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Abstract

The Lambert problem consists in connecting two given points in a given lapse of time
under the gravitational influence of a fixed center. While this problem is very classical,
we are concerned here with situations where friction forces act alongside the Newtonian
attraction. Under some boundedness assumptions on the friction, there exists exactly one
rectilinear solution if the two points lie on the same ray, and at least two solutions travelling
in opposite directions otherwise.
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1 Introduction

Finding a solution of the Kepler problem from two specified times and the corresponding respective
positions is usually referred to as the Lambert problem. In other terms, it is the combination of
the Kepler problem with Dirichlet boundary conditions.

The history of this problem goes back in time to the dawn of Celestial Mechanics, having been
briefly mentioned by Lambert in a letter to Euler [5, p. 24], and subsequently by Lagrange in his
Mécanique Analytique [13, §34, p. 39]. In Gauss’ Theoria Motus [10, §84, p. 108] we read

‘Hence, inversely, it is apparent that two radii vectors given in magnitude and posi-
tion, together with the time in which the heavenly body describes the intermediate
space, determine the whole orbit. But this problem, to be considered among the
most important in the theory of the motions of the heavenly bodies, is not so easily
solved, since the expression of the time in terms of the elements is transcendental, and
moreover, very complicated.’

Fast forward to the second half of the twentieth century. In the sixties the development
of computers and the needs of the aerospace industry signalled the beginning of an important
literature on numerical iterative algorithms designed to approximate solutions of the Lambert
problem [8, 14, 11]. From a more theoretical point of view, the first results on existence and
uniqueness are due to Simó [22], whose approach was based on the Levi-Civita transformation.
More recently, Albouy [1, §38], [2], has resorted to a related result, the so-called Lambert theorem
to throw some new light on Simó’s result. See also [3, 4].
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If the particle moves in the vacuum and is not affected by any forces other than the gravity
of the fixed center, the problem is integrable, a fact already known to Newton. If on the other
hand our particle crosses a cloud of gas or dust (or is so close to the Earth that it interacts with
its atmosphere), then one should take into account the influence of the drag. Friction forces in
Celestial Mechanics have also a tradition spanning for centuries. Their effect was already studied
by Euler [9] or Poincaré [21, Chapter VI], but research in this direction continues to this day
[24, 6, 17, 18, 12]. See also the recent work [20], which studies numerically the Lambert problem
in a frictional environment.

Many forms of friction make sense from a physical point of view. See, e.g., the discussion in [18,
p. 266-267]. In this paper we shall always assume that the friction force is linear in the velocity
and acts in the opposite direction of motion. On the other hand, its intensity may depend in a
complicated way on the position of the particle, especially if the environment is heterogeneous.
Mathematically we are led to a system of differential equations of the form

ẍ+D(x)ẋ = − x

|x|3
, x ∈ R2\{0} , (K)

where D : R2\{0} → R is nonnegative and continuously differentiable. Unless explicitly stated
otherwise, solutions of (K) are understood in a classical sense, i.e., they are assumed to be twice
continuously differentiable and avoid the collision singularity.

Given a solution x = x(t) of (K), its angular momentum c(t) := det(x(t), ẋ(t)) satisfies the
first-order linear equation ċ = −D(x(t))c and therefore, it cannot change sign. Passage to polar
coordinates x = r(cos θ, sin θ) leads to the classical equality c = r2θ̇, and consequently the sign
of c divides the set of solutions of (K) into three nonoverlapping classes: solutions living in a ray
(or rectilinear), solutions rotating counterclockwise, and solutions rotating clockwise.

Assuming that our solution is defined on the time interval [−T, 0], it will be called an arc from
A := x(−T ) to B := x(0) provided that |θ(0) − θ(−T )| < 2π. (For reasons that will be clear
below we name the time interval [−T, 0] instead of the more conventional option [0, T ]). On the
other hand, the number T is usually referred to as the flight (or transfer) time of the arc.

We are now ready to formulate our problem in a more precise way. Given points A,B ∈
R2\{0}, and given some flight time T > 0, are there arcs from A to B having flight time T?
With other words, we are concerned with the Dirichlet problem arising from the combination of
(K) with the boundary conditions

x(−T ) = A, x(0) = B , (BC)

focusing our attention on solutions rotating for less than one tour on the given time interval. Our
precise assumptions on the (nonnegative, continuously differentiable) friction coefficientD = D(x)
will be as follows:

[D1] D : R2\{0} → R is bounded.

[D2] limx→0

√
|x| ∇D(x) = 0.

The main result of this paper is given below:

Theorem 1.1. Assuming [D1−2], fix some flight time T > 0 and points A,B ∈ R2\{0}. Then:

(a) If A and B lie on the same ray starting at the origin then there exists a unique rectilinear
arc going from A to B in the flight time T .
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(b) If A,B do not lie on the same ray starting at the origin then there exists at least one arc
from A to B with flight time T and rotating clockwise, and at least one arc from A to B
with flight time T and rotating counterclockwise.

Some remarks are in order:

(i) It seems reasonable to ask whether assumptions [D1−2] are actually necessary. While we
cannot entirely answer to this question, it will be clear from our discussion (see Corollary
3.3) that [D2] may indeed be fully dropped in the case of the rectilinear statement (a).
Assumption [D2] will be required only in connection with the Levi-Civita regularization
(Subsection 8.2 and Section 9) to complete the proof of (b), and we do not know whether
one could construct another proof without this hypothesis. It implies that the function
z ∈ C\{0} 7→ D(z2) can be extended to a continuously differentiable function of two real
variables on C ≡ R2, and in particular, D has a limit at x = 0.

(ii) Concerning the nonrectilinear situation (b), the two arcs rotating in opposite directions are
well-known to be unique in the frictionless case D ≡ 0 (see [22]). We do not know whether
uniqueness still holds under the presence of friction.

(iii) Throughout this paper we focus our attention on motions making less than one full tour
on the given time interval, which we call arcs (they are sometimes called simple arcs in
the literature). It would be interesting to study the existence and multiplicity of solutions
turning more than one tour; see, e.g. the recent paper [4] on the frictionless situation D ≡ 0.
We point out that solutions making exactly one tour -or a given integer number of tours- in
a given flight time might exist only rarely; for instance, in absence of friction such a solution
exists if and only if A = B and the flight time T is not too small (the solution must be
elliptic and Kepler’s Third Law applies).

(iv) In the rectilinear case (a), the unique solution is actually nondegenerate (see Lemma 3.4).
Thus, when the two endpoints are slightly perturbated so as not lie on the same line,
our solution can be continued in such a way that it sweeps a small angle (the so-called
direct arc). These problems admit also solutions rotating in the opposite direction and
therefore sweeping an angle close to 2π (indirec arcs); in the limit such solutions converge
to a generalized solution which bounces at the origin. Bouncing solutions will not appear
explicitly in this paper, but they will be somehow behind the arguments of Subsection 8.2
and Section 9.

After this introduction the paper is organized as follows. We begin with Section 2, where
we discuss some general properties of the damped Kepler problem (K). Subsequently, Section
3 is devoted to study its rectilinear solutions; in particular, we prove the rectilinear statement
(a) of Theorem 1.1. In Section 4 we state, without proof, three important results labelled as
Propositions 4.1, 4.2 and 4.3, which, in combination with a continuation argument from degree
theory, will lead to the proof of Theorem 1.1(b) in Section 5. The second part of the paper is
devoted to prove the three propositions advanced in Section 4; more precisely Proposition 4.1 is
proved in Section 6, Proposition 4.2 is established in Section 7, and the purpose of the remaining
Sections 8-9 is to validate Proposition 4.3.

The proof of the nonrectilinear statement (b) of Theorem 1.1 is based in embedding (K)-
(BC) into a continuous family of Lambert problems depending on a parameter λ ∈ [0, 1]. This
family will be obtained by letting the initial point Aλ rotate on a circumference of radius |A|
centered at the origin. One starts at the rectilinear situation A0 := (|A|/|B|)B and ends at the
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desired point A1 := A (see Figure 1(b) below). At λ = 0, the results of Section 3 show that
the corresponding rectilinear problem has a a unique solution which is nondegenerate. Thus, the
implicit function theorem may be used to obtain a local branch of solutions for small λ > 0. In
fact, well-known arguments from Brouwer degree theory show the existence of a global branch
of solutions spanning for all λ ∈ [0, 1] -and thus guaranteeing the existence of solution for our
original Lambert problem- provided that two conditions hold. On the one hand, we need to ensure
that the branch of solutions does not blow up to infinity, a fact provided by Proposition 4.2. On
the other, solutions should not escape through the boundary of the domain before arriving to
λ = 1. Since this boundary is made of collinear motions (by Proposition 4.1), the result follows
from Corollary 4.4. The two possible directions of rotation will then give rise to the two solutions
described in Theorem 1.1(b).

2 Catastrophes are due to collisions

Equation (K) admits several alternative rewritings which can be used to reveal a number of
its features. To start with, let the nonvanishing function x :]α, 0] → R2\{0}, x = x(t), be
continuously differentiable (our solutions will always be defined on time intervals ending at t = 0
unless explicitly stated otherwise). We set

p(t) := exp

(
−
∫ 0

t

D(x(s))ds

)
. (1)

Then (K) becomes
d

dt

(
p(t)ẋ

)
= −p(t)

|x|3
x, x ̸= 0,

as one can readily check. While this equality is reminiscent of the usual presentation of Sturm-
Liouville systems, the function p appearing here depends on x in a nonlinear, nonlocal fashion.
Notice that

eD∗t ≤ p(t) ≤ 1 , t ∈]α, 0] , (2)

where D∗ ≥ 0 stands for some upper bound of D on R2\{0} (which exists by assumption [D1]).
If x = x(t) is a solution of (K), then it will satisfy

∣∣p(t)ẋ(t)− ẋ(0)
∣∣ = ∣∣∣∣∫ t

0

p(s)

|x(s)|3
x(s)ds

∣∣∣∣ ≤ ∫ 0

t

1

|x(s)|2
ds ≤ |t|

mint≤s≤0 |x(s)|2
, t ∈]α, 0], (3)

and the combination of (2)-(3) gives

|ẋ(t)| ≤ eD∗|t||ẋ(0)|+ |t| eD∗|t|

mint≤s≤0 |x(s)|2
, α < t < 0. (4)

We shall often work with solutions x :]α, 0] → R2\{0} of (K) which are maximal in the past.
It means that if the extended solution x̂ :]α̂, 0] → R2\{0} satisfies that α̂ ≤ α and x̂(t) = x(t)
for every t ∈]α, 0], then α̂ = α. In this situation, if α > −∞ we may say that x is not globally
defined in the past, and solutions of this kind are the target of the following

Lemma 2.1. Let x :]α, 0] → R2\{0} be a solution of (K), maximal in the past. If α > −∞ then
lim inft↓α |x(t)| = 0.
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Proof. Using a contradiction argument, we assume that lim inft↓α |x(t)| > 0. Then, (4) implies
that lim supt↓α |ẋ(t)| < +∞, and (K) gives lim supt↓α |ẍ(t)| < +∞. Therefore both x(t) and
ẋ(t) have limits when t ↓ α, the limit of x being nonzero. The standard continuation theory for
solutions of ordinary differential equations states that our solution can be extended to some time
interval containing α. This is a contradiction and concludes the proof.

Assume now that T > 0 is fixed and xn : [−T, 0] → R2\{0} is a sequence of solutions of (K)
satisfying

xn(0) → x0 ̸= 0, ẋn(0) → ẋ0.

Lemma 2.2. If the solution x = x(t) of (K) with x(0) = x0 and ẋ(0) = ẋ0 cannot be extended to
[−T, 0], then min[−T,0] |xn| → 0 as n→ +∞.

Proof. We argue by contradiction and assume that, after possibly passing to a subsequence,
{min[−T,0] |xn|}n is bounded from below by a positive constant. Combining (4) with the fact that
{ẋn(0)} is bounded we conclude that {|ẋn(t)|}n is uniformly bounded on [−T, 0]. In addition
{|xn(0)|} is bounded, and it follows that also {|xn(t)|}n is uniformly bounded on [−T, 0]. More-
over, both sequences {xn(t)}n, {ẋn(t)}n are equicontinuous -as a consequence of equation (K) in
the latter case-, and the Ascoli-Arzela lemma states that they are both uniformly convergent, at
least along some subsequence. Then, x(t) := limn→+∞ xn(t) must be a solution of (K) satisfying
x(0) = x0, ẋ(0) = ẋ0 and defined on [−T, 0]. It contradicts our assumptions and concludes the
proof.

3 Existence, uniqueness and nondegeneracy in the recti-

linear problem

In this section we are concerned with the collinear motions of the frictional Kepler problem (K).
While our main goal will be to prove the rectilinear part (a) of Theorem 1.1, we shall conclude
by showing the nondegeneracy of the unique rectilinear solution.

Thus, let w0 ∈ R2 with |w0| = 1 be fixed and consider motions x :]α, 0] → R2\{0} of the form
x(t) := r(t)w0 with r = r(t) > 0. Setting δ(r) := D(rw0), system (K) becomes

r̈ + δ(r)ṙ = − 1

r2
, r > 0. (5)

Throughout this section we shall analyze this scalar equation under the assumptions (modelled
on [D1]) that δ :]0,+∞[→ R is nonnegative, bounded and continuously differentiable. We shall
start with the following observation:

Lemma 3.1. Two solutions r1 ̸≡ r2 of (5) intersect at most once. With other words, if r1(t∗) =
r2(t∗) for some t∗, then r1(t) ̸= r2(t) for any t ̸= t∗ in the common definition interval of r1 and
r2.

Proof. We use a contradiction argument and assume instead that there are solutions r1 ̸≡ r2 of
(5) and times tA < tB in the common definition interval of r1 and r2 such that

r1(tA) = r2(tA) =: rA, r1(tB) = r2(tB) =: rB, r1(t) < r2(t) for every t ∈]tA, tB[. (6)

Let ∆ :]0,+∞[→ R denote a primitive of δ. Integration in both sides of (5) leads to the equalities

ṙi(tB)− ṙi(tA) = −∆(rB) + ∆(rA)−
∫ tB

tA

1

ri(t)2
dt, i = 1, 2,
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implying that
ṙ2(tB)− ṙ2(tA) > ṙ1(tB)− ṙ1(tA),

which is not possible since ṙ1(tA) ≤ ṙ2(tA) and ṙ1(tB) ≥ ṙ2(tB), by (6). It concludes the proof.

Let r = r(t), t ∈]α, 0], be a solution of (5). Recalling the arguments at the beginning of
Section 2, and setting

p(t) := exp

(
−
∫ 0

t

δ(r(s))ds

)
, (7)

we see that
d

dt
(p(t)ṙ) = −p(t)

r2
, r > 0. (8)

On the other hand, denoting by D∗ ≥ 0 an upper bound of δ on ]0,+∞[ one checks that inequality
(2) still holds in this situation.

Fix numbers T, rB > 0 and consider the set I = I(T, rB) of final speeds v ∈ R such that the
solution r = r(t) of (5) with r(0) = rB and ṙ(0) = v is defined in the past up to time t = −T .
The usual smooth dependence theorems state that I is open and the function

R : I → R, v 7→ r(−T ),

is continuously differentiable on I. The main result of this section collects some basic properties
of I and R. Notice that, in particular, the second statement implies assertion (a) of Theorem
1.1:

Lemma 3.2. The following hold:

(i) There exists some β ∈ R such that I =]−∞, β[.

(ii) R establishes a decreasing diffeomorphism from ]−∞, β[ into ]0,+∞[. With formulas,

dR

dv
(v) < 0 for every v < β , lim

v→−∞
R(v) = +∞, lim

v→β−
R(v) = 0.

Proof. The fact that I is open andR : I → R is continuously differentiable is a direct consequence
of the usual theorems of smooth dependence on initial conditions. Moreover, it follows from
Lemmas 2.1 and 3.1 that the set I is an interval and R : I → R is strictly decreasing.

We claim first that I is unbounded from below and limv→−∞R(v) = +∞. It can be done by
picking some sequence {rn}n of solutions of (5) with

rn(0) = rB for every n, 0 > vn := ṙn(0) → −∞.

Each function rn is defined on some interval ]αn, 0], maximal to the left. If ṙn(t) < 0 ∀t ∈
] max(αn,−T ), 0[ then Lemma 2.1 implies that αn < −T and we set an := −T . Otherwise,
ṙn(t) = 0 for some t ∈] max(αn,−T ), 0[, and we denote by an the maximum of such numbers t.
In any case, rn(t) ≥ rB for all t ∈ [an, 0]. Setting pn : [an, 0] → R as in (7) for r = rn, and arguing
as in (3), equality (8) implies that

|pn(t)ṙn(t)− ṙn(0)| ≤
T

r2B
, an ≤ t ≤ 0, n ∈ N,

which, in combination with (2) implies that max[an,0] ṙn → −∞ as n → +∞. In particular,
an = −T for n big enough and the claim follows.
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We observe next that I is bounded from above. Arguing by contradiction, we assume the
existence of a second sequence {rn}n of solutions of (5) with vn := ṙn(0) → +∞, all of them
defined on [−T, 0] and satisfying rn(0) = rB. It follows from (8) that

d

dt
(pn(t)ṙn(t)) < 0, t ∈ [−T, 0],

where each pn : [−T, 0] → R is defined as in (7) for r = rn. It implies that ṙn(t) → +∞ uniformly
with respect to t ∈ [−T, 0], which is not possible since all rn are positive.

We also need to check that limv→β− R(v) = 0. This statement follows from the combination
of Lemma 2.2 with the observation that solutions r = r(t) of (5) do not have local minima in
open time intervals. Therefore, I =]−∞, β[ for some β ∈ R, thus proving (i).

In order to establish (ii) it remains to show that
dR

dv
(v) ̸= 0 for every v < β. We use a

contradiction argument and assume instead that
dR

dv
(v∗) = 0 for some v∗ < β. It implies the

existence of some solution r∗ = r∗(t) of (5) such that the linear Dirichlet problem

ü+
dδ

dr
(r∗(t))ṙ∗(t)u+ δ(r∗(t))u̇ =

2u

r∗(t)3
, u(−T ) = u(0) = 0, (9)

has a nonzero solution u : [−T, 0] → R. After possibly replacing u by −u and T by some smaller
time there is no loss of generality in further assuming that u(t) > 0 for every t ∈]− T, 0[. Noting
that (dδ/dr)(r∗(t))ṙ∗(t)u(t) + δ(r∗(t))u̇(t) = (d/dt)[δ(r∗(t))u(t)], integration in (9) leads to

u̇(0)− u̇(−T ) = 2

∫ 0

−T

u(t)

r∗(t)3
ds > 0,

which is not possible since u̇(−T ) > 0 > u̇(0). This contradiction concludes the proof.

One immediately arrives to the following reformulation of Theorem 1.1(a), where no traces of
assumption [D2] are present:

Corollary 3.3. Let δ :]0,+∞[→ R be continuously differentiable, nonnegative and bounded. Then
for every rA, rB > 0 and every T > 0 there exists a unique solution of (5) with r(−T ) = rA and
r(0) = rB.

We close this subsection by exploring the nondegeneracy of the rectilinear solutions of the
Kepler equation (K). Some one-dimensional nondegeneracy was already established in Lemma
3.2(ii), but we would like to show nondegeneracy in the context of the planar Dirichlet problem
(K)-(BC). More precisely, we shall adopt the following

Definition. A solution x∗ : [−T, 0] → R2\{0} of (K) will be called nondegenerate if the combi-
nation of the variational equation

ẅ + ⟨∇D(x∗(t)), w⟩ẋ∗(t) +D(x∗(t))ẇ = − 1

|x∗(t)|3
w + 3

⟨x∗(t), w⟩
|x∗(t)|5

x∗(t) , w ∈ R2 , (10)

and the homogeneous Dirichlet boundary conditions w(−T ) = 0 = w(0), admits only the trivial
solution w ≡ 0.

Lemma 3.4. Every rectilinear solution x∗ : [−T, 0] → R2\{0} of (K) is nondegenerate.
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Proof. Set x∗(t) := r∗(t)w0 where w0 ∈ R2 is unitary and r∗(t) > 0 for every t ∈ [−T, 0]. Equation
(10) becomes

ẅ + ⟨∇D(r∗(t)w0), w⟩ṙ∗(t)w0 + δ(r∗(t))ẇ = − 1

r∗(t)3
w + 3

⟨w0, w⟩
r∗(t)3

w0 , w ∈ R2 , (11)

where δ(r) := D(rw0), r > 0. Let w : [−T, 0] → R2 be a solution with w(−T ) = 0 = w(0); then
v(t) := det(w(t), w0) satisfies the linear second-order equation

v̈ + δ(r∗(t))v̇ +
v

r∗(t)3
= 0, t ∈ [−T, 0],

which also admits the positive solution r∗ : [−T, 0] → R. We use the method of reduction of order
and set v = r∗(t)v1, to obtain

v̈1 = −
(
2
ṙ∗(t)

r∗(t)
+ δ(r∗(t))

)
v̇1 , v1(−T ) = v1(0) = 0 .

The boundary conditions imply the existence of some t0 ∈] − T, 0[ such that v̇1(t0) = 0, sub-
sequently the differential equation implies that v̇1 ≡ 0, and again by the boundary conditions,
v1 ≡ 0. Consequently, det(w(t), w0) ≡ 0, implying the existence of some function u : [−T, 0] → R
such that w(t) = u(t)w0 for every t ∈ [−T, 0]. Going back to (11) we see that u must be a

solution of (9), and we deduce that
dR

dv
(ṙ∗(0))u̇(0) = u(−T ) = 0 (the function R is constructed

with respect to the final position rB := r∗(0)). But
dR

dv
(ṙ∗(0)) < 0, and then, u̇(0) = 0, so that

u ≡ 0 by uniqueness. Therefore w ≡ 0, thus concluding the proof.

4 Three cornerstones supporting the proof

The purpose of this section is to bring forward three important results, labelled as Propositions
4.1, 4.2 and 4.3, which will hold up the proof of Theorem 1.1(b) in Section 5. In order to keep
the pace of the exposition their proofs will be postponed to Sections 6-9, in the second part of
the paper.

Proposition 4.1. Nonrectilinear solutions of (K) are globally defined in the past. With other
words, if the nonrectilinear solution x :]α, 0] → R2\{0} is maximal in the past, then α = −∞.

Proposition 4.1 was previously proved in [17, Proposition 2.1] assuming that D is constant,
and in [18, Proposition 2.1] when D = D(|x|) depends only on the height of the particle. In
the proof we shall use assumption [D1], but not [D2]. Nonrectilinear solutions are also globally
defined in the future; however, we shall not need this fact in our analysis.

A second ingredient which shall be needed in the next section concerns the existence of a
priori bounds for the final speed of solutions joining two given heights in a given flight time. More
precisely, assume that rA, rB > 0 (in addition to T > 0) are fixed and consider the boundary
conditions

|x(−T )| = rA, |x(0)| = rB. (12)

Proposition 4.2. There exists some M > 0 (depending on rA, rB and T but not on x), such
that whenever x : [−T, 0] → R2\{0} is a solution of (K)-(12) then |ẋ(0)| < M .
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We do not know whether a similar property holds for the initial (in the place of final) speed,
and this is the reason why we use time-backwards Poincaré maps instead of their more traditional
time-forward cousins. Proposition 4.2 ensures that no families of solutions of (K)-(12) blow up to
infinity, thus playing an important role in the application of continuation arguments of topological
degree.

We go back now to Proposition 4.1. There is an alternative way to present this result by
using the language of Poincaré maps, which, throughout this paper, will be referred to backward
time. Thus, given T > 0, the associated Poincaré map P = PT maps an initial condition
(x0, ẋ0) ∈ (R2\{0})×R2 into the pair (x(−T ), ẋ(−T )) ∈ R2 ×R2 ≡ R4. Here x = x(t) stands for
the solution of (K) satisfying the final conditions:

x(0) = x0, ẋ(0) = ẋ0. (FC )

The natural domain of P is the set Ω = ΩT of points (x0, ẋ0) ∈ (R2\{0})×R2 such that the solution
of (K)-(FC ) can be extended to t = −T . The usual continuous dependence theorems state that
Ω is open in R4 and P : Ω → R4 is continuous. Proposition 4.1 above can be reformulated by
saying that

Ω ⊃ {(x0, ẋ0) ∈ R2 × R2 : x0, ẋ0 are linearly independent}. (13)

We denote by X : Ω → R2 the first two (position) components of P . With other words,
X = Π ◦ P , where Π : R2 × R2 → R2 stands for the projection (x, ẋ) 7→ x. Our third postulate
will be the following:

Proposition 4.3. X admits a continuous extension X̄ : (R2\{0}) × R2 → R2. Moreover,
X̄ (x0,Rx0) ⊂ [0,+∞[x0, for every x0 ∈ R2\{0}.

Thus, collinear solutions may collide with the singularity, but admitting that they bounce
back at the collision one obtains a flow that is continuous in its position components. This result
will be obtained with the help of (Levi-Civita’s) regularization theory.

Before closing this section we point out a consequence of the (still unproved) Propositions
4.1 and 4.3 which will play an important role in the proof of Theorem 1.1(b). We go back to
the situation described in Lemma 2.2 and suppose that xn : [−T, 0] → R2\{0} is a sequence of
solutions of (K). For each n ∈ N we denote by ∆θn the angle swept by xn on the time interval
[−T, 0]. With formulas,

∆θn := θn(0)− θn(−T ),
where θn(t) := arg(xn(t)) is a continuous choice of the argument on xn.

Since each solution xn is defined on [−T, 0], it follows that (xn(0), ẋn(0)) ∈ ΩT for every n.
One has the following:

Corollary 4.4. Assume that (xn(0), ẋn(0)) → (x0, ẋ0) ∈ ∂ΩT . If there are constants rA, rB > 0
such that |xn(−T )| = rA and |xn(0)| = rB for every n ∈ N then lim infn→+∞ |∆θn| ≥ 2π.

Proof. By assumption, |xn(0)| = rB ∀n ∈ N, and we see that |x0| = rB. The combination of
Proposition 4.1 -in the form given in (13)- and Proposition 4.3, implies that

ẋ0 ∈ Rx0 , xn(−T ) →
rA
rB
x0 as n→ +∞.

Consequently, either lim infn→+∞ |∆θn| ≥ 2π as claimed, or otherwise limn→+∞ ∆θn = 0. In
the latter situation the functions ξn(t) := ⟨xn(t), x0⟩/rB are positive for n big enough, and they
satisfy

ξn(−T ) → rA, ξn(0) → rB, min
−T≤t≤0

ξn(t) → 0, n→ +∞,

9



the last fact following from Lemma 2.2. On the other hand, (K) implies that

ξ̈n +D(xn)ξ̇n = − ξn
|xn(t)|3

< 0,

which, when evaluated at the point where ξn attains its minimum leads to contradiction. It
concludes the reasoning.

With the aim of speeding up our main arguments we put off the proofs of Propositions 4.1, 4.2
and 4.3 to Sections 6-9. Nevertheless we shall rely on them in the next section to prove Theorem
1.1(b).

5 Brouwer degree and continuation from the rectilinear

problem

In this section we shall prove Theorem 1.1 by relying on Propositions 4.1, 4.2 and 4.3, and using
some basic techniques from Brouwer degree theory. We refer the reader to the classical textbook
[16] or the recent treatise [7] for comprehensive introductions to Brouwer degree.

An important property of the Brouwer degree is its invariance by homotopies. If two problems
are connected by a homotopy in such a way that solutions do not blow up to infinity or escape
through the boundary, then they have the same degree. In particular, if the first problem has
nonzero degree, then the second has a solution.

In this section we shall need a particular consequence of this property that we describe next.
Let U ⊂ RN be open (but not necessarily bounded), and let

Φ : [0, 1]× U → RN , (λ, u) 7→ Φ(λ, u),

be continuous and admit a continuously-defined derivative with respect to the u variables, denoted
∂uΦ : [0, 1]× U → RN×N . We set Σ := {(λ, u) ∈ [0, 1]× U : Φ(λ, u) = 0} and assume that

(a) There exists some u0 ∈ U such that Σ ∩ ({0} × RN) = {(0, u0)} and det(∂uΦ(0, u0)) ̸= 0.

(b) There exists some constant M > 0 such that |u| < M for every (λ, u) ∈ Σ.

(c) Σ ∩ ([0, 1]× (∂U)) = ∅.

Lemma 5.1. Under the above, for each λ ∈ [0, 1] there exists some uλ ∈ U such that (λ, uλ) ∈ Σ.

Proof. (See Fig. 1(a)). Assumptions (b)-(c) guarantee the existence of some ρ > 0 such that
u+ B̄(ρ) ⊂ U for any (λ, u) ∈ Σ. Here, B̄(ρ) denotes the closed ball of radius ρ in RN . Set

V := {u ∈ RN such that |u| < M and u+ B̄(ρ) ⊂ U},

which is open and bounded. Moreover, V̄ ⊂ U and Σ ⊂ [0, 1]×V . Therefore, the Brouwer degree
degB(Φ(λ, ·),V) does not depend on λ ∈ [0, 1]. For λ = 0, degB(Φ(0, ·),V) = sign(det ∂uΦ(0, u0)) =
±1, and thus,

degB(Φ(λ, ·),V) ̸= 0 for every λ ∈ [0, 1].

The result follows.
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λ →1

Σ

(a) (b)

B

A0
Aλ

A

Aλ

Figure 1: (a): The projection of Σ on the λ-variable is the full interval [0, 1]. (b): Rotating the
starting point on a circumference centered at the origin we obtain a homotopy from a rectilinear
problem to the original one.

Remark 5.2. Well-known arguments going back to Leray-Schauder ([15, Théorème Fondamental,
p. 63]) show, under the assumptions above, the existence of a connected set of solutions sweeping
all values of λ. This fact will not be used in our argument.

Proof of Theorem 1.1(b). Write A = rA(cos θA, sin θA) and B = rB(cos θB, sin θB) = rBw0, where
rA, rB > 0, |θB − θA| < 2π, and w0 := (cos θB, sin θB). We consider the map Ψ sending each final
speed v0 ∈ R2 into the polar coordinates (r(−T ), θ(−T )) of the position x(−T ) = X (B, v0), of
the solution x of (K) satisfying x(0) = B, ẋ(0) = v0. The lifting of the angle θ = θ(t) is chosen
so that θ(0) = θB. In view of Proposition 4.1 and Lemma 3.2(i), the map Ψ is naturally defined
on the open set

U := R2\([β,+∞[w0),

for some β ∈ R. We also set

Φ : [0, 1]× U → R2, Φ(λ, v0) := Ψ(v0)−
(
rA, ϑ(λ)

)
,

where ϑ(λ) := (1 − λ)θB + λθA. Denoting Aλ := rA(cosϑ(λ), sinϑ(λ)) we see that, for λ = 0,
A0 = (rA/rB)B lies on the same ray as B, and thus Φ(0, v0) = 0 if and only if v0 is the final
velocity of a rectilinear arc from A0 to B in the flight time T . In the case λ = 1 it is clear that
Φ(1, v0) = 0 if and only if v0 is the final velocity of an arc from A1 = A to B in the flight time T .
With an additional remark: the direction of rotation must be set according to the sign of θB−θA,
clockwise for θB − θA < 0 and counterclockwise for θB − θA > 0. Finally, for 0 < λ < 1 one checks
that Φ(λ, v0) = 0 if and only if v0 is the final velocity of an arc from Aλ to B in the flight time T
(the previous comments on the direction of the rotation still apply). See Fig. 1(b).

Theorem 1.1(b) follows by applying Lemma 5.1 to this function. In order to check assumption
(a) we observe that if v0 ∈ U satisfies that Φ(0, v0) = 0 then v0 = µw0 for some µ ∈ R and our
solution is rectilinear. Corollary 3.3 then implies that there exists a unique solution of this type,
which is nondegenerate by Lemma 3.4. Assumption (b) is ensured by Proposition 4.2, while (c)
is actually a consequence of Corollary 4.4. The proof is complete.
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6 Nonrectilinear solutions are defined for all (past) time

The goal of this section is to prove Proposition 4.1; with this purpose we assume [D1] but not
[D2]. Let us go to polar coordinates and replace the cartesian dependent variables x ∈ R2\{0} by
r := |x| > 0 and θ := arg(x) ∈ R/2πZ. The equations of motion are simpler if one introduces the
angular momentum c := det(x, ẋ) = r2θ̇, which is another function of time. System (K) yields

r̈ +D(x)ṙ +
1

r2
− c2

r3
= 0, ċ+D(x)c = 0,

or, equivalently (assuming that x = x(t) is defined on the time interval ]α, 0] for some α < 0),

d

dt
(pṙ) = p

(
c2

r3
− 1

r2

)
, c(t) =

c(0)

p(t)
, (14)

the function p = p(t) > 0 being given by (1). We shall also introduce the amended potential and
total energies

v := −1

r
+

c2

2r2
, h :=

ṙ2

2
+ v, (15)

which are again functions of t. A direct computation shows that ḣ = −D(x)(ṙ2+ c2/r2) ≤ 0, and
thus, h is decreasing. Through Sections 6-7, we shall think of the six functions r, θ, c, p, v, h as
associated to the solution x.

Proof of Proposition 4.1. We follow along the lines of [17, Proposition 2.1], which deals with the
special case D ≡ const. See also [18, Proposition 2.1], where solutions are shown to be globally-
defined in the future under the assumption that D = D(|x|) depends only on the height of the
particle.

We shall argue by contradiction and assume that α > −∞. Lemma 2.1 then states that
lim inft↓α r(t) = 0. In view of (14) one has the inequality

d

dt

(
p(t)ṙ(t)

)
≥ p(t)

(
c(0)2

r(t)3
− 1

r(t)2

)
, t ∈]α, 0]. (16)

The function ϱ 7→ c(0)2/ϱ3 − 1/ϱ2 is bounded from below on ]0,+∞[. Together with (2) we see
that there exists some constant M > 1 such that

d

dt

(
p(t)ṙ(t)

)
≥ −M, t ∈]α, 0]. (17)

On the other hand, r is positive and lim inft↓α r(t) = 0, and we deduce that

lim sup
t↓α

(
p(t)ṙ(t)

)
≥ 0. (18)

The combination of (17)-(18) implies that

p(t)ṙ(t) ≥ −M(t− α), t ∈]α, 0],

and consequently (by (2)),

ṙ(t) ≥ −M(t− α)

p(t)
≥Mαe−D∗α, t ∈]α, 0].
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We have shown that ṙ is bounded from below on ]α, 0]. It implies that the limit limt↓α r(t) exists,
and since lim inft↓α r(t) = 0 it follows that limt↓α r(t) = 0. Therefore, (16) gives

lim
t↓α

d

dt

(
p(t)ṙ(t)

)
= +∞,

and so, the function t 7→ p(t)ṙ(t) is strictly increasing for t near α. Together with (18) we deduce
that ṙ(t) > 0 for t sufficiently close to α. Let now v̂, ĥ :]α, 0] → R be defined by

v̂(t) :=
c(0)2

2r(t)2
− 1

r(t)
, ĥ(t) :=

1

2
ṙ(t)2 + v̂(t),

and observe that
lim
t↓α

v̂(t) = lim
t↓α

ĥ(t) = +∞.

In particular, v̂(t) > 0 for t close to α, and one has

dĥ

dt
= ṙ(t)

[
−D(x(t))ṙ(t) +

c(t)2 − c(0)2

r(t)3

]
≥ −D(x(t))ṙ(t)2 ≥ −2D∗ĥ(t),

or, what is the same,
d

dt

[
e2D∗tĥ(t)

]
≥ 0, contradicting the previous observation that ĥ(t) → +∞

as t ↓ α. This contradiction concludes the proof.

7 Bounds for the arrival velocity when connecting two

given heights in a given time

The goal of this section is to prove Proposition 4.2, which ensures the boundedness of the set of
arrival velocities of solutions travelling between two given heights in a given time lapse. As in
the previous section, we assume [D1], but not [D2].

As a preliminary remark we point out that in the case of rectilinear solutions this statement
was already proved in Corollary 3.3. Therefore, it only remains to check Proposition 4.2 in
the nonrectilinear situation. Remembering Proposition 4.1, nonrectilinear solutions are globally
defined in the past.

We may divide our task into smaller steps using polar coordinates x = reiθ. Since

|ẋ(0)| =
√
ṙ(0)2 + r(0)2θ̇(0)2 =

√
ṙ(0)2 + c(0)2/r2B ,

we see that the nonrectilinear case of Proposition 4.2 can be equivalently reformulated as follows:

Proposition 4.2∗. For any rA, rB, T > 0 there exists some M > 0 such that whenever x = x(t)
is a nonrectilinear solution of (K)-(12) then

(i) ṙ(0) ≥ −M, (ii) ṙ(0) ≤M, (iii) |c(0)| ≤M.

The goal of the remaining of this section is to prove the three assertions of Proposition 4.2∗.
We begin with a result that clearly implies Proposition 4.2∗(i).

Lemma 7.1. Let rB, T > 0 be given, and let xn = xn(t), t ∈ [−T, 0], be a sequence of solutions
of (K) with

rn(0) = rB, ṙn(0) → −∞.

Then, ṙn(t) → −∞ as n→ +∞, uniformly with respect to t ∈ [−T, 0].
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Proof. After possibly discarding a finite number of terms there is no loss of generality in assuming
that ṙn(0) < 0 for every n ∈ N. We set

τn := min
{
t ∈ [−T, 0] : ṙn(s) ≤ 0 ∀s ∈ [t, 0]

}
,

and consider the functions pn : [τn, 0] → R defined as in (1) for x = xn. Recalling (14), for each
n ∈ N one has

d

dt

(
pn(t)ṙn

)
≥ −pn(t)

r2n
≥ − 1

r2B
, τn ≤ t ≤ 0,

and integration gives

ṙn(t) ≤ pn(t)ṙn(t) ≤ ṙn(0) +
T

r2B
, τn ≤ t ≤ 0.

In particular, for n big enough ṙn(τn) < 0 and we deduce that τn = −T . Thus, ṙn(t) → −∞,
uniformly with respect to t ∈ [−T, 0]. It concludes the proof.

Our next task will consist in establishing the upper bounds announced in assertion (ii) of
Proposition 4.2∗. This fact will arise from Lemma 7.1 and statement (iii) of the following

Lemma 7.2. Let xn :] − ∞, 0] → R2\{0} be a sequence of nonrectilinear solutions of (K)
satisfying, for some r∗ > 0,

rn(0) = r∗, ṙn(0) → +∞.

Then, for n big enough the following hold:

(i) There exists some tn < 0 such that ṙn(tn) = 0. Moreover, limn→+∞ tn = 0.

(ii) ṙn(t) > 0 for all t ∈]tn, 0[, and ṙn(t) < 0 for all t < tn .

(iii) There exists some τn < tn such that rn(τn) = r∗. Moreover, limn→+∞ τn = 0 and limn→+∞ ṙn(τn) =
−∞.

In the proof of Lemma 7.2 we shall need the following result. Here, the potential and total
energies v = v(t), h = h(t) are defined as in (15).

Lemma 7.3. Let a < b be given numbers and let x : [a, b] → R\{0} be a nonrectilinear solution
of (K) satisfying

ṙ(t) ≥ 0 ∀t ∈ [a, b], v(b) ≥ 0 .

Then v̇ ≤ 0 on [a, b].

Proof. A direct computation gives

v̇(t) = ṙ(t)

(
1

r(t)2
− c(t)2

r(t)3

)
+
c(t)ċ(t)

r(t)2
≤ ṙ(t)

(
1

r(t)2
− c(t)2

r(t)3

)
≤ ṙ(t)

r(t)

(
1

r(t)
− c(b)2

r(t)2

)
≤

≤ − ṙ(t)
r(t)

(
c(b)2

2r(t)2
− 1

r(t)

)
The function ϱ > 0 7→ c(b)2/(2ϱ2)−1/ϱ vanishes only at ϱ = c(b)2/2, is positive for smaller ϱ and
negative for bigger ϱ. By assumption it is nonnegative at ϱ = r(b) and hence

0 < r(t) ≤ r(b) ≤ 1

2c(b)2
,

c(b)2

2r(t)2
− 1

r(t)
≥ 0, for any t ∈]a, b[,

thus concluding the proof.
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Proof of Lemma 7.2. (i): We use a contradiction argument: should this statement fail to hold,
after possibly passing to a subsequence it would be possible to find some ϵ > 0 such that ṙn(t) > 0
for every t ∈ [−ϵ, 0]. Motivated by Lemma 7.3 we distinguish three possibilities:

(a) vn(0) → +∞. By Lemma 7.3, vn(t) → +∞ as n → +∞, uniformly with respect to
t ∈ [−ϵ, 0], and in particular, vn(t) > 0 for all t ∈ [−ϵ, 0] and n big enough. We define
pn : [−ϵ, 0] → R as in (1) for x = xn and observe that, by (14),

d

dt

(
pn(t)ṙn(t)

)
= pn(t)

[cn(t)2
rn(t)3

− 1

rn(t)2

]
≥ pn(t)

rn(t)
vn(t) ≥

e−D∗ϵ

r∗
vn(t) → +∞ as n→ +∞,

(19)
uniformly with respect to t ∈ [−ϵ, 0]. Since pn(−ϵ)ṙn(−ϵ) > 0 we see that pn(t)ṙn(t) → +∞
as n→ +∞, uniformly with respect to t ∈ [−ϵ/2, 0]. It follows that ṙn(t) → +∞ uniformly
with respect to t ∈ [−ϵ/2, 0], and so

r∗ = rn(0) = rn(−ϵ/2) +
∫ 0

−ϵ/2

ṙn(s)ds→ +∞,

a contradiction.

(b) {vn(−ϵ)} bounded from above. By Lemma 7.3, the sequence {vn(t)} is bounded from above,
uniformly with respect to t ∈ [−ϵ, 0]. On the other hand, for each n ∈ N we have

1

2
ṙn(t)

2 = hn(t)− vn(t) ≥ hn(0)− vn(t) ≥
1

2
ṙn(0)

2 − vn(t) , t ∈ [−ϵ, 0],

and we deduce that ṙn(t) → +∞ as n → +∞, uniformly with respect to t ∈ [−ϵ, 0]. As
before, it implies that r∗ = rn(0) → +∞ as n→ +∞, a contradiction.

(c) vn(−ϵ) → +∞ but {vn(0)} is bounded from above. Since, moreover, vn(0) ≥ −1/r∗, we see
that hn(0) = ṙn(0)

2/2 + vn(0) → +∞. Then, for n big enough

vn(0) <
1

2
min

(
vn(−ϵ), hn(0)

)
< vn(−ϵ),

and there exists some sn ∈]−ϵ, 0[ such that vn(sn) = min
(
vn(−ϵ), hn(0)

)
/2. Thus, vn(sn) →

+∞ as n→ +∞ and vn(sn) > 0 for n big enough. Lemma 7.3 implies that

vn(t) ≥ vn(sn) if − ϵ ≤ t ≤ sn; vn(t) ≤ vn(sn) if sn ≤ t ≤ 0.

Now, arguing as in case (a), for t ∈ [−ϵ, sn] we have

d

dt

(
pn(t)ṙn(t)

)
≥ pn(t)

rn(t)
vn(t) ≥

e−D∗ϵ

r∗
vn(sn) → +∞ as n→ +∞,

from where it follows that sn → −ϵ as n → +∞. On the other hand, repeating the argument of
case (b), for t ∈ [sn, 0] one has

1

2
ṙn(t)

2 = hn(t)− vn(t) ≥ hn(0)− vn(sn) ≥
1

2
hn(0) → +∞ as n→ +∞,

and we deduce that sn → 0, a new contradiction. These three contradictions prove (i).
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(ii): Let the sequence {tn} be as given by (i). After possibly replacing tn with

t∗n := max{t < 0 : ṙn(t) = 0},

there is no loss if generality in assuming that ṙn(t) > 0 for all t ∈]tn, 0[. Since each hn = hn(t) is
a decreasing function of t, we see that

vn(tn) = hn(tn) ≥ hn(0) ≥
1

2
ṙn(0)

2 − 1

r∗
→ +∞ as n→ +∞.

Thus, vn(tn) > 0 for n big enough, and we see that

r̈n(tn) = −D(xn(tn))ṙn(tn) +
cn(tn)

2

rn(tn)3
− 1

rn(tn)2
≥ vn(tn)

rn(tn)
> 0,

and we deduce that ṙn(t) < 0 for 0 < tn − t small. If there were some sn < tn such that

ṙn(sn) = 0, ṙn(t) < 0 for every t ∈]sn, tn[,

then Lemma 7.3 would imply that vn(sn) ≥ vn(tn) > 0, and arguing as above, r̈n(sn) > 0. This
is a contradiction and concludes the proof.

(iii) Notice that rn(tn) < r∗. We set

τn := inf{t ∈]−∞, tn[: rn(t) < r∗} ∈ [−∞, tn[ , rn := lim
t↓τn

rn(t) ≤ r∗ ,

and write

ṙn(t) :=

{
−φn(rn(t)) if τn < t < tn ,

ψn(rn(t)) if tn < t < 0 .

The functions φn :]rn(tn), rn[→ R and ψn :]rn(tn), r∗[→ R are continuous, and since all energy
functions hn = hn(t) are decreasing we see that 0 < ψn(r) ≤ φn(r) for every r ∈]rn(tn), rn[. Thus,

tn − τn =

∫ tn

τn

dt = −
∫ tn

τn

ṙn(t)

φn(rn(t))
dt =

∫ rn

rn(tn)

1

φn(r)
dr ≤

∫ r∗

rn(tn)

1

ψn(r)
dr = −tn,

i.e., 2tn ≤ τn < 0. In particular, −∞ < τn → 0 and we see that rn = rn(tn) = r∗. The result
follows.

We conclude this section by checking assertion (iii) of Proposition 4.2∗. Having already shown
the previous statements (i)-(ii), the remaining work is collected in the following

Lemma 7.4. Let T, rA, rB > 0 be given, and let xn : [−T, 0] → R2\{0} be a sequence of nonrec-
tilinear solutions of (K)-(12) such that {ṙn(0)} is bounded. Then {cn(0)} is bounded.

Proof. We distinguish two cases:

Assume firstly that max−T/2≤t≤0 rn(t) → +∞. Since rn(0) = rB for every n, there exists a
sequence {tn}n ⊂ [−T/2, 0] with rn(tn) ≥ 1 for every n and ṙn(tn) → −∞. Thus, Lemma 7.1
states that maxt∈[−T,tn] ṙn(t) → −∞, implying that rA = rn(−T ) → +∞, a contradiction.
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The other possibility is that, after possibly passing to a subsequence, there exists some constant
ϱ > 0 such that rn(t) ≤ ϱ for every t ∈ [−T/2, 0] and for every n ∈ N. The left hand side of (14)
gives

d

dt

(
pn(t)ṙn(t)

)
= pn(t)

(
cn(t)

2 − rn(t)

rn(t)3

)
≥ pn(t)

(
cn(t)

2 − ϱ

rn(t)3

)
, t ∈ [−T/2, 0], n ∈ N.

Using a contradiction argument we assume that |cn(0)| → +∞. The right hand side of (14)
implies that |cn(t)| ≥ |cn(0)| → +∞ for any t ∈ [−T/2, 0]. In particular, for n big enough,
cn(t)

2 − ϱ ≥ cn(0)
2 − ϱ > 0 for all t ∈ [−T/2, 0] and one has:

γn := min
t∈[−T/2,0]

[
d

dt

(
pn(t)ṙn(t)

)]
≥ min

t∈[−T/2,0]

[
pn(t)

(
cn(0)

2 − ϱ

ϱ3

)]
→ +∞ as n→ +∞.

On the other hand, integration gives

pn(t)ṙn(t) ≤ ṙn(0) + γnt ≤ |ṙn(0)|+ γnt , t ∈
[
−T
2
, 0

]
,

and thus (by (2)), ṙn(t) ≤ |ṙn(0)|eD∗T/2 + γne
D∗T/2t for every t ∈ [−T/2, 0]. Integrating again we

find that rn(−T/2) → +∞, contradicting our assumption that {rn} was uniformly bounded on
[−T/2, 0]. It proves the result.

8 Colliding solutions of the Kepler problem

In this section we continue the study, initiated in Section 3, of the rectilinear solutions of the
frictional Kepler problem (K). It is divided into two subsections. In the first one we explore
the behavior of rectilinear solutions in the vicinity of a collision, and in the in the second we
introduce the Levi-Civita regularization for the rectilinear problem and prove the divergence of
some Sundman integrals. Together they will pave the way to complete the proof of Proposition
4.3 in Section 9.

Thus, throughout this section we go back to equation (5). As in Section 3 it will be assumed
that δ :]0,+∞[→ R is nonnegative, bounded and continuously differentiable. In addition, in the
second subsection we shall further introduce some growth conditions on dδ/dr near the origin
(corresponding to [D2]).

8.1 Asymptotics near collisions

Let r :]α, ω[→ R be a solution of (5), assumed maximal both to the left and to the right. Its
associated energy is the function h :]α, ω[→ R defined by

h(t) :=
1

2
ṙ(t)2 − 1

r(t)
.

Notice that h is decreasing. In fact, a direct computation gives

ḣ(t) = −δ(r(t))ṙ(t)2 ≤ 0. (20)

Lemma 8.1. If α > −∞, then the following hold:

(i) lim
t↓α

r(t) = 0.
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(ii) h(α) := lim
t↓α

h(t) < +∞.

(iii) lim
t↓α

r(t)

(t− α)2/3
=

3

√
9

2
.

Proof. (i): It follows from equation (5) that at a critical point t0, r̈(t0) < 0 and so r attains a
strict local maximum (in particular, r has at most a critical point). In combination with Lemma
2.1 it implies that limt↓α r(t) = 0, as claimed.

(ii) The previous argument actually gives some further information: there exists some α <
t0 < ω such that ṙ(t) > 0 for all t ∈]α, t0[. Using a contradiction argument we assume that
limt↓α h(t) = +∞; then, after possibly replacing t0 by a smaller number there is no loss of
generality in further assuming that h(t) > 1 for all t ∈]α, t0[. Setting r0 := r(t0) > 0 we see
that there exists a C1 function φ :]0, r0[→]1,+∞[, φ = φ(r), such that h(t) = φ(r(t)) for any
t ∈]α, t0[. Since

ṙ(t) =
√
2

√
φ(r(t)) +

1

r(t)
, α < t < t0, (21)

differentiation and comparison with (20) yields

0 ≥ dφ

dr
(r(t)) = −δ(r(t))ṙ(t) ≥ −D∗ṙ(t) = −

√
2D∗

√
φ(r(t)) +

1

r(t)
, α < t < t0,

where D∗ ≥ 0 is an upper bound of δ. Therefore,

dφ

dr
(r) ≥ −

√
2D∗

√
φ(r) +

1

r
≥ −

√
2D∗

(√
φ(r) +

√
1

r

)
≥ −

√
2D∗

(
φ(r) +

1√
r

)
,

for any 0 < r < r0. Thus,

d

dr

(
e
√
2D∗rφ(r)

)
≥ −

√
2D∗ e

√
2D∗r

√
r

, 0 < r < r0,

which is not possible since limr↓0 e
√
2D∗rφ(r) = +∞ but the right hand side of the inequality is

integrable on ]0, r0[. This contradiction concludes the proof.

(iii) By combining (21) and (ii) we see that

lim
t↓α

√
r(t) ṙ(t) =

√
2,

so that, by L’Hopital rule,

lim
t↓α

r(t)3/2

t− α
=

3√
2
,

implying the statement.

Asymptotics of type (iii) were already obtained by Sperling [23] (see also [19, pp. 152-153]) for
the forced Kepler problem; however Sperling’s results do not apply here directly since the friction
force −δ(r)ṙ may not be bounded near the collision. We also remark that the corresponding
version of Lemma 8.1 when t ↑ ω still holds if ω < +∞. In fact, statements (i) and (iii) can be
readily translated to this situation with the same proofs. The situation in case (ii) is different:
the result is still true but it needs a new proof. We shall skip the details since this is not needed
in this paper; nevertheless, we emphasize the following consequence of the proofs of statements
(i) and (iii) of Lemma 8.1:
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Corollary 8.2. If ω < +∞ and h(ω) := lim
t↑ω

h(t) > −∞, then lim
t↑ω

r(t)

(ω − t)2/3
=

3

√
9

2
.

We close this subsection with a result that estimates the length of the maximal definition
interval of a solution from the final value (assumed finite) of its energy:

Lemma 8.3. Assume that −∞ < α < ω < +∞ and h(ω) > −∞. Then, h(ω) < 0 and

ω − α >
1

2
√

−h(ω)3
.

Proof. Corollary 8.2 implies in particular that limt↑ω r(t) = 0. Together with Lemma 8.1(i) we
see that there exists some point t0 ∈]α, ω[ such that ṙ(t0) = 0. Since h is decreasing, h(t0) =
−1/r(t0) ≥ h(ω); thus, h(ω) < 0 and r0 := r(t0) ≥ −1/h(ω).

The proof of Lemma 8.1(i) implies that ṙ(t) < 0 for every t ∈]t0, ω[. It follows that there
exists an unique point t1 ∈]t0, ω[ such that r(t1) = r0/2, and we see that

r̈(t) ≥ − 1

r(t)2
> − 4

r20
, t0 < t < t1,

and integration gives

r0
2

= r(t1) = r0+

∫ t1

t0

ṙ(s)ds = r0+

∫ t1

t0

(t1− s)r̈(s)ds > r0−
4

r20

∫ t1

t0

(t1− s)ds = r0−
2

r20
(t1− t0)

2,

implying that

ω − α > t1 − t0 >

√
r30
2

≥ 1

2
√
−h(ω)3

,

and thus concluding the proof.

8.2 The Levi-Civita regularization for the rectilinear Kepler problem

In this third subsection we continue to assume that δ :]0,+∞[→ R is nonnegative, bounded and
continuously differentiable, but in addition, mimicking [D2] we introduce the hypothesis

lim
r↓0

√
r
dδ

dr
(r) = 0. (22)

Let r :]α, 0] →]0,+∞[ be a solution of (5) and set

s(t) := −
∫ 0

t

dτ

r(τ)
, α < t ≤ 0, A := lim

t↓α
s(t) < 0.

Then, the pair of functions (u,E) :]A, 0] →]0,+∞[×R defined by

u(s(t)) :=
√
r(t), E(s(t)) := h(t), α < t ≤ 0,

solves the system {
u′′ + δ(u2)u2u′ = Eu

2
,

E ′ = −4δ(u2)(u′)2,
(LC )

on the invariant manifold

M :=
{
(u, u′, E) ∈]0,+∞[×R× R : 2(u′)2 − Eu2 = 1

}
,

(see [17]). Here and in what follows we denote by primes the derivatives with respect to the
Levi-Civita time s; derivatives with respect to t are denoted by dots.
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Conversely, given a solution (u,E) :]A, 0] →]0,+∞[×R of (LC ) on M we set

t(s) :=

∫ s

0

u(σ)2dσ, A < s ≤ 0, α := lim
s↓A

t(s) < 0,

and we see that the function r = r(t) defined on the time interval ]α, 0] by

r(t(s)) := u(s)2, A < s ≤ 0,

is a solution of (5) with energy h :]α, 0] → R given by h(t(s)) = E(s) for any s ∈]A, 0].

In this situation we shall say that (u,E) is the Goursat transform of r, and r is the Levi-
Civita transform of (u,E). The Goursat and Levi-Civita transforms define mutually-inverse,
bijective correspondences from the set of solutions r = r(t) > 0 of (5) defined on ]α, 0] for some
−∞ ≤ α < 0, into the set of solutions (u,E) = (u(s), E(s)) ∈]0,+∞[×R of (LC ) on M defined
on ]A, 0] for some −∞ ≤ A < 0.

Notice now that (LC ) is naturally defined for (u,E) ∈ R2 and does not require that u be
positive. In fact, the map u ∈ R 7→ δ(u2) is continuously differentiable by assumption (22). This
is the motivation behind the following statement. Here r :]α, 0] →]0,+∞[ is an arbitrary solution
of (5) and (u,E) :]A, 0] → R2 stands for its Goursat transform.

If (u,E) is maximal to the left as a solution of (LC ) then r is also maximal to the left as a
solution of (5). The converse is not true in general.

The first part of this assertion is clear. In order to support the last part we shall prove the
following:

Lemma 8.4. If ṙ(t) > 0 for every t ∈]α, 0], then, A > −∞ and (u,E) is not maximal to the left
as a solution of (LC).

Proof. If the interval ]α, 0] is not maximal to the left for the solution r of (5) then the result is
clear. Thus, we may henceforth assume that ]α, 0] is maximal to the left. Notice that

r̈(t) = −δ(r(t))ṙ(t)− 1

r(t)2
≤ 0, t ∈]α, 0],

so that r is concave on ]α, 0]. Consequently, its graph stays below that of its tangent line at t = 0,
i.e.,

r(t) ≤ r(0) + ṙ(0)t, t ∈]α, 0],

and since r is positive on ]α, 0] we see that α > −∞. Lemma 8.1 then implies that A > −∞,
lims↓AE(s) < +∞, and lims↓A u(s) = 0. Since (u,E) stays in M we see that lims↓A u

′(s) = 1/
√
2,

and thus, the solution (u,E) can be extended to the left of A. It proves the result.

Lemma 8.5. Let (u,E) :]A, 0] → R2 be a solution of (LC) on M, maximal to the left. If A > −∞
then there exists some s1 ∈]A, 0] such that u′(s)u(s) < 0 for all s ∈]A, s1].

Proof. We distinguish two cases depending on the sign of E.

Case I: There exists some s0 ∈]A, 0] such that E(s0) ≥ 0. The second equation of (LC ) implies
that E is decreasing, and we deduce that E(s) ≥ 0 for all s ∈]A, s0]. Since our solution stays on
M we see that u′(s) ̸= 0 for all s ∈]A, s0], and we deduce that there exists some s1 ∈]A, s0] such
that u(s) ̸= 0 for all s ∈]A, s1].
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If u′(s)u(s) < 0 for all s ∈]A, s1] we are done; thus, let us assume that u′(s)u(s) > 0 for all
s ∈]A, s1]. By introducing a translation in the time variable s there is no loss of generality in
assuming that s1 = 0, and after possibly replacing u by −u we may assume that u(s), u′(s) > 0 for
all s ∈]A, 0]. The Levi-Civita transform r :]α, 0] →]0,+∞[ of (u,E) then satisfies that ṙ(t) > 0
for all t ∈]α, 0], and Lemma 8.4 implies that (u,E) is not maximal, a contradiction. It proves the
result in this case.

Case II: E(s) < 0 for all s ∈]A, 0]. Since E is decreasing on ]A, 0] it implies that E is bounded
on ]A, 0]. Since our solution stays inM we see that 2u′(s)2 ≤ 1 for all s ∈]A, 0], and thus, u′ is also
bounded on ]A, 0]. Finally, integration implies that u is again bounded on ]A, 0], and system (LC)
implies that u′′ is also bounded on ]A, 0[. The usual prolongation theory for ordinary differential
equations implies that (u,E) is not maximal, a contradiction. It concludes the proof.

Lemma 8.6. Let (u,E) :]A, 0] → R2 be a solution of (LC) on the invariant manifold M, maximal

to the left. Then
∫ 0

A
u(s)2ds = +∞.

Proof. Let the strictly increasing function t :]A, 0] → R be defined by t(s) :=
∫ s

0
u(σ)2dσ, assume,

by a contradiction argument, that α := lims↓A t(s) > −∞, and let the function r :]α, 0[→ R be
defined by r(t(s)) := u(s)2. We shall distinguish three cases and find a contradiction in each of
them.

(i) A > −∞. Then, Lemma 8.5 states the existence of some s1 ∈]A, 0] such that u′(s)u(s) < 0
for every s ∈]A, s1]. After a translation in the independent variable s and possibly replacing u by
−u we may assume that s1 = 0 and u′(s) < 0 < u(s) for all s ∈]A, 0]. Thus, r :]α, 0] →]0,+∞[ is
the Levi-Civita transform of (u,E), and in particular, it is a solution of (5), maximal to the left.
It satisfies ṙ(t) < 0 for every t ∈]α, 0], and Lemma 8.1(i) implies that α = −∞. It concludes the
proof in this case.

(ii) A = −∞ and u has infinitely many zeroes. The definition of the manifold M implies that
these zeroes are nondegenerate, and in particular isolated; thus, they make up an ordered sequence
. . . < s2 < s1 < s0 ≤ 0. The sequence ti := t(si) is strictly decreasing and convergent, and for
each i ≥ 1 the restriction of r to ]ti, ti−1[ is a maximal solution of (5) satisfying h(ti−1) > −∞.
Then, Lemma 8.3 states that the sequence of energies h(ti) := limt↓ti h(t) satisfies h(ti) → −∞.
On the other hand h(t(s)) = E(s), and the second equation of system (LC) implies that {h(ti)}
is increasing, a contradiction.

(iii) A = −∞ and the set Z of zeroes of u in ]−∞, 0] is finite. Write

{−T, 0} ∪ t(Z) = {−T = tp < tp−1 < . . . < t0 = 0},

and observe that the restriction of r to each interval ]ti, ti−1[ is a solution of (5) satisfying h(ti−1) >
−∞. The combination of Lemma 8.1(iii) and Corollary 8.2 then implies that

∫ ti−1

ti

1
r(t)
dt < +∞

for each i, and therefore
∫ 0

−T
1

r(t)
dt < +∞, a contradiction. The proof is complete.

9 The Levi-Civita regularization for the planar Kepler

problem

In this section we prove Proposition 4.3, which was key in our proof of Theorem 1.1. Henceforth
we assume both [D1−2].
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The Levi-Civita regularization applies not only to the 1-dimensional Kepler problem (5) but
also to the more general planar problem (K). The well-known procedure goes as follows. Let
x :]α, 0] → R2\{0} ≡ C\{0} be a given solution of (K), and let w0 ∈ C be such that w2

0 = x(0).
The transformation from C\{0} to itself given by z 7→ z2 is a covering map, and thus, there
exists a (unique) continuous lifting z :]α, 0] → C\{0} with z(0) = w0 and z(t)2 = x(t) for every
α < t ≤ 0. Let h, s :]α, 0] → R (energy and new time) be defined by

h(t) :=
1

2
|ẋ(t)|2 − 1

|x(t)|
, s(t) :=

∫ t

0

1

|x(τ)|
dτ .

Then, setting A := limt↓α s(t) we see that the pair of functions (w,E) :]A, 0] → (C\{0}) × R
defined by

w(s(t)) := z(t), E(s(t)) := h(t),

solves the system

(L̂C)

w′′ +D(w2)|w|2w′ =
Ew

2
E ′ = −4D(w2)|w′|2

, w ∈ C, E ∈ R,

on the invariant manifold

M̂ :=
{
(w,w′, E) ∈ (C\{0})× C× R : 2|w′|2 − E|w|2 = 1

}
.

In addition, w(0) = w0. Notice that the choice −w0 instead of w0 leads to the pair (−w,E) in
the place of (w,E).

Conversely, given a solution (w,E) :]A, 0] → (C\{0})×R of (L̂C) on M̂, letting t :]A, 0] → R
be defined by

t(s) :=

∫ s

0

|w(σ)|2dσ, A < s ≤ 0,

and setting α := lims↓A t(s), we see that the function x = x(t) defined on ]α, 0] by x(t(s)) := w(s)2

is a solution of (K) with energy

h :]α, 0] → R, h(t(s)) = E(s) for any A < s ≤ 0,

and moreover, x(0) = w2
0 for w0 := w(0).

Under these circumstances we shall say that (w,E) is the Goursat transform of (x,w0) and
(x,w0) is the Levi-Civita transform of (w,E). With this in mind, the Goursat and Levi-Civita
transforms define mutually-inverse, bijective correspondences between the set of couples (x,w0),
where x = x(t) is a solution of (K) defined on ]α, 0] for some −∞ ≤ α < 0 and w0 is a choice of
the square-root of x(0), and the set of pairs (w,E), where (w,E) = (w(s), E(s)) ∈ (C\{0})× R
is a solution of (L̂C) on M̂ defined on ]A, 0] for some −∞ ≤ A < 0.

Observe also that the values of of w,w′, E at time s = 0 are related to those of x, ẋ at t = 0

as follows: w(0) is a square root of x(0), w′(0) =
|x(0)| ẋ(0)
2w(0)

, and E(0) =
|ẋ(0)|2

2
− 1

|x(0)|
. This

fact will be used later.
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At this moment one might ask about the connections between the Goursat or Levi-Civita
transforms (as defined in the previous section in the one dimensional situation), and the newly-
defined notions of Goursat/Levi-Civita transforms for the planar problem. With this goal let
x(t) = r(t)v0, t ∈]α, 0], be a rectilinear solution of (K). We assume that |v0| = 1 and r is
positive, so that r must be a solution of (5) for δ(r) := D(rv0). Then, letting (u,E) be the
Goursat transform of r, and assuming that v1 ∈ C is a square root of v0, the Goursat transform
(w,E) of (x,

√
r(0) v1) is given by w(s) = u(s)v1. Similarly, if (w,E) :] − A, 0] → (C\{0}) × R

is a solution of (L̂C) on M̂, and this solution is rectilinear in the sense that w(s) = u(s)v1 for
some function u :]A, 0] →]0,+∞[ and some v1 ∈ C with |v1| = 1, then (u,E) must be a solution
of (LC ) in M for δ(u) := D(uv21), and the Levi-Civita transform (x,w0) of (w,E) is given by
x(t) = r(t)v21, where r = r(t) is the Levi-Civita transform of (u,E).

On the other hand, the initial conditions in the rectilinear case are related as follows: if x(0) =
x0 and ẋ(0) = λx0 for some x0 ∈ C\{0} and some λ ∈ R, then u(0) = |x0|, u′(0) = |x0|3/2λ/2,
and E(0) = λ2|x0|2/2− 1/|x0|.

We finally notice that, as a consequence of assumption [D2], the map C → R, w 7→ D(w2) is
continuously differentiable in the real sense (i.e., regarded as a map from R2 to R). Thus, we can
see (L̂C) as a C1, autonomous system on C× R ≡ R2 × R.

Proof of Proposition 4.3. It suffices to check that given a converging sequence

{(x(n)0 , ẋ
(n)
0 )}n → (x∗0, ẋ

∗
0),

with (x
(n)
0 , ẋ

(n)
0 ) ∈ Ω for every n ∈ N, x∗0 ̸= 0, ẋ∗0 = λx∗0 for some λ ∈ R, and (x∗0, ẋ

∗
0) ∈ ∂Ω, then{

X (x
(n)
0 , ẋ

(n)
0 )
}
is convergent.

With this goal, for each natural index n we denote by xn :]αn, 0] → R2\{0} ≡ C\{0} the

solution of (K) with xn(0) = x
(n)
0 and ẋ(n)(0) = ẋ

(n)
0 . The definition interval ]αn, 0] is chosen

maximal to the left. The points (x
(n)
0 , ẋ

(n)
0 ) being in Ω we see that αn < −T for every n ∈ N.

Similarly, we call x∗ :]α∗, 0] → C\{0} the solution (maximal to the left) of (K) with x∗(0) = x∗0
and ẋn(0) = ẋ∗0 = λx∗0. The fact that (x∗0, λx

∗
0) ̸∈ Ω can be equivalently rewritten as α∗ ≥ −T .

For each n ∈ N we choose some w
(n)
0 ∈ C with (w

(n)
0 )2 = x

(n)
0 , and pick some w∗

0 ∈ C such that
(w∗

0)
2 = x∗0. These choices are to be made in such a way that

w
(n)
0 → w∗

0 as n→ +∞.

For each natural index n ∈ N we also denote by (wn, En) :]An, 0] → C × R the Goursat

transform of (xn, w
(n)
0 ). It is a solution of (L̂C), and therefore, it can be extended to a possibly

bigger interval ]Ân, 0], maximal to the left. Similarly, the Goursat transform (w∗, E∗) :]A∗, 0] →
C×R of (x∗, w

∗
0) will be extended to some (perhaps greater) interval ]Â∗, 0], maximal to the left.

Notice that

w∗(s) = u∗(s)
w∗

0

|w∗
0|
, s ∈]Â∗, 0],

where (u∗, E∗) :]Â∗, 0] → R2 is a maximal solution of (LC ) for δ(u) := D(ux∗0/|x∗0|). Observe also
that it stays on the invariant manifold M.

Lemma 8.6 states that
∫ 0

Â∗
|w∗(s)|2ds =

∫ 0

Â∗
u∗(s)

2ds = +∞. Therefore, there exists a unique

point S∗ ∈]A∗, 0[ such that
∫ 0

S∗
u∗(s)

2ds = T . The remaining of this proof is devoted to show that

X (x
(n)
0 , ẋ

(n)
0 ) → u∗(S∗)

2 x
∗
0

|x∗0|
as n→ +∞.
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With this goal we observe that

wn(0) = w
(n)
0 → w∗

0 = w∗(0), ẇn(0) =

∣∣∣x(n)0

∣∣∣ ẋ(n)0

2w
(n)
0

→ |x∗0| ẋ∗0
2w∗

0

, as n→ +∞,

and similarly, En(0) → E∗(0). Therefore, continuous dependence implies that wn(s) → w∗(s) uni-

formly with respect to s ∈ [S∗−1, 0]. In particular, for n big enough we see that
∫ 0

S∗−1
|wn(s)|2ds >

T and there exists some Sn ∈]S∗ − 1, 0[ such that
∫ 0

Sn
|wn(s)|2ds = T . After possibly passing to

a subsequence we may assume that {Sn} → S∗∗ ∈ [S∗ − 1, 0], and since wn → w∗ uniformly on

[S∗ − 1, 0] we see that T =
∫ 0

Sn
|wn(s)|2ds →

∫ 0

S∗∗
|w∗(s)|2ds. Therefore,

∫ 0

S∗∗
|w∗(s)|2ds = T and

we deduce that S∗∗ = S∗. Consequently, X (x
(n)
0 , ẋ

(n)
0 ) = wn(Sn)

2 → w∗(S∗)
2, thus concluding the

proof.
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