this, consider
the Levi-Civita-like transformation x = x1 + ix2 = w2, dν = dt

|x|β+1 (the classical Levi-Civita

transformation corresponds to β = 0). This transformation maps solutions of (1) into solutions
of the non singular system

dw

dν
= |w|2βv, dv

dν
=
E

2
|w|2βw − |w|2v, dE

dν
= −(2E|w|2 + 1) (37)

contained in the invariant manifold M⊂ C2 × R of equation E|w|2 + 1− 2|v|2 = 0.
We notice that an ejection-collision solution, t 7→ r(t), defined on the maximal finite interval

]α, ω[ is transformed into a solution ν 7→ Ξ(ν) = (w(ν), v(ν), E(ν)) of (37), defined on the finite,
but not maximal, interval

IS =

]
να := −

∫ 0

α

1

rβ+1(σ)
dσ, νω :=

∫ ω

0

1

rβ+1(σ)
dσ

[
.

A maximal solution of (37) which extends Ξ outside IS is obtained by considering the function

Ξα(ν) :=
(

0, 1√
2
, Eα − ν + να

)
on ] − ∞, να[, where Eα is the energy at ejection, and the

function Ξω(ν) :=
(

0,− 1√
2
, Eω − ν + νβ

)
on [νω,+∞[. Since Ξα(ν), ν ∈ R, is also a maximal

solution of (37), it follows that uniqueness os solutions fails at the point (0, 1√
2
, Eα).

This behavior agrees with the fact that, when β ∈]0, 1
2 [, the regularized vector field is not

locally Lipschitz continuous at points of the form (0, v, E) with v 6= 0.

In a conservative setting, the study of the existence of a regularized flow by means of a
change of variables analogous to the Levi-Civita transformation has been considered in [16].

4 β = 2 : properties of the asymptotic Runge-Lenz vector

In this section we consider the case of the Poynting-Plummer-Danby drag. We show that a
careful analysis of equation (20) allows a complete description of the orbit structure for such a
case, improving the results in [7]. Such description will be contained in the main result of this
section, where we discuss the properties of the limit I of the Runge-Lenz vector

R(x, v) = v ∧ (x ∧ v)− x

|x|
(38)

along the solutions of (1) with β = 2. We recall that R is a first integral of the classical Kepler
problem, with the following geometrical meaning: for non rectilinear orbits, which are conic
sections, R is parallel to the symmetry axis which contains the focus, and its modulus is the
eccentricity of the orbit. For this reason it is also referred to as eccentricity vector.

The vector I, which can be thought of as an asymptotic eccentricity vector, was considered
in [13] to study the dynamics of (1) when β = 0 (see Remark 4 below). In our case, its
properties will be obtained by taking the limit of R along the solutions of (17) and then going
back to the (x, v) variables. This is equivalent to take the limit of R along the flow of (3). In
fact, if γθ denotes the flow of (17), we have
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φt = U ◦ γθ ◦ U−1, (39)

where U was defined in (18) and t and θ are explicitly related by t = t(θ, y) =
∫ θ
θ0
λ(γσ(y)) dσ,

with λ(y) = 1
ρ2M

. The pair (U, λ) establishes the so called equivalence in the extended sense

of the vector fields (3) and (17), see [18].

Theorem 8 There exists a vector field

I : Ω→ R2, I = I(x, v),

satisfying

i) I(σx, σv) = σI(x, v), for each (x, v) ∈ Ω and each rotation

σ =

(
cos θ − sin θ

sin θ cos θ

)
.

ii) I is smooth on the sets Ω+
H and Ω+

C , corresponding, respectively, to hyperbolic and collision
orbits, and is discontinuous on the set Ω+

P , corresponding to parabolic orbits.

Moreover,
I(Ω) = R2 \ int (D),

where D is the closed unit disk in R2.

iii) Each solution t 7→ (x(t), v(t)) of (3) with β = 2, defined on the right maximal interval
[0, ω[, satisfies

I(x(t′), v(t′)) = lim
t→ω−

R(x(t), v(t))

for each t′ ∈ [0, ω[.

Remark 4 This theorem is analogous to Theorem 2.1 in [13], where the properties of I for
β = 0 are considered. In particular, in [13] it is found that I is continuous on Ω. Moreover,
taking also into account an improvement of Theorem 2.1 presented in [14], it is established
that the range of I is the closed unit disk. When β = 2, item ii) shows that I has significantly
different properties: I is not continuous on Ω, and its range is the exterior of the open unit
disk. We will see that the discontinuity arises along any fixed parabolic orbit since such orbit is
the limit of hyperbolic orbits and of collision ones. We prove this fact only for β = 2, because
in this case the problem is integrable, and we could make use of explicit closed formulas in our
computations. As to the range of I, it somewhat expresses that, unlike for the case β = 0,
there are parabolic and hyperbolic orbits, and there are no elliptic motions winding infinite
times around the singularity as they approach it.

Proof.
We start by proving that I, as defined in iii), exists on Ω+ and that the properties stated

in ii) hold. To carry out our analysis we will use the Binet variables. Consider the initial
condition

(x0, v0) = U(ρ0, ζ0, θ0,M0) =

(
1

ρ0
er(θ0),−ζ0M0er(θ0) + ρ0M0eθ(θ0)

)
∈ Ω+,
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and consider the corresponding solution of system (17), given by (19), (20) and (21), with
β = 2. In this case

M(θ) = M0 − k(θ − θ0) = k(θM − θ + θ0),

where θM = M0/k, and we have the following explicit formula:

ρ(θ) = −κ sin(θ − α0 − θ0) +

∫ θ

θ0

sin(θ − η)

k2(θM − η + θ0)2
dη. (40)

Collision solutions correspond to θω = θM , and are such that

ρ(θ) > 0, θ ∈ [θ0, θω[, ρ(θ−ω ) = +∞.

Escape solutions correspond to θω < θM0 , and satisfy

ρ(θ) > 0, θ ∈ [θ0, θω[, ρ(θ−ω ) = 0.

By Theorem 3, we also know that for escapes θω ∈]θ0 + α0, θ0 + α0 + π[. If we define the set

A = {(θ, θM ) : θ0 < θ < θ0 + θM , θ0 + α0 ≤ θ ≤ θ0 + α0 + π}

and the smooth family of functions Fρ0,ζ0,θ0 : A→ R,

Fρ0,ζ0,θ0(θ, θM ) := ρ(θ) = −κ sin(θ − α0 − θ0) +

∫ θ

θ0

sin(θ − η)

k2(θM − η + θ0)2
dη, (41)

then the limit angle θω of an escape orbit will satisfy the implicit equation

Fρ0,ζ0,θ0(θω, θM ) = 0.

We will show below that this equation defines implicitly θω as a function of y0 = U−1(x0, v0)
which is continuous in Ω+

H ∪ Ω+
P and smooth on Ω+

H .
For simplicity, in what follows we omit the dependence on the parameters of F and of the

functions implicitly defined. We also set θ0 = 0 for our computations, but will remove this
restriction in our conclusions.

In the same way we proved that Φ(θ) > 0 in i) of Lemma 2, we obtain the inequality

∂θMF (θ, θM ) = −2

∫ θ

0

sin(θ − η)

k2(θM − η)3
dη < 0,

so that for each fixed θ ∈]0, θM [∩[α0, α0 + π], the map θM 7→ F (θ, θM ) is strictly decreasing on
]θ,+∞[. For each θ ∈]α0, α0 + π[ we have

lim
θM→∞

F (θ, θM ) = −κ sin(θ − α0) < 0, (42)

and since

sin(θM − η)

(θM − η)2
=

1

θM − η
+O

(
(θM − η)2

)
,

we get

lim
θ→θ−M

F (θ, θM ) = +∞,
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Figure 1: Discontinuity of θω : graphical illustration of the proof.

for any fixed θM > α0. By Bolzano’s theorem and the implicit function theorem, there exists a
smooth function θM = ψ(θ) defined on ]α0, α0 + π[ such that F (θ, ψ(θ)) = 0.

From (41) and i) of Lemma 2, it follows that F (α0, θM ) > 0 and F (α0 + π, θM ) > 0. Then,
fixed any m > 0, there exists δ > 0 such that F > 0 on ([α0, α0 + δ] × [0,m]) ∩ A and on
([π + α0 − δ, ]× [0,m]) ∩A , see Figure 1. From (42) we conclude that

lim
θ↘α0

ψ(θ) = lim
θ↗α0+π

ψ(θ) = +∞,

and as a consequence ψ(θ) has at least a minimum. Actually, for all θ such that ψ′(θ) = 0, we
have

ψ′′(θ) = −
∂2
θF (θ, ψ(θ))

∂θMF (θ, ψ(θ))
> 0,

since ∂θMF (θ, ψ(θ)) < 0 and ∂2
θF (θ, ψ(θ)) = 1

k2(ψ(θ)−θ)2 > 0. Then, the minimum point, say

θ = θP , is unique and it is the only critical point of ψ. The subscript indicates that the
minimum point is associated to a parabolic escape, as we will see.

It follows that ψ admits a decreasing left inverse η : [ψ(θP ),+∞[ → ]α0, θP ], which is
continuous on [ψ(θP ),+∞[ and smooth on ]ψ(θP ),+∞[.

Fixed θM ∈ [ψ(θP ),+∞[, the angle θω = η(θM ) ∈]α0, θP ] is the limit angle of the escape
solution θ 7→ ρ(θ) = Fρ0,ζ0,0(θ, θM ), θ ∈ [0, θω[, corresponding to initial conditions (ρ0, ζ0, 0,M).
We notice that if θM ∈ [ψ(θP ),+∞[, it is

ζ(θω) = ρ′(θω) = ∂θF (θω, ψ(θω)) ≤ 0,

where the equality holds if and only if θω = θP . By definition of U, we have

v = −ζMer(θ) + ρMeθ(θ).

We infer that, if θM > ψ(θP ), the corresponding orbit is hyperbolic, since the terminal velocity
vω satisfies

vω = −ζ(θω)M(θω)er(θω) 6= 0, M(θω) > 0,

whereas, if θM = ψ(θP ), the corresponding orbit is parabolic, since vω = 0.
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To complete our analysis, we note that, if α0 < θM < ψ(θP ), then the solution θ 7→
ρ(θ) = Fρ0,ζ0,0(θ, θM ), θ ∈ [0, θω[ corresponds to a collision solution with limit angle θω = θM .
Summarizing, the limit angle θω, as shown by Figure 1, is defined by the function

θω =

{
θM if θM < ψ(θP ),

η(θM ) if θM ≥ ψ(θP ).

We conclude that this map is a smooth function of y0 = (ρ0, ζ0, θ0,M0) if θω 6= θP (that is,
on hyperbolic and on collision orbits) and is discontinuous at θM = ψ(θP ) (that is, on parabolic
orbits), since

lim
θM→ψ(θP )+

θω = θP < ψ(θP ) = lim
θM→ψ(θP )−

θω. (43)

Then, taking into account (39), if (x0, v0) ∈ Ω+ there exists

I(x0, v0) = lim
t→ω

R(x(t), v(t)) = lim
θ→θω

R ◦ U ◦ γθ ◦ U−1(x0, v0)

and is given by

I(x0, v0) =

{
−er(θM ) if θM < ψ(θP ),

−ζ(θω)M2(θω)eθ(θω)− er(θω) if θM ≥ ψ(θP ),

where for simplicity of notations we have not indicated explicitly the composition with U−1 of
the functions θM , θω and θP . It follows that I is smooth on Ω+

H ∪Ω+
C , since this property holds

for θω.
To prove that I is discontinuous on parabolic orbits, fix any (x0, v0) = U(ρ0, ζ0, θ0,M0) ∈

Ω+
P . Then, we can consider solutions of (17) with initial conditions of the form

(x0, v0) = (ρ0, ζ0, θ0,M∗) ∈ Ω+
H ∪ Ω+

C

with M∗ in a neighborhood of M0. By (43)

lim
θM∗→ψ(θP )+

I ◦ U = −er(θP ) 6= lim
θM∗→ψ(θL)−

I ◦ U = −er(ψ(θP )),

so that I is discontinuous on Ω+
P .

Note that I, as defined by property iii) of the statement, exists on all Ω. In fact, on the
rectilinear motions, it is I(x0, v0) = − x0

|x0| . On solutions with negative scalar angular momen-

tum, one can easily adapt the argument used in Ω+, getting also the corresponding regularity
results.

To complete the proof of the theorem, we observe that i) holds since the SO(2) invariance
of R is inherited by I. Then, by i), the continuity of I on Ω+

H and the property

lim
θω→(α0)+

|I ◦ U | = +∞,

it follows that
I(Ω) = R2 \ int (D),

where D is the closed unit disk in R2.
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5 Conclusions

In this paper we have have considered a family of dissipative Kepler problems with drags of
the form − k

|x|β ẋ, and studied the changes in the forward dynamics as β increases. This family

includes two physically meaningful dissipations: the Stokes drag (β = 0) and the Poynting-
Plummer-Danby drag (β = 2).

We were able to detect a threshold value for the existence of escape orbits, namely β = 1,
and we gave a fairly complete description of non rectilinear collision orbits for β ≥ 3

2 , showing in
particular that they are asymptotically rectilinear. Moreover, the integrability of the equation
for β = 2 allowed us to prove that the asymptotic Runge-Lenz vector, which is a non-trivial
first integral, is not continuous on the phase space, unlike for the case β = 0. We think that
the jump discontinuity in the parabolic orbits is a general property for those values of β for
which there are hyperbolic escapes and asymptotically rectilinear collisions. The reason is that
discontinuity follows essentially from the fact that θω is defined by ρ(θ−ω ) = 0 for hyperbolic
escapes, whereas for collisions ρ(θ−ω ) = +∞.

The dynamic behavior of non rectilinear collisions for the values of β in the complemen-
tary interval ]0, 3

2 [ remains an open question. Our only contribution in this direction is the
unboundedness of angular velocity of these solutions when β ∈]0, 1[. However, the following
informal argument, which we were not able to make rigorous, leads to a conjecture: substi-
tuting the third equation of (19) into the first, we obtain a fixed point equation of the form
ρ = T (ρ). From the results in [13], we see that, when β = 0, any fixed point defined for every
θ ≥ 0, satisfies ρ(θ) ≈ θ2/3 for large θ. Then, if we look for fixed points defined for every θ ≥ 0
when β > 0, we can try to find a space of functions satisfying ρ(θ) ≈ θα, α > 0, for large
θ, and which is invariant under T. We are led, heuristically, to α = 2

3−2β , which is correct for

β = 0. Now, if β ∈]0, 3
2 [, it is not difficult to see that the previous asymptotic growth for ρ(θ)

implies that the collision time ω is finite and that θ̇(t)→ +∞ as t→ ω−. This last property is
consistent with Theorem 5. Due to the difficulty of numerical integration of singular systems,
the simulations made to support our conjecture were inconclusive.

Finally, in our work we gave a complete description of the rectilinear collisions as β increases,
including their asymptotic development for β ∈]0, 1

2 [. As a consequence, we were able to show
that the presence of the singularity in the dissipation is an obstruction to the regularization of
collisions.

6 Appendix

Proof. (of Theorem 6 ) This proof borrows some ideas from the ones of Proposition 2.4 in [14]
and of Proposition 3.1 in [12], mainly in Case I. The corresponding steps are presented below
with less detail.

We recall that our phase space is the half-plane Ω0 = {(r, u) : r > 0, u ∈ R}. The isocline
of system (34) associated to ṙ = 0 is the half line defined by u = 0, whereas for u̇ = 0 the
isocline is defined by

u = −r
β−2

k
.
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Figure 2: Dependence on β of the regions defined by the isoclines in the regularized systems.

These curves determine the following disjoint open regions in the phase space:

A0 = {(r, u) ∈ Ω0 : u > 0}, A1 =
{

(r, u) ∈ Ω0 : 0 > k u > −rβ−2
}
,

A2 =
{

(r, u) ∈ Ω0 : k u < −rβ−2
}
.

(44)

The set A0 is negatively invariant with respect to the flow of (34) for all β > 0, whereas for
β ∈]0, 2[, A1 is positively invariant and A2 is negatively invariant. For β > 2, the set A2 is
positively invariant. We distinguish three cases.

Case 1: β ∈]0, 2[.

We prove first that ω is finite. If it were infinite, there should exist a sequence tn → +∞
such that u(tn) → 0. However, this is not possible, because one can easily check that all
collision solutions enter eventually into the positively invariant set A1, where u = ṙ is negative
and decreasing.

In what follows, we consider the regularization of system (34) given by the time rescaling
dµ = dt

r2 , already considered in the proof of Theorem 5. Of course, we obtain a system made
by the first two equations of (24) with ϕ ≡ 0, namely,

dr
dµ = r2u,

du
dµ = −k r2−βu− 1.

(45)

System (45) is defined in the extended phase space Ω̄0 = Ω0 ∪ {(r, u) : r = 0, u ∈ R} and the
line r = 0 is an isocline orbit associated to dr

dµ = 0 (see the left panel of Figure 2).
Let us prove now that, when β ∈]0, 2[, the velocity at collision satisfies uω = −∞. We argue
by contradiction. Assume that µ 7→ (r(µ), u(µ)) is a collision solution such that uω ∈]−∞, 0[.
From the first equation of (45), we see that

1

r(µ)
=

1

r(0)
+

∫ µ

0
|u(σ)|dσ. (46)

Letting µ → µω, we have that the left hand side tends to +∞, and since u(τ) is bounded on
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[0, µω[, from (46) we get µω = +∞. But then, from the second equation of (45), it follows that

lim
µ→+∞

du

dµ
= −1,

and this would imply that uω = −∞, contradicting the hypothesis that uω is finite. We
conclude that uω = −∞.

Now let us see how the energy behaves when an orbit approaches the collision.
Consider first the case β ∈]0, 1[. System (45) has the first integral

H(r, u, µ) = u+
k

1− β
r1−β + µ, (47)

obtained by setting ϕ ≡ 0 in (25).
Let (r0, u0) be an initial condition in A1, and let H0 := H(r0, u0, 0), so that by (47) we

have

u(µ) +
k

1− β
r1−β(µ) + µ = H0. (48)

Since u(µ)→ −∞ and r(µ)→ 0 as µ→ µω, from (48) we infer that µω = +∞. Then, from the

same equality it follows that u(µ)
µ → −1 as µ→ +∞, and from (46) we get that µ2r(µ)→ 2 as

µ→ +∞.
By (4), we see that dE

dµ = r2 dE
dt = −k r2−βu2. Then, using the two limits established above

for u and r, we get that

µ2(1−β)dE

dµ
(µ)→ −22−βk,

as µ→∞. As a consequence,

Eω = E(0) +

∫ ∞
0

dE

dµ
(σ)dσ

is finite if β ∈]0, 1/2[, whereas Eω = −∞ if β = [1/2, 1[.
Let us consider now β ∈ [1, 2[.
In this case the approach through the first integral (given by H = u + k log r + µ, when

β = 1, and by (47), when β > 1) does not allow to find out the asymptotic expansion of the
solutions as they approach collision. However, we argue as follows. It is easy to see that in A1

the trajectories of system (45) may be written in the form u = χ(r), r ∈]0, r0]. If we evaluate
the slope of such orbits at the points of the form u = −rβ−1, we get

du

dr

∣∣∣∣
u=−rβ−1

=
1

rβ

(
1

r
− k
)
,

which is positive for 0 < r < 1/k. This implies that the region

D :=

{
(r, u) : 0 < r <

1

k
, − 1

kr2−β < u < −rβ−1

}
⊂ A1

is positively invariant. On the other hand, note that

dE

dr
=

1

u

dE

dt
= −k u

rβ
> 0.
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Then, for every orbit u = χ(r) such that (r0, χ(r0)) ∈ D, as a consequence of the invariance of
D, we have

k

r
<
dE

dr

∣∣∣∣
u=χ(r)

<
1

r2
,

and we conclude that

Eω = E(0) +

∫ 0

r0

dE

dr

∣∣∣∣
u=χ(r)

dr = −∞.

Case 2: β = 2.

This case is solved in [7]. The explicit solution is given by

u(µ) =

(
u0 +

1

k

)
e−kµ − 1

k
,

1

r(µ)
=

1

r(0)
−
∫ µ

0
u(σ)dσ, µ ∈ [0,∞[.

From these expressions it is easy to see that ω < +∞, uω = −1/k and Eω = −∞.

Case 3: β > 2.

In order to study the collisions for β > 2, it is convenient to consider the time rescaling
dτ = dt

rβ
, introduced previously to get system (26). We obtain the following regular system,

which corresponds to the first two equations of (26) with ϕ ≡ 0,
dr
dτ = rβu

du
dτ = −k u− rβ−2,

(49)

on the extended phase space Ω̄0.
We note that the origin is an equilibrium of system (49) which attracts the points of the

invariant line r = 0 (see the right panel of Figure 2).
One can see easily that all collision orbits will enter eventually in the positively invariant

region A2. Then, without loss of generality, we will consider only initial conditions in A2.
Actually, since in this region we have du

dτ > 0 and dr
dτ < 0, all solutions are bounded on

[0, τω[. This fact implies that all solutions starting in A2 are collision ones, since otherwise an
equilibrium of the system should exist in A2. Moreover, any segment of orbit contained in A2

may be expressed in the form u = χ(r), with r in a suitable interval of the form ]0, r̃[, with
0 < r0 < r̃. Notice that, on this interval, χ(r) satisfies the scalar differential equation

du

dr
:= f(r, u) = − k

rβ
− 1

r2u
. (50)

When β ≥ 3 the vector field associated to (49) is continuously differentiable on Ω̄0 and, by
the general theory of ODEs, we conclude that all solutions starting in A2 tend to the equilibrium
(0, 0) in infinite τ time. We conclude that uω = 0.

This cannot be guaranteed without further considerations for β ∈]2, 3[. In fact, in this
range of values the regularized vector field is not Lipschitz continuous in the points of the form
(0, u) ∈ Ω̄0. As a consequence, in such points uniqueness of solutions may fail, and all we can
conclude by the general theory is that, for collision solutions, we have −∞ < uω ≤ 0. Let us
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prove that, actually, uω = 0. Define the function hλ(r) := −λrβ−2, where λ > 1/k. Note that
A2 = ∪{λ>1/k}{(r, hλ(r)) : r > 0}. Evaluating the slope field du/dr at u = hλ(r), we get(

du

dr

∣∣∣∣
hλ

)/
dhλ
dr

=
kλ− 1

λ2(β − 2)r2β−3
. (51)

Hence, for any fixed λ > 1/k there exists only one point r = rλ such that the graph of the
function hλ(r) is tangent to an orbit, and is given by

rλ :=

(
kλ− 1

λ2(β − 2)

) 1
2β−3

. (52)

Moreover, by (51) it follows that

dhλ
dr

≶ f(r, hλ(r)), if r ≷ rλ. (53)

As a consequence, by the comparison theorem for ODEs, the orbit u = χ(r) of (50) that is
tangent to the curve u = hλ(r) in r = rλ satisfies

χ(r) ≥ hλ(r),

for any r ∈]0, rλ[.
Note that (52) is a second degree equation in λ. Solving it, we obtain two local inverses of

the function λ 7→ rλ, namely the functions

λ±(r) :=
1

r2β−3

k ±
√
k2 − 4(β − 2)r2β−3

2(β − 2)
,

defined for 0 < r ≤ R, where

R :=

(
k2

4(β − 2)

) 1
2β−3

.

Now we use λ±(r) to construct the two following auxiliary functions:

h±(r) = hλ±(r)(r) := − 1

rβ−1

k ±
√
k2 − 4(β − 2)r2β−3

2(β − 2)
,

also defined for 0 < r ≤ R.
The functions h+ and h− satisfy the following properties. They are, respectively, strictly
decreasing and strictly increasing on ]0, R], and such that h−(r) > h+(r) on ]0, R[, with h−(R) =
h+(R) := uR. Moreover, they have the following behavior as r → 0+:

h−(r) = −r
β−2

k
+ o(rβ−2) → 0 and h+ → −∞. (54)

Finally, the range of h+ is ]−∞, uR], and the one of h− is [uR, 0[. We are now ready to prove
that on collision orbits uω = 0.

We start by defining the positively invariant set

G := {(r, u) : 0 < r ≤ R, h+(r) ≤ u ≤ h−(r)} ⊂ A2.
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Figure 3: Illustration of the proof for β ∈]2, 3[.

Given an initial condition (r0, u0) ∈ G, let us consider the corresponding orbit u = χ(r), r ∈
]0, r̃[. Since there exists a value λ > 1/k such that h−(r) > χ(r) > −λrβ−2 for all 0 < r < R,
we conclude that the orbit will go towards the equilibrium as r → 0+. If (r0, u0) ∈ A2\G the
corresponding orbit will eventually enter in G. In fact, if there exists an orbit u = χ̄(r) for
which this is not the case, we can find λ̄ = λ−(r̄) such that u = hλ̄(r) intersects u = χ̄(r) in

a point r̂ > r̄ for which it holds the inequality
dhλ̄
dr (r̂) > f(r̂, hλ̄(r̂)). By (53), there exists a

second point, r∗ > r̂ > r̄, such that the curve u = hλ̄(r) is tangent to an orbit (the first being
r̄), which is absurd.

Then, uω = 0 for all collision orbits also for β ∈]2, 3[. Taking into account what was proved
previously, we conclude that uω = 0 for any β > 2. It follows immediately that the energy
E = u2/2− 1/r tends to Eω = −∞.

Also, since

ω =

∫ 0

r0

dr

χ(r)
, (55)

by (54) and by the inequality −λrβ−2 < χ(r) < h−(r) for any r ∈]0, R[, we see that 1/|χ(r)| is
integrable on the interval ]0, r0] if β ∈]2, 3[, in which case ω is finite, whereas it is not integrable
if β ≥ 3, and then ω = +∞. Our proof is concluded.
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