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1. Introduction

The study of differential equations with involutions dates back to the work of Sil-
berstein [10] who, in 1940, obtained the solution of the equation f(x) = f(1/x).
In the field of differential equations there has been quite a number of publications
(see for instance the monograph on the subject of reducible differential equations
of Wiener [11]) but most of them relate to ordinary differential equations (ODEs).
There has also been some work in partial differential equations (PDEs), for in-
stance [11] or [2], where they study a PDE with reflection.

In what Green’s functions for equations with involutions is concerned, we find
in [3] the first Green’s function for ODEs with reflection and in [4] we have a
framework that allows the reduction of any differential equation with reflection and
constant coefficients. This setting is established in a general way, so it can be used
as well for other operators (the Hilbert transform, for instance) or in other yet
unexplored problems, like PDEs [8]. In this work we take this last approach and
find a way of reducing general linear PDEs with linear involutions to usual PDEs.

The paper is structured as follows. In Section 2 we develop an abstract frame-
work, with definitions and adequate notation in order to treat linear PDEs as el-
ements of a vector space consisting of symmetric tensors. This will allow us to
systematize the algebraic transformations necessary in order to obtain the desired
reduction of the problem. In Section 3 we start providing a simple example that
shows how the general process works and then prove the main result of the paper,
Theorem 3.1, that permits a general reduction in the case of order two involutions.
We end the Section with a problem with an order 3 involution (Example 3.2), il-
lustrating that the same principles could be applied to higher order involutions.
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Finally, in Section 4, we describe a way to obtain Green’s functions for PDEs with
linear involutions and apply it to a model of the process of heat transfer in a con-
ducting plate which is bent in half with the two halves separated by some insulating
material. We study the problem for different kinds of boundary conditions and a
general heat source.

2. Definitions and notation

2.1. Derivatives

Let F be R or C, n ∈ N and Ω ⊂ V := Fn a connected open subset. For p ≥ 2,
note by V �p the space of symmetric tensors or order p, that is, the space of tensors
of order p modulus the permutations of their components. We note V �1 = V and
V �0 = F. For the convenience of the reader, we summarize now the properties and
operations of the symmetric tensors:

• V �p := {v11 � · · · � vk1 + · · · + v1r � · · · � vkr : vsj ∈ Fn; j = 1, . . . , r; s =
1, . . . , k; r, k ∈ N}.
• (v11�· · ·�vk1 )�(vk+1

1 �· · ·�vp1) = v11�· · ·�v
p
1 ; vs1 ∈ Fn; s = 1, . . . , p; p ∈ N.

• v1 � v2 = v2 � v1; v1, v2 ∈ Fn.

• λ(v1 � v2) = (λv1)� v2; v1, v2 ∈ Fn.

• (v1 + v2)� v3 = v1 � v3 + v2 � v3; v1, v2, v2 ∈ Fn.

• 0� v1 = 0; v1 ∈ Fn.

With these properties, V �p is an F-vector space of dimension
(
n+p−1

p

)
.

For every v = (v1, . . . , vn) ∈ V , we define the directional derivative operator as

C1(Ω,F) C(Ω,F)

y v1
∂y
∂x1 + · · ·+ vn

∂y
∂xn

Dv

If ∇y denotes the gradient vector of y, then Dv(y) = vT∇y. Observe that Dλu+v =
λDu+Dv for every u, v ∈ Fn and λ ∈ F, that is, Dv is linear in v. Also, for u, v ∈ Fn,
if y ∈ C2(Ω,F), then Du(Dvy) = Dv(Duy). Furthermore, Du ◦Dv is bilinear –that
is, linear in both u and v, so we can write the identification Dv ◦Du ≡ D2

v�u, where
v � u denotes de symmetric tensor product of u and v. In the same way, we define
the composition of higher order derivatives by Dp

ω2
◦Dq

ω1
= Dp+q

ω2�ω1
where ω1 ∈ V �q

and ω2 ∈ V �p, p, q ∈ N.
In this way, a linear partial differential equation is given by

Ly :=

m∑
k=0

Dk
ωk
y = 0, (2.1)

where ωk ∈ V �k for k = 1, . . . ,m andD0
ω0
u ≡ ω0u where ω0 ∈ F (that is, V �0 := F).

Now, the operator L can be identified with ω0 + ω1 + · · ·+ ωn, which is an element
of the symmetric tensor algebra

S∗V :=

∞⊕
k=0

V �n = F⊕ V ⊕ (V � V )⊕ (V � V � V )⊕ · · ·
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It is interesting to point out the the Hilbert space completion of S∗V , that is,
F+(V ) := S∗V , is called the symmetric or bosonic Fock space, which is widely used
in quantum mechanics [5].

2.2. Involutions

Definition 2.1. Let Ω be a set and A : Ω→ Ω, p ∈ N, p ≥ 2. We say that A is an
order p involution if

1. Ap ≡ A◦
p
^· · · ◦A = Id,

2. Aj 6= Id, j = 1, . . . , p− 1.

We will consider linear involutions in Fn. They are characterized by the following
theorem.

Theorem 2.1 ( [1]). A necessary and sufficient condition for a linear transforma-
tion A on a finite dimensional complex vector space V to be an involution of order
p is that A = α1P1 + · · ·+αkPk where αj is a p-th root of the unity, and P1, . . . , Pk
are projections such that PjPl = 0, i 6= j and P1 + · · ·+ Pk = Id.

Remark 2.1. As an straightforward consequence of this result we have that there
are only order two linear involutions in Rn. This is because the only real p-th roots
of the unity are contained in {±1}.

The characterization provided in Theorem 2.1 can be rewritten in the following
way.

Corollary 2.1. A necessary and sufficient condition for a linear transformation A
on V to be an involution of order p is that A = U−1ΛU where Λ, U ∈ Mn(F), U
is invertible and Λ is a diagonal matrix where the elements of the diagonal are p-th
roots of the unity.

Proof. Consider the characterization of involutions given by Theorem 2.1. Take
the vector subspaces Hj := PjV , j = 1, . . . , k. Then, V = H1 ⊕ · · · ⊕ Hk. Take
U−1 to be the matrix of which its columns are, consecutively, a basis of Hk. Hence,
A = U−1ΛU where Λ is a diagonal matrix of diagonal

(α1, . . . , α1, α2, . . . , α2, . . . , αk, . . . , αk),

where every αj is repeated accorollaryding to the dimension of Hk.

2.3. Pullbacks and equations

Let F(Ω,F) be the set of functions from Ω ⊂ Fn to F. We define the pullback
operator by a function ϕ ∈ F(Ω,Ω) as

F1(Ω,F) F(Ω,F)

y y ◦ ϕ

ϕ∗

Assume A is a linear order p involution on Ω (Ω has to be such that Ω = A(Ω)).
From now on, we will omit the composition signs. Observe that, for v ∈ V , x ∈ Ω
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and y ∈ C1(Ω,F),

((DvA
∗)y)(x) = Dv(y(Ax)) = vT∇(y(Ax)) = vTAT∇y(Ax)

= (Av)T∇y(Ax) = DAv∇y(Ax) = (A∗DAv)y(x),

or, written briefly, DvA
∗ = A∗DAv. All the same, for v1, . . . , vj ∈ V ,

Dj
v1�···�vjA

∗ = A∗Dj
Av1�···�Avj .

If ωk = v1 � · · · � vk ∈ V �k, we denote Aωk ≡ Av1 � · · · � Avj . This way,

Dj
ωk
A∗ = A∗Dj

Aωk
.

We can consider now linear partial differential equations with linear involutions
of the form

Ly :=

p−1∑
j=0

m∑
k=0

(A∗)jDk
ωjk
y = 0,

where ωjk ∈ V �k for k = 0, . . . ,m; j = 0, . . . , p − 1. This time we can identify L
with (

ω0
1 + · · ·+ ω0

m, ω
1
1 + · · ·+ ω1

m, . . . , ω
p−1
1 + · · ·+ ωp−1m

)
∈ (S∗V )p.

The interest in these equations appears when they can be reduced to usual partial
differential equations.

Definition 2.2 ( [4]). If F[D] is the ring of polynomials on the usual differential
operator D andA is any operator algebra containing F[D], then an equation Lx = 0,
where L ∈ A, is said to be a reducible differential equation if there exits R ∈ A such
that RL ∈ F[D].

In our present case, the first projection of the algebra (S∗V )p is precisely the
algebra of partial differential operators on n variables PDn[F], so we want to find
elements R ∈ (S∗V )p such that they nullify the last p− 1 components of L.

3. Reducing the operators

We start with an illustrative example.

Example 3.1. Let V = R2, v = (v1, v2) ∈ V and

A =

1 0

0 −1

 .

A is an order 2 involution. Consider the equation

v1
∂y

∂x1
(x) + v2

∂y

∂x2
(x) + y(Ax) = 0, x = (x1, x2) ∈ R2. (3.1)

Here we work with the operator L = Dv + A∗. Take then R = D−Av + A∗ and
consider the identity operator Id. We have that

RL =(D−Av +A∗)(Dv +A∗) = D−AvDv +A∗Dv +D−AvA
∗ + (A∗)2

=D−Av�v +A∗Dv +A∗D−AAv + Id = D−Av�v +A∗Dv +A∗D−v + Id

=D−Av�v +A∗Dv −A∗Dv + Id = D−Av�v + Id .
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Hence, every two-times differentiable solution of equation (3.1) has to be a solution
of the partial differential equation

−v21
∂2y

∂x21
(x) + v22

∂2y

∂x22
(x) + y = 0, x = (x1, x2) ∈ R2.

Remark 3.1. With the notation we have introduced, it is extremely important
the use of parentheses. Observe that every ω ∈ (Fn)�k can be expressed as ω =
v11 � · · · � vk1 + · · · + v1r � · · · � vkr for some vsj ∈ Fn, j = 1, . . . , r, s = 1, . . . , k;
r, k ∈ N. Hence, for c ∈ F,

(cA)ω =cAv11 � · · · � cAvk1 + · · ·+ cAv1r � · · · � cAvkr
=ck(Av11 � · · · �Avk1 ) + · · ·+ ck(Av1r � · · · �Avkr ) = ck(Aω) ≡ ckAω.

Theorem 3.1. Let A be an order 2 linear involution on Fn. Let L ∈ (S∗V )p be
defined as in (2.1). Then there exists R ∈ (S∗V )p defined as

Ry :=

p−1∑
j=0

m∑
k=0

(A∗)jDk
ξjk
y = 0,

where ξ0k = −Aω0
k, ξ1k = ω1

k, for k = 0, 1, . . . , such that RL ∈ PDn[F]. Furthermore,
L and R commute.

Proof. For convenience, define ξjk and ωjk outside the index range j = 0, . . . , p−1,
k = 0, . . .m to be zero. In general,

RL =

p−1∑
l=0

m∑
r=0

(A∗)lDr
ξlr

p−1∑
j=0

m∑
k=0

(A∗)jDk
ωjk

 =

p−1∑
l,j=0

m∑
r,k=0

(A∗)lDr
ξlr

(A∗)jDk
ωjk

=

p−1∑
l,j=0

m∑
r,k=0

(A∗)l+jDr
Ajξlr

Dk
ωjk

=

p−1∑
l,j=0

m∑
r,k=0

(A∗)l+jDr+k

Ajξlr�ω
j
k

=

p−1∑
l,j=0

(A∗)l+j

(
2m∑
s=0

s∑
k=0

Ds
Ajξls−k�ω

j
k

)
=

p−1∑
l,j=0

(A∗)l+j

(
2m∑
s=0

Ds∑s
k=0 A

jξls−k�ω
j
k

)
.

In the particular case p = 2, we have that

RL =

2m∑
s=0

Ds∑s
k=0 ξ

0
s−k�ω

0
k

+

2m∑
s=0

Ds∑s
k=0 Aξ

1
s−k�ω

1
k

+A∗

(
2m∑
s=0

Ds∑s
k=0 ξ

1
s−k�ω

0
k

+

2m∑
s=0

Ds∑s
k=0 Aξ

0
s−k�ω

1
k

)

=

2m∑
s=0

Ds∑s
k=0(ξ0s−k�ω0

k+Aξ
1
s−k�ω

1
k)

+A∗

(
2m∑
s=0

Ds∑s
k=0(ξ1s−k�ω0

k+Aξ
0
s−k�ω

1
k)

)
.

So it is enough to check that, for s = 0, . . . , 2m,

s∑
k=0

(
ξ1s−k � ω0

k +Aξ0s−k � ω1
k

)
= 0.
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Substituting the ξjk by their given values,

s∑
k=0

(
ξ1s−k � ω0

k +Aξ0s−k � ω1
k

)
=

s∑
k=0

(
ω1
s−k � ω0

k −A2ω0
s−k � ω1

k

)
=

s∑
k=0

(
ω1
s−k � ω0

k − ω0
s−k � ω1

k

)
=

s∑
k=0

ω1
s−k � ω0

k −
s∑

k=0

ω0
s−k � ω1

k

=

s∑
k=0

ω1
s−k � ω0

k −
s∑

k=0

ω0
k � ω1

s−k = 0.

Let us see that L and R commute.

LR =

2m∑
s=0

Ds∑s
k=0(ω0

s−k�ξ
0
k+Aω

1
s−k�ξ

1
k)

+A∗

(
2m∑
s=0

Ds∑s
k=0(ω1

s−k�ξ
0
k+Aω

0
s−k�ξ

1
k)

)
.

Now,

s∑
k=0

(
ω0
s−k � ξ0k +Aω1

s−k � ξ1k
)

=

s∑
k=0

ω0
k � ξ0s−k +

s∑
k=0

Aω1
s−k � ω1

k

=

s∑
k=0

ξ0s−k � ω0
k +

s∑
k=0

Aξ1s−k � ω1
k.

On the other hand,

s∑
k=0

(
ω1
s−k � ξ0k +Aω0

s−k � ξ1k
)

=

s∑
k=0

(
ω1
s−k � (−Aω0

k) +Aω0
s−k � ω1

k

)
=

s∑
k=0

(
−ω1

s−k �Aω0
k +Aω0

s−k � ω1
k

)
=

s∑
k=0

(
−ω1

k �Aω0
s−k +Aω0

s−k � ω1
k

)
= 0.

Hence, the result is proven.
Similar reductions can be found for higher order involutions, although the coef-

ficients may have a much more complex expression.

Example 3.2. Let A be and order 3 linear involution in Cn, v ∈ Cn\{0} and
consider the operator L = Dv +A∗. Define now

R := Dv�A2v −A∗DA2v + (A∗)2.

Observe that second derivatives occur in R but not in L. We have that

RL =Dv�A2vDv −A∗DA2vDv + (A∗)2Dv +Dv�A2vA
∗ −A∗DA2vA

∗ + (A∗)2A∗

=Dv�v�A2v −A∗Dv�A2v + (A∗)2Dv +A∗Dv�A2v − (A∗)2Dv + Id

=Dv�v�A2v + Id .

Unfortunately, we do not have commutativity in general:

LR =DvDv�A2v −DvA
∗DA2v +Dv(A

∗)2 +A∗Dv�A2v − (A∗)2DA2v + Id

=Dv�v�A2v −A∗DA∗v�A2v + (A∗)2DA2v +A∗Dv�A2v − (A∗)2DA2v + Id

=Dv�v�A2v +A∗D(v−A∗v)�A2v + Id .
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In the particular case v is a fixed point of A, RL = LR.
The obtaining of a general expression for associated operators in the case of

order 3 involutions and the conditions under which such operators commute is an
interesting open problem.

4. Green’s functions

Consider now the following problem

Lu = h; Bλu = 0, λ ∈ Λ, (4.1)

where L ∈ (S∗V )p, h ∈ L1(Fn,F), the Bλ : C(Fn,F) → F are linear functionals,
λ ∈ Λ and Λ is an arbitrary set.

Let R ∈ (S∗V )p, f ∈ L1(Fn,F) and consider the problem

RLv = f ; Bλv = 0, BλRv = 0, λ ∈ Λ. (4.2)

Given a function G : Fn×Fn → F, we define the operator HG such that HG(h)|x :=∫
Fn G(x, s)h(s) d s for every h ∈ L1(Fn,F), assuming such an integral is well defined.

Also, given an operator R for functions of one variable, define the operator R` as
R`G(t, s) := R(G(·, s))|t for every s, that is, the operator acts on G as a function
of its first variable.

We have now the following theorem relating problems (4.1) and (4.2). The proof
for the case of ordinary differential equations can be found in [4]. The case of PDEs
is analogous.

Theorem 4.1. Let L, R ∈ (S∗V )p, h ∈ L1(Fn,F). Assume L commutes with R
and that there exists G such that HG is well defined satisfying

(I) (RL)`G = 0,

(II) Bλ`G = 0, λ ∈ Λ,

(III) (BλR)`G = 0, λ ∈ Λ,

(IV ) RLHGh = H(RL)`Gh+ h,

(V ) LHR`Gh = HL`R`Gh+ h,

(V I) BλHG = HBλ`G, λ ∈ Λ,

(V II) BλRHG = BλHR`G = H(BλR)`G, λ ∈ Λ.

Then, v := HGf is a solution of problem (4.2) and u := HR`Gh is a solution of
problem (4.1).

4.1. A model of stationary heat transfer in a bent plate

We now consider a circular plate which is bent in half, with each of the two distinct
halves separated by a very small distance which may be filled with some kind of
(imperfect) heat insulating material (see Figure 4.1).

The heat equation which determines the temperature u on the plate for this
situation is given by

∂u

∂t
(t, x, y) = α

[
∂2u

∂x2
(t, x, y) +

∂2u

∂y2
(t, x, y)

]
+ β[u(t, x,−y)− u(t, x, y)],
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Figure 1. A section of the plate bent in half.

where
∂u

∂t
(t, x, y) = α

[
∂2u

∂x2
(t, x, y) +

∂2u

∂y2
(t, x, y)

]
,

is the usual heat equation with heat transfer coefficient α > 0 and the term that
goes with β > 0 relates to the heat transfer from the corollaryresponding point in
the other half of the plate due to Newton’s law of cooling.

If we consider the associated stationary problem

α

[
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)

]
+ β[u(x,−y)− u(x, y)] = 0,

it can be rewritten in a convenient way as

Lu := α∆u+ β(A∗ − Id)u = 0,

where

∆ =
∂2

∂x2
+

∂2

∂y2
and A =

1 0

0 −1

 .

If we think of a circular plate in which the boundary is constantly cooled and the
surface has a constant heat source given by a function h, we are imposing Dirichlet
boundary conditions in the ball B of radius ρ ∈ R+ and considering the problem

Lu = h, u|∂B = 0. (4.3)

Observe that, ∆, expressed in tensor notation, is ∆ = Dω0
2

where

ω0
2 =

1

2
[(1, 1)� (1, 1) + (1,−1)� (1,−1)] .

Besides, Aω0
2 = ω0

2 and, thus, ∆A∗ = A∗∆. Hence, using Theorem 3.1, we have to
take R = −α∆ + βA∗ + β Id and thus

RL =− α2∆2 − αβA∗∆ + αβ∆ + αβA∗∆ + β2 Id−β2A∗ + αβ∆ + β2A∗ − β2 Id

=− α2∆2 + 2αβ∆ = (−α2∆ + 2αβ Id)∆.
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Now, the boundary conditions transformed by R are

0 = Ru = −α∆u+ βA∗u+ βu = −α∆u,

that is, the reduced problem becomes

RLu = Rh =: f, u|∂B = 0, ∆u|∂B = 0, (4.4)

which is equivalent to the sequence of problems

∆u =v, u|∂B = 0, (4.5)

(−α2∆ + 2αβ Id)v =f, v|∂B = 0. (4.6)

Problem (4.5) is the well-known Poisson equation with Dirichlet conditions on
the circle of radius ρ. The Green’s function can be written in polar coordinates as

G1(r, ϕ, r̃, ϕ̃) =
−1

4π
ln

[
r2r̃2 − 2ρ2rr̃ cos(ϕ− ϕ̃) + ρ4

ρ2r2 − 2ρ2rr̃ cos(ϕ− ϕ̃) + ρ2r̃2

]
.

See [9, Section 7.2.3]. On the other hand, problem (4.6) is a Helmholtz equation,
and the Green’s function can be described in terms of the eigenfunctions of the asso-
ciated homogeneous problem (see [9, Section 7.3.3]). More concretely, the associated
Green’s function in polar coordinates is written as

G2(r, ϕ, r̃, ϕ̃)

=
1

α2

∞∑
n=0

∞∑
m=1

1(
µ2
nm

ρ2 + 2β
α

)
‖w(1)

nm‖2

[
w(1)
nm(r, ϕ)w(1)

nm(r̃, ϕ̃) + w(2)
nm(r, ϕ)w(2)

nm(r̃, ϕ̃)
]
,

where µnm are the positive zeroes of the Bessel functions Jn, the eigenfunctions are
given by

w(1)
nm = Jn

(
µnm
ρ

r

)
cosnϕ, w(2)

nm = Jn

(
µnm
ρ

r

)
sinnϕ,

and

‖w(1)
nm‖2 =

1

2
πρ2(1 + δn 0) [J ′n(µnm)]

2
,

where δij = 1 if i = j and 0 if i 6= j.
Now, the Green’s function associated to problem (4.4) is given by

G3(r, ϕ, r̃, ϕ̃) =

∫ ρ

0

∫ 2π

0

G2(r, ϕ, r̂, ϕ̂)G1(r̂, ϕ̂, r̃, ϕ̃) d ϕ̂d r̂.

In conclusion, the Green’s function related to problem (4.3) is

G4(η, ξ) = R`G3(η, ξ) =

∫ ρ

0

∫ 2π

0

R`G2(r, ϕ, r̂, ϕ̂)G1(r̂, ϕ̂, r̃, ϕ̃) d ϕ̂d r̂,

where R` has to be expressed in polar coordinates in order to act in the first two
variables of G3:

R = −α
[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

]
+ βA∗ + β Id .
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Also, it is known that J ′n(z) = (n/z)Jn(z)− Jn+1(z), so

R`G2(r, ϕ, r̂, ϕ̂)

=
1

α2

∞∑
n=0

∞∑
m=1

1(
µ2
nm

ρ2 + 2β
α

)
‖w(1)

nm‖2

[
w̃(1)
nm(r, ϕ)w(1)

nm(r̃, ϕ̃) + w̃(2)
nm(r, ϕ)w(2)

nm(r̃, ϕ̃)
]
,

where

w̃(1)
nm =

((
µnm
ρ

)2
[(

nρ

µnmr

)2

Jn −
(

1 +
(n+ 1)ρ

µnmr

)
Jn+1 + Jn+2

]

+
n

r

[
ρ

µnmr
Jn − Jn+1

]
− n2

(
µnm
ρ

r

)−2
Jn

)∣∣∣∣∣
(µnmρ r)

cosnϕ,

w̃(2)
nm =

((
µnm
ρ

)2
[(

nρ

µnmr

)2

Jn −
(

1 +
(n+ 1)ρ

µnmr

)
Jn+1 + Jn+2

]

+
n

r

[
ρ

µnmr
Jn − Jn+1

]
− n2

(
µnm
ρ

r

)−2
Jn

)∣∣∣∣∣
(µnmρ r)

sinnϕ.

Example 4.1. Inspired by the previous problem, we now change the term due to
Newton’s law of cooling by a diffusion term in the following way.

∂K

∂t
(t, x, y) = α

[
∂2K

∂x2
(t, x, y) +

∂2K

∂y2
(t, x, y)

]
+β

[
∂2K

∂x2
(t, x,−y) +

∂2K

∂y2
(t, x,−y)

]
,

where α, β > 0, β 6= α.
If we consider the associated stationary problem

α

[
∂2K

∂x2
(x, y) +

∂2K

∂y2
(x, y)

]
+ β

[
∂2K

∂x2
(x,−y) +

∂2K

∂y2
(x,−y)

]
= 0,

it can be rewritten as
LK := α∆K + βA∗∆K = 0,

Using Theorem 3.1, we take R = −α∆ + βA∗∆ and then

RL = −α2∆2 − αβ∆A∗∆ + βαA∗∆2 + β2(A∗∆)2 = β2∆2 − α2∆2 = (β2 − α2)∆2.

Now, if we consider the fundamental solution of the bi-Laplacian ∆2 [6, equa-
tion (2.61)] we obtain a Green’s function given by

G1(η, ξ) =
1

8π
‖η − ξ‖2 ln ‖η − ξ‖, η, ξ ∈ R2.

Hence, in that case, the Green’s function associated to L is given by

G2(η, ξ) = R`G1(η, ξ) = (β − α)
ln ‖η − ξ‖+ 1

2π
, η, ξ ∈ R2.

If we consider the problem
LK = h, u|∂B = 0,
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the reduced problem becomes

(β2 − α2)∆2K = h, u|∂B = 0, Ru|∂B = 0. (4.7)

Now, the condition Ru = −α∆u+ βA∗∆u = 0 is satisfied if we can guarantee that
∆u = 0, so we can consider the problem

(β2 − α2)∆2K = h, u|∂B = 0, ∆u|∂B = 0. (4.8)

For problem (4.8) we have that the Green’s function is given by

G3(η, ξ) =
1

8π
‖η − ξ‖2 (ln ρ− 1 + ln ‖η − ξ‖) +

ρ2

8π
, η, ξ ∈ R2.

Hence, the Green’s function related to problem (4.7) is

G4(η, ξ) =
ln ρ+ ln ‖η − ξ‖

2π
.

In general, the functions

G5(η, ξ) =
1

8π
‖η − ξ‖2 (µ+ ln ‖η − ξ‖) +

ν

8π
, η, ξ ∈ R2,

with µ, ν ∈ R, are Green’s functions related to the operator ∆2 with different
boundary conditions. The associated function for the operator L is given by

G6(η, ξ) =
1 + µ+ log ‖η − ξ‖

2π
.
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