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We consider the dissipative Kepler problem for a family of dissi-
pations that is linear in the velocity. Under mild assumptions on the
drag coefficient, we show that its forward dynamics is qualitatively
similar to the one obtained in [15] and [16] for a constant drag coef-
ficient. In particular, we extend to this more general framework the
existence of a continuous vector-valued first integral I obtained as
the limit along the trajectories of the Runge-Lenz vector. We also
establish the existence of asymptotically circular orbits, so improving
the result about the range of I contained in [16].

Keywords: Kepler equation, drag linear in the velocity, first
integral

1 Introduction

In our previous papers [15] and [16] we studied the global dynamics of a
Kepler problem with linear drag

ẍ+ εẋ = − x

|x|3
, x ∈ R2 \ {0}, ε > 0. (1)

The main conclusion was the existence of a vector-valued first integral I =
(I1, I2), Ii = Ii(x, ẋ). This integral was obtained in a rather indirect way
and we do not know if it has an explicit formula. In contrast it has a very
intuitive dynamical description. The vector I(x, ẋ) can be interpreted as the
eccentricity vector of an ellipse E such that the solution x(t) tends to the
origin along a spiral modelled after E (see Figure 1). Also, we proved that

Figure 1: In red, an orbit x(t) of (1) with ε = 0.01 plotted for t ∈ [0, 35].
In blue, the approximate shape of E , obtained by plotting the final segment
of the curve y(t) = e2εtx(t)→ E (see [16] for more details).
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the existence of I implies that such spiral is described with angular velocity
which increases exponentially with time.

The aim of this work is to extend this type of results to the family of
dissipative Kepler problems

ẍ+D(|x|)ẋ = − x

|x|3
, x ∈ R2 \ {0}, (2)

where D : [0,+∞[→ R+ is a locally Lipschitz continuous function which
satisfies

D(r) ≥ A1 for any r ≥ 0 (3)

for a suitable positive real number A1.
It is a curious fact that the spiralling faster and faster towards the Sun

of a celestial body was already described by Euler in a letter written in 1749
and published in Philosophical Transactions [8]. There Euler postulated the
existence of small resistance forces around the planets and he described the
consequent gradual approach of the Earth to the Sun as follows “...The effect
of this Resistance will gradually bring the Planets nearer and nearer to the
Sun; and as their Orbits thereby become less, their periodical Times will also
be diminished.”

More than one century later Poincaré went back to the study of the effect
of a resistive medium on the motion of a planet in his Leçons sur les hy-
pothéses cosmogoniques [20]. In that course he discussed several hypotheses
on the formation of the solar system. In Chapter VI, devoted to an hypoth-
esis due to T.J.J. See, Poincaré considered the class of dissipative Kepler
problems

ẍ+R
ẋ

|ẋ|
= − x

|x|3
, x ∈ R2 \ {0}, (4)

where R = h|x|−β|ẋ|α and α and β are positive constants. After some com-
putations with astronomical coordinates Poincaré found out that the semi
major axis of an orbit of elliptic type is, essentiellement, decreasing with
time and observed that this fact implies an increase of the orbital velocity of
the planet.

Moreover, from his computations he concluded that if the exponents α
and β are sufficiently large then the value of the orbital eccentricity decreases
after each complete revolution. Poincaré also presented a qualitative argu-
ment1 to justify the decrease of the eccentricity of an orbit in presence of a
general resistive force.

Both these arguments suggest that dissipation has a circularizing effect
on orbits, that is, that their eccentricity will eventually approach zero. In

1”en gros et sans calcul”
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this connection, we note that our results for the linear drag (α = 1, β = 0)
imply that for an open set of initial conditions the eccentricity of the corre-
sponding orbit will converge to a positive constant, and so we cannot expect
a circularization effect for many orbits of (1). This fact has been observed
previously in [12] (for more information on the notion of circularization see
[9] and [1]).

When β = 0 the family (4) was already considered by Jacobi in his book
on mechanics [13] but he only discussed some formal aspects. Another mem-
ber of the family (4) that has been considered in the recent literature is the
so called Poynting-Plummer-Danby drag (see [6], [3], [7] and the references
therein), corresponding to α = 1 and β = 2. In this case it is possible to
obtain in closed form the equation of the orbits. We point out that for this
family of resistive forces the qualitative behaviour of the solutions differs
sharply from the one we obtained for (2). In fact, many non rectilinear so-
lutions, corresponding to an open set of initial conditions, collide in finite
time and with finite velocity with the singularity, winding around the origin
just a finite number of times before collision. This is nicely described in the
unpublished master thesis of Mauricio Misquero2.

The Runge-Lenz vector, denoted by R, is a well-known first integral of the
conservative Kepler problem. If its norm is less than one, then R corresponds
to a family of elliptic orbits whose eccentricity is |R|. In the presence of
friction this vector is no longer a constant of motion but it is still useful and
it has been employed in the literature on dissipative problems (see [14], [10],
[17]). We will show that for linear dissipations the Runge-Lenz vector has
a limit I = limt→+∞R(t) that becomes a first integral such that |I| ≤ 1.
This approach to construct integrals is inspired by the ideas on asymptotic
integrals developed by Moser in [18] for the study of the Störmer problem
(see also [19]).

We notice that in our setting the circularization of an orbit is equivalent
to I = 0. Orbits satisfying this condition were called asymptotically circular
in our previous paper [16], but at that time we were unable to decide whether
they existed or not. In this work we show that they actually exist, although
they are not typical. In this aspect the results of this paper improve those in
[16] even for the case D = ε. This approach to construct integrals is inspired
by the ideas on asymptotic integrals developed by Moser in [18] for the study
of the Störmer problem (see also [19]).

This paper can be seen as a contribution to the construction of a qual-
itative theory of the Kepler problem with dissipation but many interesting

2Castro, M. M., El problema de Kepler disipativo, Master thesis, Universidad de
Granada, (2016)
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problems in this topic are still to be addressed. For example, to determine
the region of parameters (α, β) producing circularization on an open set of
initial conditions seems a challenging question. Also, the study of more re-
alistic drags involved in satellite dynamics appears to be relevant (see [2]).

The rest of the paper is organized as follows.
In the second section we study the forward dynamics of (2), showing that

the singularity is a global attractor. Our proof makes use of an extension
to singular systems of the LaSalle invariance principle, which may have an
independent interest. In Section 3 we extend to (2) the results given in
[15] about the asymptotic values of the energy of solutions. This is done
by adapting the approach based on the Levi-Civita transformation for the
dissipative setting already considered in [15] for the linear drag. We recall
that the Levi-Civita regularization in a dissipative setting was introduced by
[4] for the numerical study of the global dynamics of a restricted three body
problem with drag. In the fourth section we construct the asymptotic first
integral for (2) and we show that it is continuous and invariant under planar
rotations. In the fifth section we prove that its range is the unit disk. This
is achieved by establishing the existence of asymptotically circular orbits
of (2). It is interesting to note that for this aim we employ the Brouwer
degree to show that there is a continuation from the circular solutions of the
conservative case. Finally, in the Appendix we sketch the proofs of some
results about rectilinear motions.

2 Dynamics in forward time: attraction to-

wards the singularity

In this section we study the behaviour of the solutions of (2) when t → ω,
where ω is the right endpoint of their maximal interval of definition. We
show that the singularity x = 0 is a global attractor of (2). First we prove
that non rectilinear solutions are defined up to ω = +∞ and are bounded.
Then we state and apply a version LaSalle’s invariance principle which is well
suited for singular equations. An analogous result is given in [1]. Finally, we
show that all the rectilinear motions collide in finite time with x = 0.

We point out that in [15] the property that the origin is a global attractor
was obtained by applying the results in [5], where such result is proved for

a family of resistive forces of the form F (x, ẋ) = −k(|ẋ|)
|ẋ| ẋ which includes the

linear drag. Here, rather than trying to adapt to our setting such results we
have preferred to provide a direct proof of the global attractiveness of the
singularity.
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The dissipative Kepler problem described by equation (2) is equivalent to
the system {

ẋ = v
v̇ +D(|x|)v = − x

|x|3
(5)

in the phase space Ω = (R2 \ {0})× R2.
In what follows, for any fixed (x0, v0) ∈ Ω, we will sometimes employ the

notation x(t;x0, v0) for the solution of (2) such that x(0) = x0, v(0) = v0. If
we consider the functions of the real variables (x, v) given respectively by

E(x, v) =
1

2
|v|2 − 1

|x|
, (energy) (6)

and
C(x, v) = x ∧ v, (angular momentum) (7)

then along the solutions of (2) it is

Ė(t) :=
dE

dt
(x(t), ẋ(t)) = −D(|x(t)|)|ẋ(t)|2. (8)

and

Ċ(t) :=
dC

dt
(x(t), ẋ(t)) = −D(|x(t)|)C(t),

from which it follows

C(t) = C(0)e−
∫ t
0 D(|x(τ)|) dτ , C(0) := x(0) ∧ ẋ(0). (9)

We rewrite now equation (2) using polar coordinates. If we consider
the change of variables x = reiθ, the new coordinates satisfy the following
differential system: {

r̈ − rθ̇2 +D(r)ṙ = − 1
r2

d
dt

(r2θ̇) = −D(r)r2θ̇.
(10)

Recalling that |x ∧ ẋ| = ±r2θ̇, by (9) we get that the radial component
of the solutions of (2) satisfies the integro-differential equation

r̈ − α2 e−2
∫ t
0 D(r(s))ds

r3
+D(r)ṙ = − 1

r2
(11)

where α = |C(0)|.
We are now in a position to state our result about the non rectilinear

motions of (2).
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Proposition 2.1 Let x(t) = r(t)eiθ(t) be a maximal solution of (2) with
α 6= 0, and let [0, ω[ be its domain in forward time. Then ω = +∞, and
r(t) = |x(t)| is bounded on [0,+∞[.

Proof. We prove first that r(t) is bounded on [0, ω[ and then we show that
ω = +∞.

To get the boundedness of the solutions we argue as follows. Either
r(t) ≤ α2 when t is sufficiently close to ω and we have nothing to prove, or
there exists a sequence tn → ω such that r(tn) > α2. If this is the case, there
are two possible occurrences:

i) r(t) > α2 in [τ, ω[ for some τ ∈ [0, ω[;

ii) there exists a sequence of intervals In = [an, bn] ⊆ [0, ω[ such that
r(t) > α2 if and only if t ∈]an, bn[.

If i) holds, by (11) it follows that if t ∈ [τ, ω[

d

dt
(e

∫ t
τ D(r(s))dsṙ) = e

∫ t
τ D(r(s))ds(r̈ +D(r)ṙ) ≤ 0 (12)

and by integrating this inequality we obtain

ṙ(t) ≤ e−
∫ t
τ D(r(s))dsṙ(τ) ≤ e−A1(t−τ)|ṙ(τ)|, t ∈ [τ, ω[,

which implies

r(t) ≤ r(τ) +
|ṙ(τ)|
A1

(1− e−A1(t−τ)) < r(τ) +
|ṙ(τ)|
A1

, t ∈ [τ, ω[.

The proof of boundedness of r(t) on [0, ω[ in case i) is concluded.
In case ii) we note that, since for any n we have r(an) = |x(an)| = α2,

then from E(a1) ≥ E(an), it follows that |ṙ(an)| ≤ |ẋ(an)| ≤ |ẋ(a1)| for any
n. Then, taking into account that on In (12) holds, in a similar manner as
above we get ṙ(t) ≤ e−A1(t−an)|ṙ(an)|, t ∈ In, and then

r(t) ≤ α2 +
|ẋ(a1)|
A1

, t ∈ In.

Since the constant that bounds the solution is the same for all the intervals
In and since r(t) ≤ α2 on the set [0,+ω[\∪n In, the proof of the boundedness
of r(t) in case ii) is finished.

We conclude that r(t) is bounded on [0, ω[.

To prove that ω = +∞ assume by contradiction that ω < +∞. The
standard theory for initial value problems implies that one of the following
cases hold:
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(i) there exists a sequence tn ↑ ω such that x(tn)→ 0;

(ii) |x(t)| ≥ δ if t ∈ [0, ω[ for some δ > 0 and limt↑ω |ẋ(t)| = +∞.

If condition (i) were valid then E(tn)→ +∞ as n→ +∞ and this is incom-
patible with (8). In fact,

E(tn) ≥ α2

r2(tn)
e−2

∫ tn
0 D(r(s))ds − 1

r(tn)
≥ 1

r2(tn)
[α2e−2Mtn − r(tn)],

where M := supt∈[0,ω[D(r(t)) is finite since D(r) is continuous on [0,+∞[
and r(t) is bounded in [0, ω[. Assume now that (ii) holds. From |x(t)| ≥ δ
for any t ∈ [0, ω[ we get

1

2
|ẋ(t)|2 − 1

δ
≤ E(t) ≤ E(0).

Since this inequality gives a bound for |ẋ(t)| on [0, ω[ we get a contradiction
with the limit in (ii).

To prove that all the non rectilinear solutions of equation (2) tend to the
singularity as t→ +∞ we need the following general auxiliary result, which
is an extension to singular systems of the LaSalle invariance principle.

Proposition 2.2 Let Ω ⊂ Rd be an open set and assume that the existence
and uniqueness of solution holds for the system ẋ = f(x) with f : Ω → Rd

continuous. Let φt(x) denote the value at time t of the solution of ẋ = f(x)
which starts from x at t = 0 and let Ix ⊂ R be its maximal interval of
definition. Assume there exists a continuous function V : Ω→ R such that

V (φt(x)) < V (x), t ∈ Ix, t > 0, x ∈ Ω. (13)

If x∗ ∈ Ω is such that [0,+∞[⊂ Ix∗ , then

Lω(x∗) ∩ Ω = ∅,

where Lω(x∗) denotes the ω−limit set of x∗.

Note that in the above statement the limit set is defined as

Lω(x∗) = ∩t≥0{φτ (x∗) : τ ≥ t},

where the closure is taken in Rd.

Remark. The following variant of the Proposition will be useful later. We
can assume that the condition (13) only holds for points x lying on a closed
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subset F of Ω. If the set F is invariant under the flow then the conclusion
on the limit set will be valid for the orbits lying on F .

Proof. By contradiction, assume that there exists tn → +∞ such that
φtn(x∗)→ ξ ∈ Ω. By the continuous dependence of the solutions of ẋ = f(x)
on the initial value, given σ > 0 such that σ ∈ Iξ we know that, for large n,
σ ∈ Iφtn (x∗) and φσ+tn(x∗) → φσ(ξ). For each n there exists µ(n) > n such
that tµ(n) > tn + σ. Then,

V (φtµ(n)(x∗)) < V (φtn+σ(x∗)).

Letting n→ +∞ we get
V (ξ) ≤ V (φσ(ξ)),

and this is a contradiction

As a corollary we get:

Proposition 2.3 Let x(t) = r(t)eiθ(t) be a non rectilinear solution of (2).
Then

lim
t→+∞

x(t) = 0.

Proof. Assume by contradiction that there exists a sequence tn → +∞ such
that |x(tn)| ≥ δ > 0 for a suitable δ. From the energy inequality

E(tn) =
1

2
|ẋ(tn)|2 − 1

|x(tn)|
≤ E(0)

we deduce that |ẋ(tn)|2 ≤ E(0) + 1
δ
. As by Proposition 2.1 x(tn) is bounded,

it must be Lω(x(0), ẋ(0)) ∩ Ω 6= ∅. Since ẍ(t) 6= 0 when ẋ(t) = 0, we deduce
that the zeros of ẋ(t) are isolated. Then the formula Ė = −D(|x|)|ẋ|2 implies
that the energy function E is strictly decreasing on the solutions of (2) and
(13) holds. Now we can apply the previous proposition with V = E and get
a contradiction.

2

As to the solutions with zero angular momentum, the so called rectilinear
motions, they satisfy the equation

r̈ +D(r)ṙ = − 1

r2
, (14)

obtained from (11) by setting α = 0.
For this class of solutions we state the following result. Its proof is anal-

ogous to the one of Proposition 3.1 in [15], and we only sketch it in the
Appendix.
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Proposition 2.4 All solutions of (14) are collision solutions, that is ω is
finite and

lim
t→ω−

r(t) = 0, lim
t→ω−

ṙ(t) = −∞.

3 The Levi-Civita transformation and the

asymptotic behaviour of the energy

In this section we study the behaviour of the energy of the solutions of (2)
as they approach the singularity.

The starting point is to adapt to equation (2) the Levi-Civita regular-
ization that was introduced in a dissipative setting in [15] to deal with the
linear drag. We recall that, after the natural identification of x = (x1, x2)
with the complex number x1 + ix2, the Levi-Civita regularization is defined
by the change of variables

x = w2, ds =
dt

|x|
. (15)

Using this regularization, equation (2) is transformed into the system of
ODEs in the new time s

w′ = v, v′ =
Ew

2
−D(|w|2)|w|2v, E ′ = −2D(|w|2)(E|w|2 + 1). (16)

This system has to be considered on the invariant manifold

M = {(w, v, E) ∈ C2 × R : E|w|2 + 1− 2|v|2 = 0}, (17)

which contains all the physically meaningful solutions. A solution of (2)
starting from (x0, v0) ∈ Ω is transformed in a solution of (16) starting from

(w0, v̂0, E0) ∈ M, where w0 is a square root of x0, v̂0 = |x0|v0
2w0

and E0 =
1
2
|v0|2 − 1

|x0| . Vice-versa, a solution of (16) starting on M and such that

w(0) 6= 0 corresponds to the solution x(t) := w2(S(t)) of (2), where S(t) is
the inverse function of T (s) :=

∫ s
0
|w(σ)|2 dσ.

Notice that if the points (x0, v0) belong to a compact subset K of Ω, then
the triplets (w0, v̂0, E0) lie on a compact subset K of M.

Lemma 3.1 Let (w0, v0, E0) be a point of M and let (w(s), v(s), E(s)) de-
note the solution of (16) passing through this point at s = 0. Then this
solution is well defined on [0,+∞[ and

lim
s→+∞

E(s) = −∞.
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Proof. Let [0, σ[ be the maximal interval to the right of the solution. By a
contradiction argument we assume that σ < +∞. The third equation of (16)
and the invariance of M imply that

E ′(s) = −4D(|w(s)|2)|v(s)|2 ≤ 0.

In particular E(s) ≤ E(0) for each s ∈ [0, σ[. Again, the invariance of M
leads to the differential inequality

d

ds
|w(s)| ≤ |w′(s)| =

√
1 + E(s)|w(s)|2

2
≤ 1 + |E(0)| 12 |w(s)|√

2
.

It follows that |w(s)| remains bounded in [0, σ[. This fact implies that the
function D(|w(s)|2) is bounded on [0, σ[ and by the last equation of (16) we
conclude that the same is true for |E(s)|. The definition of M implies now
that |v(s)| is bounded on [0, σ[. It follows that the solution (w(s), v(s), E(s))
cannot blow up at s = σ and this gives a contradiction with σ < +∞. We
conclude that the solution is well defined on [0,+∞[.

Since on this interval we have E ′(s) ≤ 0, then E∞ = lims→+∞E(s) exists
and belongs to [−∞, E(0)]. We prove now that E∞ = −∞. Let us assume
by contradiction that E∞ ∈ R and distinguish two cases:

(i) E∞ ≥ 0;

(ii) E∞ < 0.

If (i) holds, we know that E(s) ≥ E∞ ≥ 0 if s ≥ 0. After integrating the
third equation of (16), we have

E(s) = E(0)− 2

∫ s

0

D(|w(ξ)|2)(E(ξ)|w(ξ)|2 + 1) dξ ≤ E(0)− 2A1s→ −∞

as s→ −∞, and we get a contradiction.

Assume now that (ii) holds. We note that system (16), defined on Ω =
C2×R, is in the conditions of the remark after Proposition 2.2 with F =M
and V = E. Once we are on M we know from the discussions of the case
(i) that it is not restrictive to assume that E(s) < 0 if s ≥ 0, and we claim
that the zeros of v(s) on [0,+∞[ are isolated. Indeed, v(s) = 0 implies

|w(s)|2 = 1
|E(s)| > 0 and then v′(s) = E(s)w(s)

2
6= 0. Thus

E(s)− E(0) = −4

∫ s

0

D(|w(ξ)|2)|v(ξ)|2 dξ < 0

11



when s > 0 and then condition (13) holds on M with V = E. As a conse-
quence, the ω-limit set of our solution is empty. From the identity

E(s)|w(s)|2 + 1 = 2|v(s)|2 ≥ 0

we deduce that

lim sup
s→+∞

|w(s)|2 ≤ 1

|E∞|
.

Also,

lim sup
s→+∞

|v(s)|2 ≤ 1

2
.

Then the forward orbit {(w(s), v(s), E(s)) : s ≥ 0} is bounded and the ω-
limit set is a non empty compact set ofM. This is the searched contradiction.

As an immediate consequence of this lemma we have the following:

Proposition 3.2 If x(t) is a solution of (2) with non zero angular momen-
tum, then

lim
t→+∞

E(t) = −∞.

Proof. By choosing a branch of the square root, a non rectilinear solution
x(t) of (2) is transformed by (15) in a solution of (16) onM such that w(s) =√
x(T (s)), where T (s) is the inverse function of s = S(t) =

∫ t
0

1
|x(τ)| dτ . By

Proposition 2.3 we conclude that s → +∞ when t → +∞, and the claim
follows from Lemma 3.1.

As to the energy of the rectilinear solutions x = r(t) of (2) we have
the following result. Its proof is analogous to the one of the corresponding
results given in [15] for the linear drag (see Proposition 3.1 and Proposition
4.2 therein) and therefore it is just outlined in the Appendix. Here we stress
that the Levi-Civita regularization is used to get the second part of the
statement.

Proposition 3.3 Collisions occur with finite energy. Energy at collision
may have any arbitrarily prescribed real value.

4 Existence and properties of the Runge-Lenz-

type first integral

As proved in the previous sections, a solution of (2) (and hence of (5)) such
that x(0) = x0 and ẋ(0) = v0 is defined for t ∈ [0, ω[ where ω = ω(x0, v0)

12



is finite in the case of a rectilinear motion, whereas ω = +∞ for a non
rectilinear motion.

We recall that, if we consider the energy E(x, v), the angular momentum
C(x, v) and the vector

R(x, v) = v ∧ (x ∧ v)− x

|x|
, (Runge− Lenz vector) (18)

then the two following functional relationships hold among them as functions
of the real variables (x, v) (see also [11], 3-9):

|x|+ < R, x >= |C|2, for any x ∈ R2 \ {0} , (19)

where < v,w > denotes the inner product between the vectors v and w, and

|R|2 − 1 = 2|C|2E. (20)

In the conservative case, E, C and R are first integrals of the Kepler prob-
lem. In particular, if 0 < |R| < 1, the vector R is the eccentricity vector

corresponding to the Keplerian ellipse defined by (19), the unit vector
R

|R|
is the direction of its major axis and e = |R| is its eccentricity.

To end our preparatory work, we state the following lemma, needed to
prove the continuity of I on Ω.

Lemma 4.1 Let K be a compact subset of Ω. Then, there exist numbers
mK > 0 and µK > 0 such that

|x(t;x0, v0)| ≤ mK (21)

and
|ẋ(t;x0, v0)||x(t;x0, v0)|

1
2 ≤ µK (22)

for any (x0, v0) ∈ K and t ∈ [0, ω[.

Proof. To prove the first estimate, we proceed as in the last part of the proof
of Lemma 2.2 in [16], to which the reader should refer for the details. As
pointed out in the previous section, the Levi-Civita regularization transforms
the solutions of (2) starting in (x0, v0) ∈ K into solutions of system (16)
starting in a compact set K ⊂M. By Lemma 3.1 these solutions are defined
on [0,+∞[ and are such that their energy E(s) becomes, eventually, negative,
say less than −1

2
. 3 If we consider the w component of a solution of (16), the

3The discussion in [16] on the inequality (62) appearing in the proof of Lemma 2.2 was
incomplete. This inequality is valid and follows from Lemma 3.1.
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invariance of M gives the bound |w(s)|2 < 2 for sufficiently large s. Then,
by a standard compactness argument, solutions of (16) starting in K are
such that the previous bound on |w(s)| holds for s greater than a suitable
s∗ uniformly in K. For such solutions the existence of a uniform bound for
|w(s)| on [0,+∞[ easily follows. Going back to the original variables one gets
(21) for |x| = |w|2 when (x0, v0) ∈ K.

To prove the second estimate we observe that since the energy is decreas-
ing, E(t) ≤ E(0) for any t ∈ [0, ω[, and we get the following bound on the
velocity:

|ẋ(t)| ≤

√
2

(
E(0) +

1

|x(t)|

)
, t ∈ [0, ω[. (23)

Multiplying (23) by |x(t)| 12 we obtain (22) with µK :=
√

2(EKmK + 1) and
EK := maxK |E(x0, v0)|.

We are now in a position to state the main result of this section. This
result provides a continuous vector first integral I = (I1, I2) which is in-
variant under the group of planar rotations and whose components are two
functionally independent scalar first integrals (see Remark 1 in [16]).

As in the case of the linear drag, I can be interpreted as an asymptotic
eccentricity vector and its norm as an asymptotic eccentricity. In particular,
solutions with |I| < 1 tend to the origin along a spiral determined asymp-
totically by I.

Theorem 4.2 There exists a continuous vector field

I : Ω→ R2, I = I(x, v)

satisfying

(i) I(σx, σv) = σI(x, v), for each (x, v) ∈ Ω and each rotation σ ∈ SO(2).

(ii) The range of I is the closed unit disk, that is

I(Ω) = D, (24)

where D = {y ∈ R2 : |y| ≤ 1}.

(iii) Each solution (x(t), v(t)) of (5), defined on a maximal right interval of
the form [0, ω[, satisfies

I(x(t), v(t)) = lim
τ→ω

R(x(τ), v(τ)). (25)
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Proof. Below we will prove the continuity of I and properties (i) and (iii).
The proof of (ii) is postponed to the next section, to properly highlight the
fact that it relies on the existence of asymptotically circular orbits.

Throughout the proof, K will be a fixed compact set contained in Ω, and
(x0, v0) will be a point of K. Let (x(t), v(t)) be the solution of system (5) such
that (x(0), v(0)) = (x0, v0). We denote by R(t) = R(x(t), v(t)) and denote by
Ṙ its derivative with respect to time.

Recall that we have Ċ = −D(|x(t)|)C and that

d

dt

(
x

|x|

)
= C ∧

(
x

|x|3

)
(26)

for any smooth function x = x(t). By differentiating the equality defining
R(t) and then integrating the result from 0 to t we get

R(t) = R(0)− 2

∫ t

0

D(|x(τ)|)ẋ(τ) ∧ C(τ) dτ. (27)

If x0 ∧ v0 = 0, then for the corresponding rectilinear motion we have R(t) =
R(0) = R(x0, v0) = − x0

|x0| for any t ∈ [0, ω[ so that, trivially, we define

I(x0, v0) := limt→ω R(t) = R(x0, v0). Let us consider the case x0 ∧ v0 6= 0.
We claim that the estimate below holds:

|(D(|x(t)|)−D(0))ẋ(t) ∧ C(t)| ≤Me−A1t if t ≥ 0 (28)

where the constant M is uniform with respect to K. To prove (28) let mK

and µK be the numbers provided by Lemma 4.1. Since D is locally Lipschitz
continuous on [0,+∞[, we can find a Lipschitz constant LK on the compact
interval [0,mK ]. In particular

|D(r)−D(0)| ≤ LKr if 0 ≤ r ≤ mK .

Thus, for any t ≥ 0 we have

|(D(|x(t)|)−D(0))ẋ(t)∧C(t)| ≤ LK |x(t)||ẋ(t)||C(t)| ≤ LKm
1
2
KµK |x0||v0|e

−A1t,
(29)

where we have used (3) and

|C(t)| ≤ |x0||v0|e−A1t, t ≥ 0. (30)

Once (28) has been proved, we rewrite the Runge-Lenz vector in the form

R(t) = R(0)+2D(0)x0∧C(0)−2D(0)x(t)∧C(t)−2I1(t)+2D(0)I2(t), (31)
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with

I1(t) =

∫ t

0

(D(|x(τ)|)−D(0))ẋ(τ) ∧ C(τ) dτ

and

I2(t) =

∫ t

0

x(τ) ∧ Ċ(τ) dτ.

Formula (31) is obtained by adding and subtracting D(0) in the scalar factor
of the integral in (27) and then applying an integration by parts. From (30)
we deduce that if t ≥ 0

|x(t) ∧ C(t)| ≤ mK |x0||v0|e−A1t (32)

|x(t) ∧ Ċ(t)| ≤ mKDK |x0||v0|e−A1t (33)

where DK = max[0,mK ]D(r). Together with (28) these inequalities imply that
I = limt→+∞R(t) exists.

At this point it is convenient to make explicit the functional dependence
of I on the initial condition (x0, v0) ∈ Ω and write it as

I(x0, v0) = R(x0, v0) + 2D(0)x0 ∧ C(x0, v0)− 2I1(+∞;x0, v0) +

+2D(0)I2(+∞;x0, v0), (34)

where we set I1(+∞;x0, v0) = I2(+∞;x0, v0) = 0 if C(x0, v0) = x0 ∧ v0 = 0.
To prove the continuity of this function at each point we consider first the

case (x0, v0) ∈ Ω with x0 ∧ v0 6= 0. We can select a small closed ball centered
at (x0, v0) such that the angular momentum does not vanish on it. This will
be our set K. Then, estimates (28) and (33), together with the results on
continuous dependence of solutions with respect to initial conditions, allow
to get the continuity of I1(+∞; ·, ·) and I2(+∞; ·, ·) by applying standard
results on functions defined by parametric Lebesgue integrals. In the case
x0 ∧ v0 = 0 it must be noticed that if (x0n, v0n) is a sequence converging to
(x0, v0) with x0n ∧ v0n 6= 0, then the corresponding solution satisfies

Cn(t) := xn(t) ∧ ẋn(t) = e−
∫ t
0 D(|xn(τ)|) dτx0n ∧ v0n → 0

as n → +∞ for each t ≥ 0. Similarly, limn→+∞ Ċn(t) = 0 for each t ≥ 0.
From the estimates

|(D(|x(t)|)−D(0))ẋ(t)∧C(t)| ≤ LKm
1/2
K µK |C(t)|, |x(t)∧ Ċ(t)| ≤ mK |Ċ(t)|

we deduce that Ii(+∞;x0n, v0n)→ 0. Note that the estimates (29) and (33)
imply that the convergence is dominated.
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Then I(x0n, v0n)→ I(x0, v0) = − x0
|x0| as n→∞. Since the same property

trivially holds for sequences (x0n, v0n) converging to (x0, v0) and such that
x0n ∧ v0n = 0, the continuity of I on Ω is proved.

Properties (i) and (iii) follow immediately from the definition of I.

5 Existence of asymptotically circular orbits

In this section we complete the proof of Theorem 4.2 by showing that the
range of I is the closed unit disk. This property will be a consequence of
the continuity of I, of its invariance under rotations, and of the existence
of asymptotically circular orbits of (2), that is orbits for which I = 0. The
decreasing towards zero of the eccentricity is an interesting effect associated
to the motion of celestial bodies in a resistive medium, and the main focus
of the section is on the proof that such effect, although not typical, occurs
for the drag in (2).

We start by considering the set

C+ = {(ξ, η) ∈ Ω : η = |ξ|−
3
2Jξ},

with J =

(
0 −1
1 0

)
.

Then R(ξ, η) = 0, E(ξ, η) = − 1
2|ξ| < 0 and C(ξ, η) 6= 0. We fix a point

(ξ, η) ∈ C+ and define the function F : Ω→ R4

F (x, v) :=

(
R(x, v)
x− ξ

)
.

Lemma 5.1 The point (ξ, η) is a nondegenerate zero of F. Actually

detF ′(ξ, η) = 2|ξ| > 0.

Proof. Clearly F (ξ, η) = 0. We have

F ′(ξ, η) =

(
∂xR(ξ, η) ∂vR(ξ, η)

Id 0

)
where Id denote the identity matrix of order two, so that detF ′(ξ, η) =
det[∂vR(ξ, η)]. Since

R(x, v) =

(
x1v

2
2 − x2v1v2

x2v
2
1 − x1v1v2

)
− x

|x|
,
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it follows that

det[∂vR(ξ, η)] = |ξ|−3
∣∣∣∣ −ξ2ξ1 2ξ21 + ξ22
−2ξ22 − ξ21 ξ1ξ2

∣∣∣∣ = 2|ξ|

and our proof is concluded.

Let us fix a small open ball B ⊂ R4 centred at (ξ, η) satisfying the
following properties:

• (ξ, η) is the only zero of F in B̄;

• there exists δ > 0 such that E(x0, v0) ≤ −δ < 0 if (x0, v0) ∈ B̄;

• C(x0, v0) 6= 0 if (x0, v0) ∈ B̄.

In particular the Brouwer degree of F in B̄ is well defined and

deg(F,B, 0) = 1. (35)

For each ε > 0 the change of variables x(t) = ε
2
3y( t

ε
) transforms equation

(2) into

ÿ + εD(ε
2
3 |y|)ẏ = − y

|y|3
. (36)

The Runge-Lenz vector has the invariance property

R(x, v) = R(ε
2
3x, ε−

1
3v)

and so
R(x(t), ẋ(t)) = R(y(t/ε), ẏ(t/ε)) for any t ∈ [0,+∞[.

Letting t→ +∞ we obtain the identity I1(x0, v0) = Iε(ε
− 2

3x0, ε
1
3v0) or, equiv-

alently,
Iε(x0, v0) = I1(ε

2
3x0, ε

− 1
3v0) (37)

where Iε(x0, v0) := limt→+∞R(y(t;x0, v0, ε), ẏ(t;x0, v0, ε)) and y(t;x0, v0, ε) is
the solution of the Cauchy problem for (36). The identity (37) shows that
it is sufficient to prove the existence of an asymptotically circular motion for
(36) for some ε > 0.

Lemma 5.2 The function Ĩ : [0, 1] × B̄ → R2, given by Ĩ(ε, x0, v0) :=
Iε(x0, v0) is continuous.
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Proof. The continuity of Ĩ on ]0, 1]× B̄ is a consequence of (37) and of the
continuity of I1 established in Theorem 4.2. The continuity at ε = 0 is a
consequence of the expansion

Iε(x0, v0) = R(x0, v0) +O(ε
2
3 ), uniformly in (x0, v0) ∈ B̄. (38)

To prove (38) we simplify the notation by setting y = y(t;x0, v0, ε), ẏ =
ẏ(t;x0, v0, ε), C = y ∧ ẏ and observe that

|y| ≤ 1

δ
, |y|

1
2 |ẏ| ≤

√
2. (39)

These estimates are a consequence of the inequality 1
2
|ẏ|2 − 1

|y| ≤ −δ. Also,

|C| ≤ |x0||v0|e−εA1t and |Ċ| ≤ εMδ|x0||v0|e−εA1t, (40)

where Mδ := maxr∈[0, 1
δ
]D(r). From the proof of Theorem 4.2 we see that Iε

can be expressed in the form

Iε(x0, v0) = R(x0, v0) + 2εD(0)x0 ∧ C(x0, v0)− 2I1,ε(+∞;x0, v0) +

+2εD(0)I2,ε(+∞;x0, v0). (41)

If we denote by Lδ the Lipschitz constant of D on [0, 1
δ
], by using (39) and

the first inequality of (40) we get

|I1,ε| = ε

∣∣∣∣∫ +∞

0

(D(ε
2
3 |y|)−D(0))ẏ ∧ C dt

∣∣∣∣ ≤ εLδε
2
3

∫ +∞

0

|y||ẏ||C| dt ≤

≤ ε
2
3Lδ

√
2

δ
|x0||v0|ε

∫ +∞

0

e−εA1t dt = ε
2
3
Lδ
A1

√
2

δ
|x0||v0|. (42)

Now, from the first inequality of (39) and the second inequality of (40)
we get

|I2,ε| =
∣∣∣∣∫ +∞

0

y ∧ Ċ dt
∣∣∣∣ ≤ 1

δ
Mδ|x0||v0|ε

∫ +∞

0

e−A1εt dt =
Mδ

δA1

|x0||v0|,

that together with (42) gives (38).

We are now in a position to prove that for the drag in (2) we can have a
circularizing effect on the orbits of (2).

Proposition 5.3 There exists (x0, v0) ∈ Ω such that the corresponding so-
lution of (2) is asymptotically circular, that is (x0, v0) satisfies I(x0, v0) = 0.
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Proof. Consider the family of functions Fε : [0, 1]× Ω→ R4, where

Fε(x, v) :=

(
Iε(x, v)
x− ξ

)
.

By Lemma 5.2 the family Fε is continuous in [0, 1] × B̄ and, moreover,
by (38) we have that F0 = F. Then, since deg(F,B, 0) = 1, the homotopy
invariance of the degree guarantees that for sufficiently small ε there exists
a zero, necessarily of the form (ξ, v(ε)), of Fε in B. Hence, Iε(ξ, v(ε)) = 0

and by (37) we conclude that the point (x0, v0) := (ε
2
3 ξ, ε−

1
3v(ε)) ∈ Ω is the

initial condition of an asymptotically circular orbit of (2).

Finally, we prove our claim about the range of I.

5.1 Proof of (ii) of Theorem 4.2.

If x0 ∧ v0 6= 0 then C(t) 6= 0 for any t ∈ [0,+∞[ and, by Proposition 3.2,
E(t)→ −∞ when t→ +∞. As a consequence, by (20) we get |R(t)|2−1 < 0
if t is large enough, and |I| ≤ 1 follows taking the limit in t. In the case

x0 ∧ v0 = 0, we have I(x0, v0) = − x0
|x0|

so that |I(x0, v0)| = 1. Since by

Proposition 5.3 the first integral I takes the value 0, by its continuity and by
its invariance under planar rotations we get I(Ω) = D.

The geometrical and dynamical consequences of the existence of I are
analogous to the ones described in [16] for the linear drag. Namely, if x(t) =
x(t;x0, v0) = r(t)eiθ(t) is a non rectilinear motion of (2), then the trajectory

y(t) = e2
∫ t
0 D(|x(s)|) dsx(t)

tends asymptotically to the curve

|y|+ < y, I(x0, v0) >= |C(x0, v0)|2.

When |I(x0, v0)| < 1 this is an ellipse whose eccentricity vector is I(x0, v0),
and in such a case the following holds: |x(t)| = r(t) tends to zero exponen-
tially with time, whereas the modulus of the angular velocity |θ̇(t)| increases
exponentially with time. The proofs of these facts follow taking into account
that A1 ≤ D(|x(t;x0, v0)|) ≤ M = maxt≥0D(|x(t;x0, v0)|) and following the
steps in [16] to obtain the exponential estimates on the growth of |x| and |θ̇|.
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6 Appendix

6.1 Proof of Proposition 2.4

We start by regularizing the first order system equivalent to equation (14)
by the time rescaling τ = τ(t) =

∫ t
0

dσ
r2(σ)

. We obtain the system{
r′ = r2u
u′ = −D(r)r2u− 1

(43)

where the derivatives are taken with respect to the time τ. Now we proceed
in a manner that is analogous to the one employed in the proof of Proposition
3.2 of [15]. We start by noticing that r = 0 is an orbit of (43) and that this
system does not have any equilibria. Also, the set Q = {(r, u) : r > 0, u < 0}
is a positively invariant set for (43) on which the r component of the solutions
of (43) is decreasing. A key ingredient of the proof is the existence of the
first integral of (43) given by

H := u+ ∆(r) + τ, (44)

where ∆(r) :=
∫ r
0
D(σ) dσ satisfies the estimate ∆(r) ≥ A1r. Using the

first integral and the estimate, one proves that all solutions with r(0) > 0
eventually enter the set Q. In fact, by a contradiction argument, one sees
that the negation of this property implies the existence of a bounded orbit
having as its ω-limit an equilibrium of (43) in the first quadrant. Then, in
an analogous manner, it is easily shown that all solutions are defined for
τ ∈ [0,+∞[. Since if (r(0), u(0)) = (r0, u0) ∈ Q, then r(τ) ∈ [0, r0] for any
τ ∈ [0,+∞[, and since from (44) we have

u(τ) + ∆(r(τ)) = u0 + ∆(r0)− τ,

we conclude that
u(τ)

τ
→ −1 as τ → +∞. (45)

As a consequence, we get that u(τ)→ −∞ as τ → +∞ and, integrating the
first equation of (43), we get also that

τ 2r(τ) =
τ 2

1
r0

+
∫ τ
0
|u(σ)| dσ

→ 2 as τ → +∞. (46)

We conclude that r(τ)→ 0 as τ → +∞. To end our proof we have to show
that the maximal interval [0, ω[ of a solution r(t) of (14) is bounded. If
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t = T (τ) is the inverse function of τ = τ(t), then r(τ) := r(T (τ)) is the first
component of a solution of (43), and we have

ω =

∫ +∞

0

T ′(τ) dτ =

∫ +∞

0

r2(τ) dτ ∈ R,

since by (46) r2(τ) behaves like 4
τ4

for large τ.

6.2 Proof of Proposition 3.3

This proof follows the steps of the one given for the linear drag in Proposition
3.2 of [15]. Let r(t) be a maximal solution of (14) defined on [0, ω[, ω ∈ R.
Its energy, expressed in the time τ, is given by E(τ) := E(r(τ), u(τ)), where
(r(τ), u(τ)) = (r(T (τ)), ṙ(T (τ))) is a solution of (43) is defined on [0,+∞[.
Then,

E ′(τ) = −D(r(τ))u2(τ)r2(τ), τ ∈ [0,+∞[.

By (45) and (46) we get that fixed any positive η

|E ′(τ)| ≤ max
[0,M ]
D(r)

4 + η

τ 2

for sufficiently large τ, where M = max[0,+∞[ r(τ) ∈ R exists since by Propo-
sition 2.4 all solutions of (14) tend to zero. We conclude that E ′ ∈ L1[0,+∞[
and hence E(ω) = E(0) +

∫ +∞
0

E ′(τ) dτ ∈ R.
The proof of the fact that the energy may take any arbitrarily prescribed

value E1 ∈ R at collision is completely analogous to the proof of Proposition
4.2 in [15], and we give it for the reader’s sake. Let E1 be a prescribed value
of the energy. Let (w(s), v(s), E(s)) ∈ M be the solution of (16) such that
(w(0), v(0), E(0)) = (0,−1/

√
2, E1) ∈ M. Let s = S(t) be the local inverse

of T (s) = t1 −
∫ 0

s
w2(σ) dσ in a suitable left neighbourhood of s = 0, where

t1 is arbitrarily fixed in R. Then, the function r(t) := w(S(t))2, defined in a
left neighbourhood of t1, will solve

r̈ = −D(r)ṙ +
1

r2
J − 1

r2
,

where J (E,w, v) := E|w|2−2|v|2+1. SinceM is invariant, we get that J = 0
along the solutions of (16) and we conclude that r(t) is a solution (14) which
collides with the singularity at time t1 having energy E1 at collision.
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results on the global dynamics of the regularized restricted three-body
problem with dissipation, Celest Mech Dyn Astr (2011), 109: 265-284.

[5] Corne, J.L. and Rouche, N., Attractivity of closed sets proved by
using a family of Lyapunov functions, J. Differential Equations, (1973),
13, 231–246.

[6] Danby, J. M. A., Fundamentals of celestial mechanics, (1962), The
Macmillan Company, New York.

[7] Diacu, F., Two body problems with drag or thrust: qualitative results,
Celest. Mech. Dyn. Astr., (1999), 75: 1–15.

[8] Euler, L. , Part of a letter from Leonard Euler, Phil. Trans. 1749-1750,
46, 203-205.

[9] Ferraz-Mello S., Grotta-Ragazzo C, Ruiz dos Santos, L.,
Dissipative Forces in Celestial Mechanics. 30 Coloquio Brasileiro de
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