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Abstract

In this paper, we solve a basic problem about the existence of an
analytic potential with a prescribed period function. As an applica-
tion, it is shown how to extend to the whole phase plane an arbitrary
potential defined on a semiplane in order to get isochronicity.

1 Introduction

In general, an inverse problem could be described as a task where the effect
is known, but the cause is unknown. In the framework of Dynamical Sys-
tems, one wonders about the existence of a system which exhibits a concrete
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dynamic response. This paper is devoted to the analysis of two basic inverse
problems in the context of analytic potential systems.

Consider the system{
ẋ = −y
ẏ = V ′(x)

(1)

where V is an analytic function defined in a neighborhood of the origin. We
always assume that the system has a non-degenerate center at 0, that is
V (0) = V ′(0) = 0 and V ′′(0) = k > 0. We denote by P the projection in
the x-axis of the period annulus of the origin. Clearly P is an open interval
containing 0. We will denote its endpoints by x− and x+. Thus, P = (x−, x+).

For x ∈ P \ {0} we denote by T (x) the period of the orbit of the po-
tential system passing through the point (x, 0). It is well-known that T is
an analytic function on P \ {0} and that it extends analytically to 0 by
T (0) = limx→0 T (x). Also it is well known that T (0) > 0 (all these results
are direct consequence of Theorem 3 in the next Section). Since for each
x ∈ (0, x+) it exists y ∈ (x−, 0) such that T (x) = T (y) it follows that 0 is a
local extremum of the function T.

In this paper we first study the following inverse problem. Given an
analytic function F having a local extremum at 0, and satisfying F (0) > 0,
we investigate the existence of some non-degenerate potential V such that F
is the period function associated to V . Our main result in this direction is
the following theorem:

Theorem 1. Let F be an analytic function at 0 with F (0) = a > 0 and
assume that F has a local minimum or maximum at 0. If F is non-constant
then it exists a unique function V analytic at 0 such that the period function
of the potential system associated to V is F. If F is constant then there exist
infinitely many analytic functions V satisfying that the period function of V
is F. All these solutions are of the form π2

2a2 (x−σ(x))2 where σ is an analytic
involution defined in a neighborhood of 0.

Theorem 1 is a direct consequence of Theorem 5 and Corollary 2 in Section
3. We notice that Corollary 2 was already proved in [2].

This paper is closely related with the results which appear in [5, 6].
In these classical papers the author considers the analogous inverse prob-
lem associated to the energy of the orbits. Consider the energy H(x, y) =
y2/2 + V (x), which is a first integral of our system. Then the orbits can be
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parameterized by the value of H at the orbit. Set T(h) the period of the orbit
having energy level h. It is well-known that T is also analytic and obviously
T(H(x, 0)) = T (x). In that paper it is proved that given an analytic function
T such that T(0) > 0 there exist infinitely many analytic functions V such
that T is the period function (with respect the energy) of V. A little more
general problem was also studied in [3].

Another related reference is [1], where the author considers the half-period
function, T̄ . For each x ∈ P, x > 0, T̄ (x) is defined as the time that the
solution with initial condition (x, 0) spends to intersect for a first time the
y-axis. In that paper the author proves an equivalent result to the first part
of Theorem 1 for the half-period function. Due to the symmetries in the case
when V is even, clearly T (x) = 4T̄ (x). So the even case (see Theorem 4)
could be obtained from the previous work of Alfawicka. We present here a
new proof which is much simpler and can be extended to the general case.

The second inverse problem concerns the way to complete or extend a
potential working in the semiplane y > 0 to the whole phase plane in order to
get an isochronous center at the origin. This problem was raised in [4, Section
3], where the even case was solved. The following result solves completely
the question.

Theorem 2. Let V be an analytic function defined in a neighborhood of 0
satisfying V (0) = V ′(0) = 0 and V ′′(0) = k > 0. Then, for any A > π√

2k
,

there exists a unique analytic function V ∗ defined in a neighborhood of 0
satisfying V ∗(0) = (V ∗)′(0) = 0 and (V ∗)′′(0) > 0 verifying that the system

ẋ = −y

ẏ =

{
V ′(x), if y > 0;
(V ∗)′(x), if y < 0.

has an isochronous center at the origin with period A.

The paper is structured as follows. In Section 2, a symmetrization ar-
gument is provided in such a way that any arbitrary potential V has an
equivalent even potential. Section 3 contains the proof of Theorem 1 while
in Section 4 we give the proof of Theorem 2.

2 Symmetrization of a Potential system

Our first purpose is to associate to system (1) a symmetric potential system
given by an even function Ṽ . To do this, observe that since V has a local
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minimum at 0, we can define an involution by

V (σ(x)) = V (x),
xσ(x) ≤ 0.

Note that σ is well-defined in P. Set

g(x) = x

√
V (x)

x2
= sign(x)

√
V (x).

Writing V (x) = kx2 + . . ., where the dots mean the higher order terms, it is
clear that g is analytic in P, g(0) = 0 and g′(0) =

√
k. An easy computation

shows that
σ(x) = g−1(−g(x)).

So, σ is analytic in P. Now set h(x) = x−σ(x)
2

. Since σ′(x) < 0 we get that

h′(x) > 0, and hence it is a diffeomorphism from P to h(P ) = (x−−x+

2
, x+−x−

2
).

We define Ṽ = V ◦ h−1. The next lemma states some basic properties of
h and Ṽ .

Lemma 1. The following assertions hold:

(1) h(σ(x)) = −h(x).

(2) V (x) = Ṽ (h(x)) and Ṽ is an even function on (x−−x+

2
, x+−x−

2
).

(3) h−1(x)− h−1(−x) = 2x.

Proof. The property (1) follows by direct computations

h(σ(x)) =
σ(x)− σ2(x)

2
= −h(x).

The first assertion of (2) follows directly from the definition of Ṽ . Also
we have,

Ṽ (−h(x)) = Ṽ (h(σ(x))) = V (σ(x)) = V (x) = Ṽ (h(x)).

Since h is a diffeomorphism it follows that Ṽ is even.
From (1) we get

σ(x) = h−1(−h(x))
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and
σ(h−1(x)) = h−1(−x).

Then,

h−1(x)− h−1(−x) = h−1(x)− σ(h−1(x)) = 2h(h−1(x)) = 2x.

Our next purpose is to compare the potential systems associated to V
and Ṽ . To do this we define

g̃(x) = x

√
Ṽ (x)

x2
.

An easy computation shows that g̃ is an analytic odd diffeomorphism defined
in h(P ) and

g = g̃ ◦ h.

For x ∈ P let TV (x) be the period of the orbit of the potential system
passing through the point (x, 0). It is well-known that T is also analytic at P.
In the same way we denote by TṼ the period function of the potential system
associated to Ṽ . The next Theorem relates these two period functions.

Theorem 3.

TV (x) = 2
√

2

∫ π/2

0

(g̃−1)′(g̃(h(x)) sin θ)dθ = TṼ (h(x)).

Proof. For x > 0, we have

TV (x) =
√

2

∫ x

σ(x)

dy√
V (x)− V (y)

.

Putting y = g−1(g(x) sin θ) we obtain

TV (x) =
√

2
∫ π/2

−π/2
(g−1)′(g(x) sin θ)dθ

=
√

2
∫ 0

−π/2
(g−1)′(g(x) sin θ)dθ +

√
2
∫ π/2

0
(g−1)′(g(x) sin θ)dθ

=
√

2
∫ π/2

0
[(g−1)′(g(x) sin θ) + (g−1)′(−g(x) sin θ)] dθ
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Now we focus our attention to the expression appearing in the integral.
Putting z = g(x) sin θ, taking into account that g = g̃ ◦ h, and that g̃ is odd,
we get

(g−1)′(z) + (g−1)′(−z) = (h−1)′(g̃−1(z))(g̃−1)′(z) + (h−1)′(g̃−1(−z))(g̃−1)′(−z)
= (g̃−1)′(z) [(h−1)′(g̃−1(z)) + (h−1)′(−g̃−1(z))] .

From Lemma 1 (3) we obtain

(h−1)′(g̃−1(z)) + (h−1)′(−g̃−1(z)) = 2.

Thus, we get

TV (x) = 2
√

2

∫ π/2

0

(g̃−1)′(g(x) sin θ)dθ = 2
√

2

∫ π/2

0

(g̃−1)′(g̃(h(x)) sin θ)dθ

and the first equality holds for x > 0. One can check easily that the same
expression holds for x < 0.

The same computations for TṼ gives

TṼ (x) = 2
√

2

∫ π/2

0

(g̃−1)′(g̃(x) sin θ)dθ.

Hence, we get
T (x) = TṼ (h(x)).

3 The proof of Theorem 1.

Taking advantage of the latter section, we easily obtain the following well-
known results. Corollary 1 was originally proved in [5] and Corollary 2 in
[2].

Corollary 1. If V is an even isochronous potential with associated constant
period a > 0, then V (x) = kx2 with k = 2π2

a2 > 0.

Proof. Assume that V = kx2 + . . . is an even isochronous potential and let

g(x) = x
√

V (x)
x2 . Since V is even, g is odd. So (g−1)′ is even. Let

(g−1)′(x) =
∞∑
i=0

c2ix
2i
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be the power expansion of (g−1)′ at the origin. Clearly c0 = 1√
k
. Since the

period function T (x) is constant, we get that T (g−1(x)) is also the same
constant a. From Theorem 3 we have

a = T (g−1(x)) =
√

2

∫ π/2

−π/2

(g−1)′(x sin θ)dθ.

Hence we obtain that

a =
∞∑
i=0

c2iI2ix
2i (2)

where I2i = 2
√

2
∫ π/2

−π/2
sin2i θdθ. This implies that c2i = 0 for all i > 0. Thus

(g−1)′(x) = 1√
k
, and since g(0) = 0 we obtain g(x) =

√
kx. Therefore,

V (x) = kx2. Besides, from (2) we get a = c0I0, taking into account that
c0 = 1√

k
, one easily finds k = 2π2

a2 .

Corollary 2. If V is an isochronous potential with associated constant period
a > 0, then V (x) = k(x− σ(x))2 for some analytic involution σ and k = π2

2a2 .

Proof. Let Ṽ be the even potential associated to V. By Theorem 3 it follows
that Ṽ is also isochronous (with the same associated period) and by the
previous Corollary we obtain that Ṽ (x) = 2π2

a2 x2. The result follows from the

fact that V (x) = Ṽ (h(x)).

This previous result is the second part of Theorem 1. It remains to prove
the first part. As we remarked in the Introduction, although the even case
can be deduced from [1], we give here a simpler proof.

Theorem 4. Let T be a non-constant even function analytic at 0 with T (0) =
a > 0. Then there exists a unique function V analytic at 0, such that the
period function of the potential system associated to V is T. Moreover V is
even.

Proof. In view of Theorem 3 we look for an analytic odd function g with
g′(0) 6= 0 satisfying

T (x) = 2
√

2

∫ π/2

0

(g−1)′(g(x) sin θ)dθ (3)
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or equivalently

T (g−1(x)) = 2
√

2

∫ π/2

0

(g−1)′(x sin θ)dθ. (4)

If we put

T (x) =
∞∑
i=0

t2ix
2i

and

g−1(x) =
∞∑
i=0

a2i+1x
2i+1

we obtain a1 = t0/I0 = a/I0 > 0 and the following recurrence

a2n+1 =
1

(2n + 1)I2n

n∑
i=1

t2i

( ∑
j1+...+j2i=2n

aj1 . . . aj2i

)
, (5)

where Ik = 2
√

2
∫ π/2

0
sink θdθ. Note also that since T is an analytic function

at 0 it exists d > 0 such that |t2n| < d2n for all n > 0.
From this recurrence we obtain a unique formal power series satisfying

equation (3). Since V = g2 this implies that if there exists an analytic
potential with the prescribed period function it is unique. To solve the exis-
tence problem it suffices to show that the power series

∑∞
i=0 a2i+1x

2i+1 with
coefficients satisfying (5) and a1 = a/I0 > 0, has positive convergence radius.

To do this consider F : R2 −→ R2 defined by

F (x, y) = d2y3 − (a1 − 1)d2xy2 + a1x− y

which is analytic and satisfies
(

∂F
∂y

)
(0,0)

= −1. Thus from the Implicit Func-

tion Theorem it follows that there exists a neighborhood of 0, V in R and an
analytic function h : V −→ R satisfying h(0) = 0 and F (x, h(x)) = 0. Notice
that F (x,−h(−x)) = −F (−x, h(−x)) = 0. So from the Implicit Function
Theorem −h(−x) = h(x) and h is odd.

Now we put h(x) =
∑∞

i=0 b2i+1x
2i+1. Note that since h is analytic at

0 this power series has positive radius of convergence. On the other hand
substituting this power series in the equation F (x, h(x)) = 0 we obtain

1

x

(
∞∑
i=0

b2i+1x
2i+1

)
= (a1 − 1) +

1

1− d2 (
∑∞

i=0 b2i+1x2i+1)
2 . (6)
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Then b1 = a1 and

b2n+1 =
n∑

i=1

d2i

( ∑
j1+...+j2i=2n

bj1 . . . bj2i

)
. (7)

Since

(2n + 1)I2n =

√
2π(2n + 1)!!

(2n)!!
> 1

for all n ≥ 0, it follows inductively that |a2i+1| ≤ b2i+1 for all i ≥ 0. Thus,
since the power series

∑∞
i=0 b2i+1x

2i+1 has positive radius of convergence the
same holds for the power series

∑∞
i=0 a2i+1x

2i+1.

Now we are able to extend this theorem to the general case.

Theorem 5. Let F be an analytic function at 0 with F (0) = a > 0. Assume
that F has a local minimum or maximum at 0 and that it is not constant.
Then there exists a unique function V analytic at 0 such that the period
function of the potential system associated to V is F.

Proof. Since F has a local extremum and it is not constant it has an associ-
ated analytic involution σ defined by

F (σ(x)) = F (x),
xσ(x) ≤ 0.

In fact σ can be obtained in the following way. From our hypotheses on
F there exists k > 0 in such a way F (x) = a + a2kx

2k + . . . with a2k 6= 0.
Assume for instance that a2k > 0. Set

f(x) = x

(
F (x)− a

x2k

) 1
2k

= sign(x)(F (x)− a)
1
2k .

Clearly f is analytic at 0, f(0) = 0 and f ′(0) 6= 0. Then σ(x) = f−1(−f(x)).

We also define h(x) = x−σ(x)
2

. Thus we get F (x) = F̃ (h(x)), where F̃ =

F ◦h−1 is an analytic even function. Applying Theorem 4 to F̃ we obtain an
analytic even function Ṽ having F̃ as a period function. Now let V = Ṽ ◦ h.
From Theorem 3 we obtain that the period function associated to V satisfies
T (x) = F̃ (h(x)) = F (x). This proves the existence of a potential satisfying
the required conditions.
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Now assume that V1 and V2 are analytic potentials satisfying that its
period function is F. Then all the functions F, V1, V2 have associated the
same analytic involution σ and the same diffeomorphism h(x) = x−σ(x)

2
. Thus

F̃ = F ◦ h−1, Ṽ1 = V1 ◦ h−1 and Ṽ2 = V2 ◦ h−1 are analytic and even. Also
from Theorem 3 both Ṽ2 and Ṽ1 have the same period function F̃ and from
Theorem 4 we get Ṽ1 = Ṽ2. Since h is a diffeomorphism this implies V1 = V2.

With this result the proof of Theorem 1 is completed.

4 The proof of Theorem 2.

Given an analytic potential V that has a non-degenerate center at the origin,
we will denote by σV the analytic involution implicitly defined in a neighbor-
hood of 0 by

V (x) = V (σV (x)), xσV (x) ≤ 0.

We also denote by TV the period function associated to the potential system
given by V. We stress the fact that when TV is not constant, σV is also
determined by the equation

TV (σV (x)) = TV (x), xσV (x) ≤ 0.

Next Proposition was proved in [4].

Proposition 1. Let V1 and V2 be analytic functions defined in a neighbor-
hood of the origin satisfying that V1(0) = V2(0) = V ′

1(0) = V ′
2(0) = 0 and

V ′′
1 (0), V ′′

2 (0) > 0. Then the following statements are equivalent:

• The system
ẋ = −y

ẏ =

{
V ′

1(x), if y > 0;
V ′

2(x), if y < 0.

has a center at the origin.

• σV1 = σV2 .

• There exists an analytic diffeomorphism g such that V1 = g(V2) and
g(0) = 0.
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Proof of Theorem 2. Let TV be the period function associated to V.
Denote by T+

V the time expended by the solution beginning at (x, 0) to come
to (σV (x), 0). Clearly T+

V = TV

2
. In particular T+

V (0) = π√
2k

. So, in view

of Proposition 1 we look for an analytic function V ∗ satisfying V ∗(0) =
(V ∗)′(0) = 0, (V ∗)′′ > 0 σV = σV ∗ and T+

V + T+
V ∗ = A. Note that this last

equality is equivalent to TV ∗ = 2A − TV . Note also that 2A − TV (0) =
2T − 2π√

2k
> 0.

Consider first the case when TV is constant. This implies that TV ∗ must
also be constant, namely TV ∗ = 2A − 2π√

2k
. In this case from Theorem 1 we

have that V = k
4
(x − σV (x))2 and also V ∗ = B

4
(x − σ(x))2 for some B > 0.

In view of Proposition 1 σ must be exactly σV and B is determined from the
relation TV ∗ = 2A− 2π√

2B
. This ends the proof of the theorem in this case.

Now assume that TV is not constant. Now the analytic function 2A−TV

is not constant, is positive at 0 and has a local minimum or maximum at
0. From Theorem 1 it follows that there exists one and only one analytic
function V ∗ such that V ∗(0) = (V ∗)′(0) = 0, (V ∗)′′(0) > 0 and TV ∗ =
2A − TV . Moreover since TV and 2A − TV defines the same involutions it
follows that σV = σV ∗ . This ends the proof of the Theorem.
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