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Abstract

In this paper we continue the study of the periodic problem for the second–order
equation u′′ + f(u)u′ + g(u) = h(t, u), where h is a Carathéodory function and f, g
are continuous functions on (0, +∞) which may have singularities at zero. Both
attractive and repulsive singularities are considered. The method relies on a novel
technique of construction of lower and upper functions. As an application, we obtain
new sufficient conditions for existence of periodic solutions to the Rayleigh–Plesset
equation.

1 Introduction

In this paper, we are concerned with the periodic problem

u′′(t) + f(u(t))u′(t) + g(u(t)) = h(t, u(t)) for a. e. t ∈ [0, ω], (1.1)

u(0) = u(ω), u′(0) = u′(ω), (1.2)

where f, g ∈ C
(
R+; R

)
may have singularities at zero, and h ∈ Car

(
[0, ω] × R+; R

)
. In

the related literature, g is said to present an attractive (resp. repulsive) singularity if
lim
x→0+

g(x) = +∞ (resp. lim
x→0+

g(x) = −∞). By a positive solution to the problem (1.1),

(1.2) we understand a function u : [0, ω] → R+ which is absolutely continuous together
with its first derivative, satisfies (1.1) almost everywhere on [0, ω], and verifies (1.2).

In the paper [3], we obtain some sufficient conditions for the existence of solutions
to the problem (1.1), (1.2) by using the Schaefer’s fixed point theorem. This paper can
be considered the second part of our previous work [3]. Our initial motivation was the
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Rayleigh-Plesset equation (see, e.g., [2])

ρ
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Ṙ2

]
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R
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R
.

In Physics of Fluids, this is a famous model for the oscillations of the radius R(t) of a
spherical bubble immersed in a fluid under the influence of a periodic acoustic field P∞.
A detailed explanation of the physical meaning of the involved parameters can be found
in [3, Section 3] and the references therein. It is observed in [3] that the change of variable
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2
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u
4
5

,

which is a particular case of (1.1). Therefore, we will pay a special attention to the model
equation

u′′(t) + f(u(t))u′(t) +
g1

uν(t)
− g2

uγ(t)
= h0(t)u

δ(t) for a. e. t ∈ [0, ω], (1.3)

where g1, g2, δ ∈ R+, ν > 0, γ ∈ R, h0 ∈ L
(
[0, ω]; R

)
and f ∈ C

(
R+; R

)
.

Our purpose is to develop a novel method of construction of lower and upper functions,
giving rise to new abstract existence theorems for the general equation (1.1) which are
easily applicable to the model equation (1.3) and make more complete the results of [3].
Incidentally, it turns out that our results are new even for the classical equation of Liénard
type

u′′(t) + f(u(t))u′(t) + g(u(t)) = h0(t) for a. e. t ∈ [0, ω]. (1.4)

When f ∈ C
(
R+; R

)
, this equation has been extensively studied in the last two decades

(see the bibliography of [3]).
The paper is structured in 4 sections: after this Introduction, Section 2 is devoted to

develop a new technique of construction of upper and lower functions. The main results
are presented and proved in Section 3, with special attention the the model equation (1.3).
Finally, in Section 4 the results of Section 3 are applied to the Rayleigh-Plesset equation.

For convenience, we finish this introduction with a list of notation which is used
throughout the paper:

R is the set of all real numbers, R+ = (0,+∞), R+ = [0,+∞), [x]+ = max{x, 0},
[x]− = max{−x, 0}.

C
(
[0, ω]; R

)
is the Banach space of continuous functions u : [0, ω]→ R with the norm

‖u‖∞ = max{|u(t)| : t ∈ [0, ω]}.

C(D1;D2), where D1, D2 ⊆ R, is the set of continuous functions u : D1 → D2.
C1
(
[0, ω]; R

)
is the Banach space of continuous functions u : [0, ω]→ R with continu-

ous derivative, with the norm ‖u‖C1 = ‖u‖∞ + ‖u′‖∞.
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AC
(
[0, ω]; R

)
is a set of all absolutely continuous functions.

AC1
(
[0, ω]; R

)
is a set of all functions u : [0, ω]→ R such that u and u′ are absolutely

continuous.
L
(
[0, ω]; R

)
is the Banach space of Lebesgue integrable functions p : [0, ω] → R with

the norm

‖p‖1 =

∫ ω

0

|p(s)|ds.

L
(
[0, ω]; R+

)
=
{
p ∈ L

(
[0, ω]; R

)
: p(t) ≥ 0 for a.e. t ∈ [0, ω]

}
.

For a given p ∈ L
(
[0, ω]; R

)
, its mean value is defined by

p =
1

ω

∫ ω

0

p(s)ds.

Finally, a function f : [0, ω]×D1 → D2 belongs to the set of Carathéodory functions
Car

(
[0, ω] × D1;D2

)
if and only if f(·, x) : [0, ω] → D2 is measurable for all x ∈ D1,

f(t, ·) : D1 → D2 is continuous for a.e. t ∈ [0, ω], and for each compact set K ⊂ D1, there
exists mK ∈ L

(
[0, ω]; R+

)
such that |f(t, x)| ≤ mK(t) for a.e. t ∈ [0, ω] and all x ∈ K.

Throughout the paper, speaking about periodic function u we mean that both u and
u′ are periodic functions; i.e.,

u(0) = u(ω), u′(0) = u′(ω).

2 The method of upper and lower functions

The method of upper and lower functions is one of the most fruitful techniques in Nonlinear
Analysis and the main idea can be traced back at least to Picard. The monograph [1]
presents a nice and complete historical review of the subject. In our context, the definition
of upper and lower functions is as follows.

Definition 2.1. A function α ∈ AC1
(
[0, ω]; R

)
is called a lower–function to the problem

(1.1), (1.2) if α(t) > 0 for every t ∈ [0, ω] and

α′′(t) + f(α(t))α′(t) + g(α(t)) ≥ h(t, α(t)) for a. e. t ∈ [0, ω],

α(0) = α(ω), α′(0) ≥ α′(ω).

Definition 2.2. A function β ∈ AC1
(
[0, ω]; R

)
is called an upper–function to the problem

(1.1), (1.2) if β(t) > 0 for every t ∈ [0, ω] and

β′′(t) + f(β(t))β′(t) + g(β(t)) ≤ h(t, β(t)) for a. e. t ∈ [0, ω],

β(0) = β(ω), β′(0) ≤ β′(ω).

Next theorem is well-known in the related literature (see, e.g., [1] or more general case
in [6, Theorem 8.12]).
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Proposition 2.1. Let α and β be lower and upper functions to the problem (1.1), (1.2)
such that

α(t) ≤ β(t) for t ∈ [0, ω].

Then there exists a positive solution u to the problem (1.1), (1.2) such that

α(t) ≤ u(t) ≤ β(t) for t ∈ [0, ω].

The objective of this section is to develop a new technique for construction of upper
and lower functions.

2.1 Auxiliary results

Given x1 ∈ R+ and x0 ∈ R+ fixed constants, let us define the operator T : C1
(
[0, ω]; R

)
→

C1
(
[0, ω]; R

)
by

T (u)(t) = x1 + x0

(
u(t)−min

{
u(s) : s ∈ [0, ω]

})
for t ∈ [0, ω] (2.1)

and consider the auxiliar problem

u′′(t) + f(T (u)(t))u′(t) = q(t) for a. e. t ∈ [0, ω], (2.2)

u(0) = 0, u(ω) = 0, (2.3)

where f ∈ C
(
R+; R

)
and q ∈ L

(
[0, ω]; R

)
. By a solution to the problem (2.2), (2.3)

we understand a function u ∈ AC1
(
[0, ω]; R

)
which satisfies (2.2) almost everywhere on

[0, ω], and verifies (2.3).

Lemma 2.1. Let u ∈ AC
(
[0, ω]; R

)
be such that

u(0) = u(ω). (2.4)

Then the inequality

(M −m)2 ≤ ω

4

∫ ω

0

u′
2

(s)ds (2.5)

holds where

M = max
{
u(t) : t ∈ [0, ω]

}
, m = min

{
u(t) : t ∈ [0, ω]

}
. (2.6)

Proof. Let us define ũ : [0, 2ω]→ R by

ũ(t) =

{
u(t) if t ∈ [0, ω],

u(t− ω) if t ∈ (ω, 2ω].
(2.7)

Evidently, (2.4) implies that ũ ∈ AC
(
[0, 2ω]; R

)
and also there exist t0 ∈ [0, ω] and

t1 ∈ (t0, t0 + ω) such that

ũ(t0) = m, ũ(t1) = M, ũ(t0 + ω) = m.
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Then

M −m =

∫ t1

t0

ũ′(s)ds, m−M =

∫ t0+ω

t1

ũ′(s)ds.

Using the Cauchy–Bunyakovskii–Schwarz inequality we obtain

M −m ≤

√
(t1 − t0)

(∫ t1

t0

ũ′ 2(s)ds

)
,

M −m ≤

√
(t0 + ω − t1)

(∫ t0+ω

t1

ũ′ 2(s)ds

)
.

Multiplying both inequalities and using that AB ≤ 1
4
(A+B)2 for each A,B ∈ R+ we can

prove that

(M −m)2 ≤ ω

4

∫ t0+ω

t0

ũ′
2

(s)ds.

Finally, from the last inequality, in virtue of (2.7), we obtain (2.5).

Lemma 2.2. For every possible solution u to the problem

u′′(t) + λf(T (u)(t))u′(t) = λq(t) for a. e. t ∈ [0, ω], (2.8)

u(0) = 0, u(ω) = 0 (2.9)

with λ ∈ (0, 1], the estimate

M −m ≤ ω

4
max

{∫ ω

0

[q(s)]+ds,

∫ ω

0

[q(s)]−ds

}
(2.10)

holds, where the numbers M and m are given by (2.6).

Proof. Multiplying (2.8) by u and integrating on [0, ω], we get

−
∫ ω

0

u′
2

(s)ds = λ

∫ ω

0

q(s)u(s)ds.

Hence, ∫ ω

0

u′
2

(s)ds ≤ λ

(
M

∫ ω

0

[q(s)]−ds−m
∫ ω

0

[q(s)]+ds

)
. (2.11)

Note that (2.9) implies M ≥ 0, m ≤ 0. Therefore, from (2.11) we obtain∫ ω

0

u′
2

(s)ds ≤ max

{∫ ω

0

[q(s)]+ds,

∫ ω

0

[q(s)]−ds

}
(M −m). (2.12)

Now, (2.10) is a direct consequence of Lemma 2.1 and (2.12).

The following result is known as a Schaefer’s fixed point theorem (see [8], or more
recent books [9, 10]). We formulate it here in a suitable for us form.
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Lemma 2.3 (see [8]). Let F : C1
(
[0, ω]; R

)
→ C1

(
[0, ω]; R

)
be a continuous operator

which is compact on each bounded subset of C1
(
[0, ω]; R

)
3. If there exists r > 0 such that

every solution to
u = λF (u) (2.13)

for λ ∈ (0, 1) verifies
‖u‖C1 ≤ r, (2.14)

then (2.13) has a solution for λ = 1.

Next lemma is a generalized version of a lemma proved by Mawhin in [5, Lemma 6.2.].

Lemma 2.4. For every x1 ∈ R+, x0 ∈ R+ and q ∈ L
(
[0, ω]; R

)
there exists a solution u

to the problem (2.2), (2.3). Furthermore,

u′(ω)− u′(0) =

∫ ω

0

q(s)ds (2.15)

and (2.10) is fulfilled, where the constants M and m are defined by (2.6).

Proof. Let u be a possible solution to (2.8), (2.9) with λ ∈ (0, 1). According to Lemma 2.2
we have

‖u‖∞ ≤
ω

4
‖q‖1. (2.16)

On the other hand, it is obvious that there exists t0 ∈ [0, ω] such that

u′(t0) = 0. (2.17)

The integration of (2.8) from t0 to t with respect to (2.1), (2.17), (2.10), and the inclusion
λ ∈ (0, 1), yields

|u′(t)| ≤
∣∣∣∣∫ t

t0

f(T (u)(s))u′(s)ds−
∫ t

t0

q(s)ds

∣∣∣∣ ≤ ∫ x1+x0
ω
4
‖q‖1

x1

|f(s)|ds+‖q‖1 for t ∈ [0, ω],

whence we obtain
‖u′‖∞ ≤

(
Mfx0

ω

4
+ 1
)
‖q‖1, (2.18)

where
Mf = max

{
|f(x)| : x1 ≤ x ≤ x1 + x0

ω

4
‖q‖1

}
.

Therefore, in view of (2.16) and (2.18), u satisfies (2.14) with

r =
[
(1 + x0Mf )

ω

4
+ 1
]
‖q‖1.

3i.e., it transforms every bounded set into a relatively compact set.
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Define F : C1
(
[0, ω]; R

)
→ C1

(
[0, ω]; R

)
by

F (v)(t) =
1

ω

[
(ω − t)

∫ t

0

s
(
f(T (v)(s))v′(s)− q(s)

)
ds

+ t

∫ ω

t

(ω − s)
(
f(T (v)(s))v′(s)− q(s)

)
ds

]
for t ∈ [0, ω].

Then, every solution to (2.13) with λ ∈ (0, 1) is a solution to (2.8), (2.9) and thus according
to Lemma 2.3 the problem (2.2), (2.3) has at least one solution u. Integrating (2.2) from
0 to ω we obtain (2.15). The estimate (2.10) immediately follows from Lemma 2.2.

Lemma 2.5. Let h ∈ L
(
[0, ω]; R

)
. Then,

lim
n→+∞

∫ ω

0

[h(s)− n]+ds = 0 (2.19)

and

lim
n→+∞

∫ ω

0

[h(s) + n]−ds = 0. (2.20)

Proof. Let us define

hn(t) =

{
n if h(t) > n,

h(t) if h(t) ≤ n,
for a. e. t ∈ [0, ω], n ∈ N. (2.21)

Then,
h(t) = hn(t) + [h(t)− n]+ for a. e. t ∈ [0, ω], n ∈ N. (2.22)

Integrating (2.22) over a period,∫ ω

0

h(s)ds =

∫ ω

0

hn(s)ds+

∫ ω

0

[h(s)− n]+ds for n ∈ N. (2.23)

On the other hand, from (2.21) and (2.22) we get

−[h(t)]− ≤ hn(t) ≤ h(t) for a. e. t ∈ [0, ω], n ∈ N

and
lim

n→+∞
hn(t) = h(t) for a. e. t ∈ [0, ω].

Thus, according to Lebesgue Theorem we have

lim
n→+∞

∫ ω

0

hn(s)ds =

∫ ω

0

h(s)ds. (2.24)

Now, from (2.23) and (2.24) we get (2.19). The identity (2.20) can be proved by similar
arguments.
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2.2 Construction of lower functions

Along this subsection, we will use the notation

Φ+ =

∫ ω

0

[ϕ(t)]+dt Φ− =

∫ ω

0

[ϕ(t)]−dt.

where ϕ ∈ L
(
[0, ω]; R

)
is a function defined below (see (2.28)). The first result of this

section gives sufficient conditions for the construction of a lower function.

Proposition 2.2. Let h0 ∈ L
(
[0, ω]; R

)
, ρ0 ∈ C

(
R+; R+

)
be a non–decreasing function,

0 < x1 ≤ x2 < +∞, and c ∈ R be such that

h(t, x) ≤ h0(t)ρ0(x) for a. e. t ∈ [0, ω], x ∈ [x1, x2], (2.25)

g(x)

ρ0(x)
≥ c ≥ h0 for x ∈ [x1, x2], (2.26)

and
ρ0(x2)

ω

4
Φ+ ≤ x2 − x1 ≤ ρ0(x1)

ω

4
Φ−, (2.27)

where
ϕ(t) = h0(t)− c for a. e. t ∈ [0, ω]. (2.28)

Then there exists a lower function α to the problem (1.1), (1.2) such that

x1 ≤ α(t) ≤ x2 for t ∈ [0, ω].

Proof. By the definition of ϕ and (2.26), we obtain Φ− ≥ Φ+ ≥ 0. As a first case we
suppose that

Φ+ > 0.

Put

x0 =
4(x2 − x1)

ωΦ−Φ+

, (2.29)

q(t) = Φ−[ϕ(t)]+ − Φ+[ϕ(t)]− for a. e. t ∈ [0, ω], (2.30)

and let T : C1
(
[0, ω]; R

)
→ C1

(
[0, ω]; R

)
be the operator defined by (2.1). Note that∫ ω

0

q(s)ds = 0. (2.31)

According to Lemma 2.4 there exists a solution u to (2.2), (2.3) such that (2.10) and
(2.15) hold. By using (2.30) and (2.31), we obtain

M −m ≤ ω

4
Φ+Φ−, (2.32)

u′(0) = u′(ω), (2.33)
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where the constants M and m are defined by (2.6). Put

α(t) = T (u)(t) for t ∈ [0, ω]. (2.34)

Then, according to (2.1)–(2.3), (2.29), (2.30) and (2.32)–(2.34) we arrive at

α′′(t) + f(α(t))α′(t) = x0Φ−[ϕ(t)]+ − x0Φ+[ϕ(t)]− for a. e. t ∈ [0, ω], (2.35)

α(0) = α(ω), α′(0) = α′(ω), (2.36)

x1 ≤ α(t) ≤ x2 for t ∈ [0, ω]. (2.37)

Using that ρ0 is a non–decreasing function, from the inequality (2.37) we obtain

ρ0(x1) ≤ ρ0(α(t)) ≤ ρ0(x2) for t ∈ [0, ω]. (2.38)

From the inequality (2.27), by virtue of (2.29), we get

x0Φ+ ≤ ρ0(x1), ρ0(x2) ≤ x0Φ−. (2.39)

Now (2.38) and (2.39) imply

x0Φ+ ≤ ρ0(α(t)) ≤ x0Φ− for t ∈ [0, ω]. (2.40)

Using (2.40) in (2.35) we get

α′′(t) + f(α(t))α′(t) ≥ ρ0(α(t))ϕ(t) for a. e. t ∈ [0, ω]. (2.41)

On the other hand, we can prove, using (2.26), (2.28) and (2.37), that

ϕ(t) ≥ h0(t)−
g(α(t))

ρ0(α(t))
for a. e. t ∈ [0, ω]. (2.42)

From (2.41), on account of (2.25), (2.37) and (2.42), it follows that

α′′(t) + f(α(t))α′(t) + g(α(t)) ≥ h(t, α(t)) for a. e. t ∈ [0, ω]. (2.43)

Consequently, (2.36), (2.37) and (2.43) ensure us that α is a lower function to the problem
(1.1), (1.2).

Now, we consider the remaining case

Φ+ = 0.

Of course, in this case
ϕ(t) ≤ 0 for a. e. t ∈ [0, ω].

Then, defining α by
α(t) = x1 for t ∈ [0, ω] (2.44)

we can prove easily that α is a positive function which fulfils (2.36) and (2.41). Again,
from (2.26), (2.28) and (2.44) we obtain (2.42) and using (2.25), (2.42) and (2.44) in
(2.41) we arrive at (2.43). Finally, also in this case, (2.36), (2.43) and (2.44) imply that
α is a lower function to the problem (1.1), (1.2).
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A simplified version of the latter proposition is presented below.

Proposition 2.3. Let h0 ∈ L
(
[0, ω]; R

)
, ρ0 ∈ C

(
R+; R+

)
be a non–decreasing function,

x0 > 0, and c ∈ R be such that

h(t, x) ≤ h0(t)ρ0(x) for a. e. t ∈ [0, ω], 0 < x ≤ x0, (2.45)

g(x)

ρ0(x)
≥ c ≥ h0 for 0 < x ≤ x0, (2.46)

and, in addition, let there exist x2 ∈ (0, x0] such that

x2 − ρ0(x2)
ω

4
Φ+ > 0, (2.47)

ρ0(x2)Φ+ ≤ ρ0

(
x2 − ρ0(x2)

ω

4
Φ+

)
Φ− (2.48)

where ϕ(t) = h0(t) − c for almost every t ∈ [0, ω]. Then there exists a lower function α
to the problem (1.1), (1.2) with

0 < α(t) ≤ x2 for t ∈ [0, ω].

Proof. In order to apply Proposition 2.2, we define

x1 = x2 − ρ0(x2)
ω

4
Φ+. (2.49)

By (2.47), x1 > 0. Then, it is clear that (2.45) and (2.46) imply (2.25) and (2.26). It
remains to show that (2.27) holds. Indeed, by the definition of x1 we have

x2 − x1 =
ω

4
ρ0(x2)Φ+. (2.50)

On the other hand, using (2.49) in (2.48) we get

ω

4
ρ0(x2)Φ+ ≤

ω

4
ρ0(x1)Φ−. (2.51)

Therefore, (2.50) and (2.51) imply (2.27).

The following corollaries are direct consequences of Proposition 2.3.

Corollary 2.1. Let x0 >
ω

8
‖h0 − h0‖1 be such that

g(x) ≥ h0 for 0 < x ≤ x0.

Then there exists a lower function α to the problem (1.4), (1.2) with

0 < α(t) ≤ x0 for t ∈ [0, ω]. (2.52)

10



Proof. The assertion immediately follows from Proposition 2.3 with h(t, x) ≡ h0(t) if we
put c = h0, ρ0 ≡ 1, and x2 = x0. Note also that in this case ‖h0 − h0‖1 = Φ+ + Φ− =
2Φ+.

Corollary 2.2. Let h0 ∈ L
(
[0, ω]; R

)
, ρ0 ∈ C

(
R+; R+

)
be a non–decreasing function,

x0 > 0, and c ∈ R be such that (2.45) and (2.46) are fulfilled. Let, moreover, there exist
a sequence {yn}+∞n=1 of positive numbers such that

lim
n→+∞

yn = 0, (2.53)

lim
n→+∞

ρ0(yn)

yn
= 0, (2.54)

and let there exist ε ∈ (0, 1) and n0 ∈ N such that

ρ0(yn)

ρ0(yn(1− ε))
Φ+ ≤ Φ− for n ≥ n0 (2.55)

where ϕ(t) = h0(t) − c for almost every t ∈ [0, ω]. Then there exists a lower function α
to the problem (1.1), (1.2) satisfying (2.52).

Proof. According to Proposition 2.3, it is sufficient to prove that (2.47) and (2.48) are
fulfilled for some x2 ∈ (0, x0]. According to (2.53) and (2.54), there exists n1 ≥ n0 such
that

yn ≤ x0 for n ≥ n1,

−ω
4

Φ+ρ0(yn) ≥ −εyn for n ≥ n1, (2.56)

Adding yn to both sides of the inequality (2.56) and applying that ρ0 is a non–decreasing
function, we obtain

ρ0

(
yn −

ω

4
Φ+ρ0(yn)

)
≥ ρ0 (yn(1− ε)) for n ≥ n1. (2.57)

Now, if we put x2 = yn1 we obtain, on account of (2.55)–(2.57) that (2.47) and (2.48) are
fulfilled.

Corollary 2.3. Let h0 ∈ L
(
[0, ω]; R

)
, ρ0 ∈ C

(
R+; R+

)
be a non–decreasing function,

x0 > 0, and c ∈ R be such that (2.45) and (2.46) are fulfilled. If
ρ0(x)

x
is a non–increasing

function and
ω

4
Φ+Φ−

ρ0(x0)

x0

≤ Φ− − Φ+ (2.58)

where ϕ(t) = h0(t)− c for almost every t ∈ [0, ω], then there exists a lower function α to
the problem (1.1), (1.2) satisfying (2.52).
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Proof. According to Proposition 2.3, it is sufficient to prove that (2.47) and (2.48) are
satisfied with x2 = x0. From (2.58) we easily obtain (2.47). On the other hand, since the

function ρ0(x)
x

is non–increasing,

ρ0

(
x0 − ρ0(x0)

ω
4
Φ+

)
x0 − ρ0(x0)

ω
4
Φ+

≥ ρ0(x0)

x0

.

Consequently,

ρ0

(
x0 − ρ0(x0)

ω

4
Φ+

)
≥ ρ0(x0)

(
1− ω

4
Φ+

ρ0(x0)

x0

)
. (2.59)

Multiplying both sides of (2.59) by Φ− and using the inequality (2.58) we get (2.48).

2.3 Construction of upper functions

The following assertions dealing with the existence of an upper function to the prob-
lem considered can be proved analogously to the results formulated in Subsection 2.2,
therefore, their proofs are omitted.

Proposition 2.4. Let h1 ∈ L
(
[0, ω]; R

)
, ρ1 ∈ C

(
R+; R+

)
be a non–decreasing function,

0 < x1 ≤ x2 < +∞, and c ∈ R be such that

h(t, x) ≥ h1(t)ρ1(x) for a. e. t ∈ [0, ω], x ∈ [x1, x2], (2.60)

g(x)

ρ1(x)
≤ c ≤ h1 for x ∈ [x1, x2], (2.61)

and
ρ1(x2)

ω

4
Φ− ≤ x2 − x1 ≤ ρ1(x1)

ω

4
Φ+ (2.62)

where
ϕ(t) = h1(t)− c for a. e. t ∈ [0, ω]. (2.63)

Then there exists an upper function β to the problem (1.1), (1.2) such that

x1 ≤ β(t) ≤ x2 for t ∈ [0, ω].

Proposition 2.5. Let h1 ∈ L
(
[0, ω]; R

)
, ρ1 ∈ C

(
R+; R+

)
be a non–decreasing function,

x0 > 0, and c ∈ R be such that

h(t, x) ≥ h1(t)ρ1(x) for a. e. t ∈ [0, ω], x ≥ x0, (2.64)

g(x)

ρ1(x)
≤ c ≤ h1 for x ≥ x0, (2.65)

and, in addition, let there exist x1 ≥ x0 such that

ρ1

(
x1 + ρ1(x1)

ω

4
Φ+

)
Φ− ≤ ρ1(x1)Φ+ (2.66)

where ϕ(t) = h1(t)− c for almost every t ∈ [0, ω]. Then there exists an upper function β
to the problem (1.1), (1.2) with

x1 ≤ β(t) for t ∈ [0, ω]. (2.67)

12



Corollary 2.4. Let there exists x0 > 0 such that

g(x) ≤ h0 for x ≥ x0.

Then there exists an upper function β to the problem (1.4), (1.2) with

β(t) ≥ x0 for t ∈ [0, ω]. (2.68)

Corollary 2.5. Let h1 ∈ L
(
[0, ω]; R

)
, ρ1 ∈ C

(
R+; R+

)
be a non–decreasing function,

x0 > 0, and c ∈ R be such that (2.64) and (2.65) hold, and let there exist a sequence
{yn}+∞n=1 of positive numbers such that

lim
n→+∞

yn = +∞, (2.69)

lim
n→+∞

ρ1(yn)

yn
= 0. (2.70)

Furthermore, let there exist ε > 0 and n0 ∈ N such that

ρ1(yn(1 + ε))

ρ1(yn)
Φ− ≤ Φ+ for n ≥ n0 (2.71)

where ϕ(t) = h1(t)− c for almost every t ∈ [0, ω]. Then there exists an upper function β
to the problem (1.1), (1.2) satisfying (2.68).

Corollary 2.6. Let h1 ∈ L
(
[0, ω]; R

)
, ρ1 ∈ C

(
R+; R+

)
be a non–decreasing function,

x0 > 0, and c ∈ R be such that (2.64) and (2.65) are fulfilled. If ρ1(x)
x

is a non–increasing
function such that

ω

4
Φ+Φ−

ρ1(x0)

x0

≤ Φ+ − Φ− (2.72)

where ϕ(t) = h1(t) − c for almost every t ∈ [0, ω], then there exists an upper function β
to the problem (1.1), (1.2) satisfying (2.68).

3 Main results

3.1 The general equation

Throughout this subsection, we will use the following notation:

Φ+ =

∫ ω

0

[ϕ(t)]+dt, Φ− =

∫ ω

0

[ϕ(t)]−dt, Ψ+ =

∫ ω

0

[ψ(t)]+dt, Ψ− =

∫ ω

0

[ψ(t)]−dt,

where ϕ, ψ ∈ L
(
[0, ω]; R

)
are functions defined below.
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Theorem 3.1. Let ρ0, ρ1 ∈ C
(
R+; R+

)
be non–decreasing functions, h0, h1 ∈ L

(
[0, ω]; R

)
,

and 0 < r0 ≤ r1 < +∞ be such that

h(t, x) ≤ h0(t)ρ0(x) for a. e. t ∈ [0, ω], 0 < x ≤ r0, (3.1)

h(t, x) ≥ h1(t)ρ1(x) for a. e. t ∈ [0, ω], x ≥ r1, (3.2)

and let there exist c0, c1 ∈ R such that

g(x)

ρ0(x)
≥ c0 ≥ h0 for 0 < x ≤ r0, (3.3)

g(x)

ρ1(x)
≤ c1 ≤ h1 for x ≥ r1. (3.4)

Furthermore, let us suppose that ρ0 fulfils at least one of the following conditions:

a) there exists a sequence {xn}+∞n=1 of positive numbers such that

lim
n→+∞

xn = 0, lim
n→+∞

ρ0(xn)

xn
= 0,

and there exist ε0 ∈ (0, 1) and n0 ∈ N such that

ρ0(xn)

ρ0(xn(1− ε0))
Φ+ ≤ Φ− for n ≥ n0,

where ϕ(t) = h0(t)− c0 for almost every t ∈ [0, ω];

b) the function ρ0(x)
x

is non–increasing and

ω

4
Φ+Φ−

ρ0(r0)

r0
≤ Φ− − Φ+,

where ϕ(t) = h0(t)− c0 for almost every t ∈ [0, ω].

Besides, let us suppose that ρ1 fulfils at least one of the following conditions:

c) there exists a sequence {yn}+∞n=1 of positives numbers such that

lim
n→+∞

yn = +∞, lim
n→+∞

ρ1(yn)

yn
= 0,

and there exist ε1 > 0 and n1 ∈ N such that

ρ1(yn(1 + ε1))

ρ1(yn)
Ψ− ≤ Ψ+ for n ≥ n1,

where ψ(t) = h1(t)− c1 for almost every t ∈ [0, ω];
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d) the function ρ1(x)
x

is non–increasing and

ω

4
Ψ+Ψ−

ρ1(r1)

r1
≤ Ψ+ −Ψ−,

where ψ(t) = h1(t)− c1 for almost every t ∈ [0, ω].

Then there exists at least one positive solution to the problem (1.1), (1.2).

Proof. According to Corollaries 2.2, 2.3, 2.5, and 2.6, the conditions of the theorem guar-
antee a well–ordered couple of lower and upper functions, therefore the result is a direct
consequence of Proposition 2.1.

Remark 3.1. Note that (3.3) (resp. (3.4)) implies Φ− ≥ Φ+ (resp. Ψ+ ≥ Ψ−). In
addition, the conditions a) and c) are verified if, for instance, Φ− 6= Φ+ and Ψ− 6= Ψ+,
ρi(x) = xµi (i = 0, 1) with µ0 > 1 > µ1 ≥ 0. On the other hand, conditions b) and d) are
fulfilled if, for instance, ρi(x) = x (i = 0, 1) and

ω

4
Φ+Φ− ≤ Φ− − Φ+,

ω

4
Ψ+Ψ− ≤ Ψ+ −Ψ−. (3.5)

Next, we formulate some corollaries which can be obtained immediately from Theo-
rem 3.1 and Remark 3.1.

Corollary 3.1. Let h0, h1 ∈ L
(
[0, ω]; R

)
, µ0 > 1 > µ1 ≥ 0 and 0 < r0 ≤ r1 < +∞ be

such that

h(t, x) ≤ h0(t)x
µ0 for a. e. t ∈ [0, ω], 0 < x ≤ r0,

h(t, x) ≥ h1(t)x
µ1 for a. e. t ∈ [0, ω], x ≥ r1,

lim inf
x→0+

g(x)

xµ0
> h0, lim sup

x→+∞

g(x)

xµ1
< h1.

Then there exists at least one positive solution to the problem (1.1), (1.2).

Proof. According to Remark 3.1, one can apply Theorem 3.1 with ρ0(x) = xµ0 , ρ1(x) =
xµ1 .

Corollary 3.2. Let h0, h1 ∈ L
(
[0, ω]; R

)
and 0 < r0 ≤ r1 < +∞ be such that

h(t, x) ≤ h0(t)x for a. e. t ∈ [0, ω], 0 < x ≤ r0,

h(t, x) ≥ h1(t)x for a. e. t ∈ [0, ω], x ≥ r1,

h0 < lim inf
x→0+

g(x)

x
< +∞, h1 > lim sup

x→+∞

g(x)

x
> −∞. (3.6)

In addition, we suppose that

ω

4
H+

0 H
−
0 < H−0 −H+

0 ,
ω

4
H+

1 H
−
1 < H+

1 −H−1 , (3.7)
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where

H+
0 =

∫ ω

0

[h0(t)− g∗]+dt, H−0 =

∫ ω

0

[h0(t)− g∗]−dt,

H+
1 =

∫ ω

0

[h1(t)− g∗]+dt, H−1 =

∫ ω

0

[h1(t)− g∗]−dt,

and

g∗ = lim inf
x→0+

g(x)

x
, g∗ = lim sup

x→+∞

g(x)

x
.

Then there exists at least one positive solution to the problem (1.1), (1.2).

Proof. From (3.6) and (3.7) we obtain that there exists ε > 0 small enough such that
ε < min

{
g∗ − h0, h1 − g∗

}
and (3.5) is verified, where

ϕ(t) = h0(t)− g∗ + ε for a. e. t ∈ [0, ω], ψ(t) = h1(t)− g∗ − ε for a. e. t ∈ [0, ω].

Hence, setting c0 = g∗− ε, c1 = g∗+ ε and ρi(x) = x (i = 0, 1), the corollary follows from
Theorem 3.1.

Corollary 3.3. Let h0, h1 ∈ L
(
[0, ω]; R

)
and 0 < r0 ≤ r1 < +∞ be such that

h(t, x) ≤ h0(t)x for a. e. t ∈ [0, ω], 0 < x ≤ r0,

h(t, x) ≥ h1(t)x for a. e. t ∈ [0, ω], x ≥ r1,

lim
x→0+

g(x)

x
= +∞, lim

x→+∞

g(x)

x
= −∞. (3.8)

Then there exists at least one positive solution to the problem (1.1), (1.2).

Proof. Using (3.8) and Lemma 2.5, we can find c0 > h0 and c1 < h1 such that (3.5) is
fulfilled where ϕ(t) = h0(t)− c0, ψ(t) = h1(t)− c1. Moreover, g(x) ≥ c0x nearby zero and
g(x) ≤ c1x nearby +∞. Hence, taking ρi(x) = x (i = 0, 1), the corollary follows from
Theorem 3.1.

In conclusion, the conditions nearby zero guarantee the existence of a positive lower
function, whereas the conditions nearby infinite guarantee the existence of an upper func-
tion. Both ideas can be combined in order to get a wide variety of results.

We finish the section with two results dealing with the classical singular Liénard equa-
tion (1.4).

Theorem 3.2. Let
ω

8
‖h0 − h0‖1 < r0 ≤ r1 < +∞ be such that

g(x) ≥ h0 for 0 < x ≤ r0,

g(x) ≤ h0 for x ≥ r1.

Then there exists at least one positive solution to the problem (1.4), (1.2).
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Proof. It is a direct consequence of Corollaries 2.1 and 2.4.

Theorem 3.3. Let
lim sup
x→0+

g(x) = +∞

and let r1 > 0 be such that
g(x) ≤ h0 for x ≥ r1.

If
ess sup

{
h0(t) : t ∈ [0, ω]

}
< +∞,

then there exists at least one positive solution to the problem (1.4), (1.2).

Proof. The existence of a lower function follows from Proposition 2.2 with h(t, x) = h0(t),
ρ0 ≡ 1,

c = ess sup
{
h0(t) : t ∈ [0, ω]

}
,

and x1 = x2 > 0 sufficiently small such that g(x1) ≥ c.
The existence of an upper function follows from Proposition 2.5 with h(t, x) = h0(t),

h1 ≡ h0, ρ1 ≡ 1, c = h0, and x0 = x1 = r1.
Consequently, the assertion follows from Proposition 2.1.

It is interesting to compare our results with the existing ones in the related literature.
For instance, it is easy to verify that Theorem 3.3 generalises in some sense the result of
Lazer and Solimini [4, Theorem 2.1] for the equation

u′′ + g(u) = h(t) (3.9)

with attractive singularity and without friction.
On the other hand, if [6, Lemma 8.19] is applied to (3.9), the following result is

obtained.

Theorem 3.4. Assume that there exist 0 < r0 < r1 < +∞ such that

1. r0 > 2ω‖h− h‖1,

2. g(x) ≥ h if 0 < x ≤ r0,

3. g(x) ≤ h if x ≥ r1.

Then the problem (3.9), (1.2) has at least one positive solution.

Note that Theorem 3.2 is more general. First, it works for the equation with friction.
Besides, since ω

8

∥∥h− h̄∥∥
1
< 2ω

∥∥h− h̄∥∥
1
, it is evident that the assumption of Theorem 3.2

is better.
A related interesting result can be found in [7].

Theorem 3.5 (see [7, Corollary 3.3]). Assume that
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1. lim sup
x→+∞

g(x) < h0,

2. there exists r > 0 such that h0(t) ≤ g(r) for a.e. t ∈ [0, ω].

Then the problem (3.9), (1.2) has at least one positive solution.

Theorem 3.3 shows that Theorem 3.5 is still valid also in the case when the term
f(x)x′ is incorporated to the equation, and even in the case when f has a singularity at
zero.

3.2 The model equation

This subsection is devoted to the model equation (1.3). We distinguish two different
cases depending on the type of the singularity of the term g1u

−ν − g2u
−γ, i.e., if it is

attractive or repulsive singularity. All the proofs of the results obtained below relies on
the construction of an ordered pair of lower and upper functions and a direct application
of Proposition 2.1.

3.2.1 The repulsive case

Theorem 3.6. Let 0 ≤ δ < 1, γ > ν, g1 > 0 and g2 > 0. If h0 > 0 and

h0(t) ≤ sup
{ g1

xν+δ
− g2

xγ+δ
: x ∈ R+

}
for a. e. t ∈ [0, ω], (3.10)

then there exists at least one positive solution to the problem (1.3), (1.2).

Proof. We note that

sup
{ g1

xν+δ
− g2

xγ+δ
: x ∈ R+

}
< +∞

and, in fact, there exists r0 ∈ R+ such that

g1

rν+δ0

− g2

rγ+δ0

= sup
{ g1

xν+δ
− g2

xγ+δ
: x ∈ R+

}
.

According to (3.10), it can be easily verified that the function α(t) = r0 for t ∈ [0, ω] is a
lower function to the problem (1.3), (1.2).

To prove the existence of an upper function, we apply Corollary 2.5 taking {yn}+∞n=1 an
arbitrary sequence of positive numbers satisfying (2.69), c ∈ (0, h0), ρ1(x) = xδ, h1 ≡ h0,
x0 > r0 large enough, and ε > 0 small enough such that

(1 + ε)δΦ− ≤ Φ+. (3.11)

Consequently, the assertion follows from Proposition 2.1.
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Theorem 3.7. Let δ = 1, γ > ν, g1 > 0 and g2 > 0. Assume that h0 > 0,

h0(t) ≤ sup
{ g1

xν+1
− g2

xγ+1
: x ∈ R+

}
for a. e. t ∈ [0, ω], (3.12)

and
ω

4

∫ ω

0

[h0(s)]+ds

∫ ω

0

[h0(s)]−ds <

∫ ω

0

[h0(s)]+ds−
∫ ω

0

[h0(s)]−ds. (3.13)

Then there exists at least one positive solution to the problem (1.3), (1.2).

Proof. As in the proof of Theorem 3.6, we can check that there exists a constant r0 ∈ R+

such that α(t) = r0 for t ∈ [0, ω] is a lower function to the problem (1.3), (1.2).
On the other hand, from (3.13) it follows that there exists a sufficiently small constant

c > 0 such that c < h0 and
ω

4
Φ+Φ− ≤ Φ+ − Φ−,

where
ϕ(t) = h0(t)− c for a. e. t ∈ [0, ω].

Therefore, if we put ρ1(x) = x and h1 ≡ h0, taking into account that

lim
x→+∞

g1

x1+ν
− g2

x1+γ
= 0,

the existence of an upper function large enough follows from Corollary 2.6.
Consequently, the assertion follows from Proposition 2.1.

Theorem 3.8. Let δ > 1, γ > ν, g1 > 0 and g2 > 0. If

0 ≤ h0(t) ≤ sup
{ g1

xν+δ
− g2

xγ+δ
: x ∈ R+

}
for a. e. t ∈ [0, ω] (3.14)

and h0 > 0, then there exists at least one positive solution to the problem (1.3), (1.2).

Proof. Analogously to the previous proofs, there exists a constant r0 ∈ R+ such that the
function α(t) = r0 for t ∈ [0, ω] is a lower function to the problem (1.3), (1.2).

On the other hand, from the first inequality of (3.14) it follows that h0(t)x
δ ≥ h0(t)

for almost every t ∈ [0, ω] and x ≥ 1. Thus, the existence of an upper function to the
problem (1.3), (1.2) follows from Corollary 2.5 by taking h1 ≡ h0, ρ1 ≡ 1, an arbitrary
sequence {yn}+∞n=1 of positive numbers such that (2.69) holds, c ∈ (0, h0], ε > 0 arbitrary
and x0 > r0 large enough.

Consequently, the assertion follows from Proposition 2.1.

3.2.2 The attractive case

Theorem 3.9. Let 0 ≤ δ < 1, γ < ν and g1 > 0. If h0 > 0 and

ess sup
{
h0(t) : t ∈ [0, ω]

}
< +∞, (3.15)

then there exists at least one positive solution to the problem (1.3), (1.2).
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Proof. According to (3.15), we can choose K > 0 such that

K ≥ h0(t) for a. e. t ∈ [0, ω].

As lim
x→0+

g1
xν
− g2

xγ
= +∞, there exits x1 > 0 such that

g1

xν+δ1

− g2

xγ+δ1

≥ K.

Obviously, α ≡ x1 is a constant lower function to the problem (1.3), (1.2).
To prove the existence of an upper function we apply Corollary 2.5 taking {yn}+∞n=1 an

arbitrary sequence of positive numbers satisfying (2.69), c ∈ (0, h0), ρ1(x) = xδ, h1 ≡ h0,
x0 > K large enough, and ε > 0 small enough such that (3.11) holds.

Consequently, the assertion follows from Proposition 2.1.

Theorem 3.10. Let 0 ≤ δ < 1, γ < ν, g1 > 0 and g2 > 0. If h0 ≤ 0, (3.15) is fulfilled
and

h0(t) ≥ inf
{ g1

xν+δ
− g2

xγ+δ
: x ∈ R+

}
for a. e. t ∈ [0, ω], (3.16)

then there exists at least one positive solution to the problem (1.3), (1.2).

Proof. In this case,

inf
{ g1

xν+δ
− g2

xγ+δ
: x ∈ R+

}
> −∞

and there exists x0 > 0 such that

g1

xν+δ0

− g2

xγ+δ0

= inf
{ g1

xν+δ
− g2

xγ+δ
: x ∈ R+

}
.

According to (3.16), it can be easily verified that the function β(t) = x0 for t ∈ [0, ω] is
an upper function to the problem (1.3), (1.2).

To obtain a lower function, we proceed as in the proof of Theorem 3.9 choosing x1

small enough.
Consequently, the assertion follows from Proposition 2.1.

Remark 3.2. Note that the conditions guaranteeing solvability of the problem (1.3),
(1.2) in the case where 0 ≤ δ < 1, γ = ν, and g1 > g2 can be derived from Theorem 3.9.
Further, the case 0 ≤ δ < 1, γ = ν ≥ 1, and g1 < g2 is investigated in [3].

However, in that case γ = ν and g1 < g2, only the conditions sufficient for the existence
of non–ordered lower and upper functions are known to the authors. Thus our analysis is
incomplete and the case γ = ν < 1, g1 < g2 remains as an open problem.

Theorem 3.11. Let δ = 1, g1 > 0 and g2 = 0. If h0 > 0 and (3.13) is fulfilled, then
there exists at least one positive solution to the problem (1.3), (1.2).
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Proof. Put ρ0(x) = x. According to Lemma 2.5 we can choose c0 > h0 large enough such
that the condition b) of Theorem 3.1 is fulfilled. Obviously, also r0 > 0 can be chosen
such that (3.3) is satisfied.

On the other hand, put h1 ≡ h0 and ρ1(x) = x. Then, in view of (3.13), there exists
a constant c1 > 0 such that c1 ≤ h1 and the condition d) of Theorem 3.1 and (3.4) are
fulfilled with a suitable r1 > r0.

Consequently, the assertion follows from Theorem 3.1.

Theorem 3.12. Let δ = 1, γ < ν, g1 > 0 and g2 > 0. If h0 ≥ 0 and

ω

4

∫ ω

0

[h0(s)]+ds

∫ ω

0

[h0(s)]−ds ≤
∫ ω

0

[h0(s)]+ds−
∫ ω

0

[h0(s)]−ds, (3.17)

then there exists at least one positive solution to the problem (1.3), (1.2).

Proof. The proof is similar to that of Theorem 3.11. The only difference is that the
inequality g1x

−(ν+1)−g2x
−(γ+1) < 0 for x sufficiently large allows one to choose a constant

c1 equal to zero.

Theorem 3.13. Let δ = 1, γ < ν, g1 > 0 and g2 > 0. If h0 ≤ 0 and

h0(t) ≥ inf
{ g1

xν+1
− g2

xγ+1
: x ∈ R+

}
for a. e. t ∈ [0, ω], (3.18)

then there exists at least one positive solution to the problem (1.3), (1.2).

Proof. As in the proof of Theorem 3.10, we can verify that there exists a constant x1 > 0
such that β(t) = x1 for t ∈ [0, ω] is an upper function to the problem (1.3), (1.2).

On the other hand, put ρ0(x) = x, and choose c ≥ h0 and x0 > 0 such that x0 < x1

and the conditions of Corollary 2.3 are fulfilled. Note that the existence of c ≥ h0 large
enough such that (2.58) holds follows from Lemma 2.5. Therefore, there exists a lower
function.

Consequently, the assertion follows from Proposition 2.1.

Theorem 3.14. Let 1 < δ, γ < ν and g1 > 0, g2 > 0. If (3.16) is fulfilled, then there
exists at least one positive solution to the problem (1.3), (1.2).

Proof. The upper function is constructed as in the proof of Theorem 3.10.
On the other hand, put ρ0(x) = xδ, and choose {yn}+∞n=1 a sequence of posivite numbers

satisfying (2.53), c > h0, and ε ∈ (0, 1) such that

(1− ε)−δΦ+ ≤ Φ−.

Then there exists x0 > 0 sufficiently small such that all the conditions of Corollary 2.2
are fulfilled. Consequently, there exists a lower function α(t) ≤ x0.

Now the assertion follows from Proposition 2.1.
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3.2.3 The case γ ≤ 0.

We finish the section with two results dealing with the problem (1.3), (1.2) in the case
when the parameter γ is non–positive. This case is also interesting from the physical
point of view.

Theorem 3.15. Let 0 ≤ δ < 1, −γ > δ, g1 > 0 and g2 > 0. If (3.15) is fulfilled, then
there exists at least one positive solution to the problem (1.3), (1.2).

Proof. The assertion immediately follows from Theorem 3.1 b) and c) with h(t, x) =
h0(t)x

δ, h1 ≡ h0, ρi(x) = xδ (i = 0, 1), c0 = ess sup
{
h0(t) : t ∈ [0, ω]

}
, c1 = h0 − 1, and

g(x) = g1x
−ν − g2x

−γ.

Theorem 3.16. Let 0 ≤ δ < 1, γ ≤ 0, |γ| ≤ δ, g1 > 0 and g2 > 0, and h0 > 0. If (3.15)
is fulfilled, then there exists at least one positive solution to the problem (1.3), (1.2).

Proof. The assertion immediately follows from Theorem 3.1 b) and c) with h(t, x) =
h0(t)x

δ, h1 ≡ h0, ρi(x) = xδ (i = 0, 1), c0 = ess sup
{
h0(t) : t ∈ [0, ω]

}
, c1 = 0, and

g(x) = g1x
−ν − g2x

−γ.

4 The Rayleigh–Plesset equation

In this section we will use our main mathematical results to make more complete the
study of the Rayleigh–Plesset equation initiated in [3]. The physical background of this
section was explained in [3]. Therefore, we only introduce some results which are direct
consequences of our main results. We just remark that in the paper [3], the case where
the polytropic coefficient k is greater than or equal to one is considered. Now, we are able
to cover the whole range of values for this parameter.

Theorem 3.6 implies

Theorem 4.1. Let k > 1
3
, Pv > P∞ and

5(Pv − P∞(t))

2ρ
≤
(

6k − 2

5

) (2
5
)

2
5 (5S)

6k
5

(6k
5

)
6k
5

(
5Pg0R

3k
0

2ρ

) 2
5


5

6k−2

for t ∈ [0, ω].

Then there exists at least one positive periodic solution to the Rayleigh–Plesset equation.

Theorems 3.9 and 3.10, respectively, lead to

Theorem 4.2. Let 1
6
< k < 1

3
, Pv > P∞, and

ess inf
{
P∞(t) : t ∈ [0, ω]

}
> −∞. (4.1)

Then there exists at least one positive periodic solution to the Rayleigh–Plesset equation.
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Theorem 4.3. Let 1
6
< k < 1

3
, Pv ≤ P∞, (4.1) holds, and

5(Pv − P∞(t))

2ρ
≥ −

(
2− 6k

5

)(6k
5

)
6k
5

(
5Pg0R

3k
0

2ρ

) 2
5

(2
5
)

2
5 (5S)

6k
5


5

2−6k

for t ∈ [0, ω].

Then there exists at least one positive periodic solution to the Rayleigh–Plesset equation.

Applying Theorem 3.9 with g1 = 5S − 5Pg0R
3k
0

2ρ
, g2 = 0, and ν = 1/5 we get

Theorem 4.4. Let k = 1
3
, Pv > P∞, 2ρS > Pg0R

3k
0 , and let (4.1) holds. Then there

exists at least one positive periodic solution to the Rayleigh–Plesset equation.

Remark 4.1. The open problem posed in Remark 3.2 corresponds to this last result
when 2ρS < Pg0R

3k
0 .

Applying Theorems 3.15 and 3.16, we get, respectively,

Theorem 4.5. Let k < 0 and let (4.1) holds. Then there exists at least one positive
periodic solution to the Rayleigh–Plesset equation.

Theorem 4.6. Let 0 ≤ k ≤ 1
6
, Pv > P∞, and let (4.1) holds. Then there exists at least

one positive periodic solution to the Rayleigh–Plesset equation.

Let us finish by pointing out the presented results have a direct physical reading.
For example, we can conclude that as a general rule a high density coefficient ρ of the
liquid should benefit the presence of oscillating bubbles, an effect that seems physically
plausible.
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