
PERIODIC SOLUTIONS TO SINGULAR SECOND ORDER
DIFFERENTIAL EQUATIONS: THE REPULSIVE CASE

Robert Hakl,1 Pedro J. Torres,2 and Manuel Zamora2

Abstract

This paper is devoted to study the existence of periodic solutions to the second–
order differential equation u′′ + f(u)u′ + g(u) = h(t, u), where h is a Carathéodory
function and f, g are continuous functions on (0,+∞) which may have singularities
at zero. The repulsive case is considered. By using Schaefer’s fixed point theorem,
new conditions for existence of periodic solutions are obtained. Such conditions are
compared with those existent in the related literature and applied to the Rayleigh–
Plesset equation, a physical model for the oscillations of a spherical bubble in a
liquid under the influence of a periodic acoustic field. Such a model has been the
main motivation of this work.

1 Introduction

In this paper, we are concerned with the periodic problem

u′′(t) + f(u(t))u′(t) + g(u(t)) = h(t, u(t)) for a. e. t ∈ [0, ω],(1.1)

u(0) = u(ω), u′(0) = u′(ω)(1.2)

where f, g ∈ C
(
R+;R

)
may have singularities at zero, and h ∈ Car

(
[0, ω]×R+;R

)
. By a

positive solution to (1.1), (1.2) we understand a function u ∈ AC1
(
R/ωZ;R+

)
verifying

(1.1). A special case which may serve as a model is

u′′(t) + f(u(t))u′(t) +
g1
uν(t)

− g2
uγ(t)

= h0(t)u
δ(t) for a. e. t ∈ [0, ω],(1.3)

u(0) = u(ω), u′(0) = u′(ω)(1.4)

where ν, γ ∈ R+, g1, g2, δ ∈ R+, h0 ∈ L
(
[0, ω];R

)
and f ∈ C

(
R+;R

)
. In the related

literature, it is said that the nonlinearity g has an attractive singularity (resp. repulsive
singularity) at zero if lim

x→0+
g(x) = +∞ (resp. lim

x→0+
g(x) = −∞). This paper is devoted
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to the repulsive case, which in the model equation (1.3) means γ > ν or else γ = ν and
g1 < g2.

Generally speaking, differential equations with singularities have been considered from
the very beginning of the discipline. The main reason is that singular forces are ubiquitous
in applications, being gravitational and electromagnetic forces the most obvious examples.
Even if we restrict our attention to the model equation (1.3), it has a long and rich history.
It seems that the first reference goes back to Nagumo in 1943 [15]. After some works in
the sixties [6–8, 11], the paper of Lazer and Solimini [12] is acknowledged as a major
milestone and the origin of a fruitful line of research. Without any intention of being
exhaustive, one can cite for instance [1,2,4,10,19,22–24,27] and their references. Also, the
monographs [17,18] contain a whole section dedicated to the periodic problem and a quite
complete bibliography up to 2008. Beginning with the paper of Habets-Sanchez [10], many
of this references have considered the inclusion of a friction term of Liénard type f(u)u′,
but up to our knowledge none of them have considered the possibility of a singularity also
in f(u).

We have been compelled to consider the case of a possible singularity in f(u) motivated
by the following physical model. In Physics of Fluids, the Rayleigh–Plesset equation

ρ

[
RR̈ +

3

2
Ṙ2

]
= [Pv − P∞(t)] + Pg0

(
R0

R

)3k

− 2S

R
− 4µṘ

R

is a largely studied model for the oscillations of the radius R(t) of a spherical bubble
immersed in a fluid under the influence of a periodic acoustic field P∞ (see, e.g., [9]).
The rest of constants are physical parameters which are described with more detail in
Section 3. The change variable R = u

2
5 leads to

ü =
5 [Pv − P∞(t)]

2ρ
u

1
5 +

(
5Pg0R

3k
0

2ρ

)
1

u
6k−1

5

− 5S

u
1
5

− 4µ
u̇

u
4
5

,

which is an equation like (1.3) with f(u) = 4µu−
4
5 . Up to our knowledge, the existing

results about singular equations do not fit adequately this case.
By using a combination of Schaefer’s fixed point theorem with techniques of a priori

estimates, we have proved a result which is interesting in two aspects: first, it covers the
physical application which was our initial motivation; second, it has independent interest
from a theoretical point of view as a complement of the existing literature.

The structure of the paper is as follows: after Introduction, in Section 2 the main
result is presented and compared with other mathematical results on singular equation
available in the literature. Afterwards, the main result is applied to the Rayleigh-Plesset
equation in Section 3. The rest of the paper is devoted to the proof of the main result.
We have organised the proof into three sections. In Section 4 the Schaefer’s fixed point
theorem is presented. Section 5 includes the fixed point formulation of the problem and
some auxiliary results. Finally, in Section 6 we perform the required a priori estimates in
order to finish the proof.

For convenience, we finish this introduction with a list of notation which is used
throughout the paper:
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R is the set of all real numbers, R+ = (0,+∞), R+ = [0,+∞), [x]+ = max{x, 0},
[x]− = max{−x, 0}.

C
(
[0, ω];R

)
is the Banach space of continuous functions u : [0, ω]→ R with the norm

‖u‖∞ = max{|u(t)| : t ∈ [0, ω]}.

C(D1;D2), where D1, D2 ⊆ R, is the set of continuous functions u : D1 → D2.
C1
(
[0, ω];R

)
is the Banach space of continuous functions u : [0, ω]→ R with continu-

ous derivative, with the norm ‖u‖C1 = ‖u‖∞ + ‖u′‖∞.
AC
(
[0, ω];R

)
is a set of all absolutely continuous functions.

AC1
(
[0, ω];R

)
is a set of all functions u : [0, ω]→ R such that u and u′ are absolutely

continuous.
L
(
[0, ω];R

)
is the Banach space of Lebesgue integrable functions p : [0, ω] → R with

the norm

‖p‖1 =

∫ ω

0

|p(s)|ds.

L
(
[0, ω];R+

)
=
{
p ∈ L

(
[0, ω];R

)
: p(t) ≥ 0 for a.e. t ∈ [0, ω]

}
.

For a given p ∈ L
(
[0, ω];R

)
, its mean value is defined by

p =
1

ω

∫ ω

0

p(s)ds.

Finally, a function f : [0, ω]×D1 → D2 belongs to the set of Carathéodory functions
Car

(
[0, ω] × D1;D2

)
if and only if f(·, x) : [0, ω] → D2 is measurable for all x ∈ D1,

f(t, ·) : D1 → D2 is continuous for a.e. t ∈ [0, ω], and for each compact set K ⊂ D1, there
exists mK ∈ L

(
[0, ω];R+

)
such that |f(t, x)| ≤ mK(t) for a.e. t ∈ [0, ω] and all x ∈ K.

Throughout the paper, speaking about periodic function u we mean that both u and
u′ are periodic functions; i.e.,

u(0) = u(ω), u′(0) = u′(ω).

2 Main result and comparison with previously known

results

In this section we present the main result of the paper and discuss some consequences in
order to compare it with related results.

Theorem 2.1. Let η ∈ Car
(
[0, ω] × R+;R+

)
be a non–decreasing function with respect

to the second variable, h0 ∈ L
(
[0, ω];R

)
, ρ ∈ C

(
R+;R+

)
be non–decreasing and r > 0 be

such that the following items are fulfilled:

1. −η(t, x) ≤ h(t, x) ≤ h0(t)ρ(x) for a. e. t ∈ [0, ω], x ≥ r,

2. g(x) ≥ h0ρ(x) for x ≥ r,
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3. lim
x→0+

g(x) = −∞,
∫ 1

0
g(x)dx = −∞,

4. g∗
def
= lim sup

x→+∞

[g(x)]+
x

<
(π
ω

)2
,

5. lim sup
x→+∞

∫ ω
0
η(t, x)dt

x
<

4

ω

(
1− g∗

(ω
π

)2)
,

6.
∫ 1

0
[f(s)]+ds < +∞ or

∫ 1

0
[f(s)]−ds < +∞.

Then there exists at least one positive solution to the problem (1.1), (1.2).

The proof will be performed later in Section 6. Such a result finds a direct application
to Eq. (1.3) in the sublinear case δ < 1.

Corollary 2.1. Let us assume 0 ≤ δ < 1, γ > ν, γ ≥ 1, g2 > 0 and

(2.1)

∫ 1

0

[f(s)]+ds < +∞ or

∫ 1

0

[f(s)]−ds < +∞.

If h0 ≤ 0 and g1 + |h0| > 0, then there exists at least one positive solution to the problem
(1.3), (1.4).

Proof. It can be proved by applying Theorem 2.1 with η(t, x) = [h0(t)]−x
δ, ρ(x) = xδ and

h(t, x) = h0(t)x
δ. Indeed, hypotheses 1, 3, 4, 5, and 6 of Theorem 2.1 are straightforward.

Finally, hypothesis 2 one can easily prove by using the inequality g1 +
∣∣h0∣∣ > 0.

The linear case δ = 1 is also covered by Theorem 2.1 as follows.

Corollary 2.2. Let us assume δ = 1, γ > ν, γ ≥ 1, g2 > 0 and suppose that (2.1) holds.
If h0 ≤ 0, g1 + |h0| > 0 and ∫ ω

0

[h0(s)]−ds <
4

ω
,

then there exists at least one positive solution to the problem (1.3), (1.4).

Proof. It can be proved by applying Theorem 2.1 with η(t, x) = [h0(t)]−x, ρ(x) = x,
h(t, x) = h0(t)x and reasoning as we did in Corollary 2.1.

Corollary 2.2 can be compared with [1, Theorem 3.1]. Although both results are
independent, our result imposes a weaker condition over f since it may have a singularity
at zero, and also the condition over h0 is of integral type, while in [1] a uniform bound is
needed.

Many classical papers consider the case where the right-hand side only depends on t
and f is continuous at zero, that is, f ∈ C

(
R+;R

)
and δ = 0. We consider this case in a

separated corollary.
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Corollary 2.3. Let us consider the problem

u′′(t) + f(u(t))u′(t) + g(u(t)) = h0(t) for a. e. t ∈ [0, ω],(2.2)

u(0) = u(ω), u′(0) = u′(ω)(2.3)

where f ∈ C
(
R+;R

)
, h0 ∈ L

(
[0, ω];R

)
, and g ∈ C

(
R+;R

)
verifies the conditions

1. lim
x→0+

g(x) = −∞,

2.
∫ 1

0
g(x)dx = −∞,

3. lim sup
x→+∞

g(x)

x
<
(π
ω

)2
,

4. there exists r > 0 such that g(x) ≥ h0 for every x ≥ r.

Then there exists at least one positive solution to the problem (2.2), (2.3).

Proof. It is enough to apply Theorem 2.1 with h(t, x) = h0(t), η(t, x) = [h0(t)]− and
ρ ≡ 1.

Let us observe that the condition 3 is in some sense optimal, since in [2] the authors
have constructed an example of h ∈ C

(
[0, ω];R

)
such that the equation

u′′ +
(π
ω

)2
u− 1

u3
= h(t)

has no periodic solution. Corollary 2.3 covers the classical model equation of Lazer-
Solimini [12]. It also improves the following result by Mawhin.

Theorem 2.2 (see [14]). Let us assume that f(x) ≡ c ∈ R. Fix 0 < a <
1

2ω2e2|c|ω
and

b ≥ 0 such that

1. g(x) ≤ ax+ b for x > 0,

2. lim
x→0+

g(x) = −∞,

3.
∫ 1

0
g(x)dx = −∞,

4. lim inf
x→+∞

g(x) > h0.

Then there exists at least one positive solution to the problem (2.2), (2.3).

Another related result was proved by Habets and Sanchez.

Theorem 2.3 (see [10]). Let f ∈ C
(
R+;R

)
and let

1. g(x)− h0(t) ≤ c for t ∈ [0, ω], x > 0,
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2. g(x) < h0 for all x < r0,

3.
∫ 1

0
g(x)dx = −∞,

4. g(x) > h0 for all x > r1,

5.
∫ ω
0
h20(s)ds < +∞

be fulfilled with suitable constants c > 0 and 0 < r0 < 1 < r1 < +∞. Then the problem
(2.2), (2.3) has at least one positive solution.

One can easily verify that Corollary 2.3 improves Theorem 2.3 in a certain way.

3 Application to a physical model: the Rayleigh-

Plesset equation

In this section we will use our main mathematical result to study the Rayleigh-Plesset
equation, which models the oscillations of a spherical bubble in a liquid subjected to
a periodic acoustic field. The Rayleigh-Plesset equation plays a prominent role in Dy-
namics of Fluids. It can be derived by taking spherical coordinates in Euler equations
and assuming some physically admissible simplifications, as shown in many reviews and
monographs (see for instance [3,5,9,16,25]). A variety of physical, biological and medical
models rely on this equation (see bibliographies of the cited references), in connection
with the physical phenomena of cavitation and sonoluminescence.

Following [9], the evolution in time of the radius R(t) of the bubble is ruled by

ρ

[
RR̈ +

3

2
Ṙ2

]
= [Pv − P∞(t)] + Pg0

(
R0

R

)3k

− 2S

R
− 4µṘ

R
.(3.1)

Here, at the left-hand side Ṙ and R̈ are the first and second derivatives of the bubble
radius with respect to time and ρ is the density of the liquid. At the right-hand side
we have four different terms. The first one is Pv − P∞(t), which measures the difference
between the vapour pressure Pv inside the bubble and the applied pressure, which is
time-periodic. The second term is related with the non-condensability of the gas. More
exactly, Pg0 and R0 correspond, respectively, to the gas pressure and initial radius of the
bubble, while k is the polytropic coefficient, which contents information about thermic
transmission behaviour of the system liquid–gas. If the behaviour is isothermal then the
coefficient k is equal to one. The most usual case considered in the cited references is
when polytropic coefficient is greater than or equal to one, but possibly it is any real
number. In this paper, we consider the adiabatic case (when k ≥ 1). The third terms
corresponds to surface tension, i.e., the energy which is needed to increase the surface of
a liquid by area unit. Finally, the last term corresponds to the viscosity of liquid.
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When the surface tension and viscosity effects are neglected (a physically admissible
simplification for bubbles of big radius), we may obtain the classical Rayleigh equation

ρ

[
RR̈ +

3

2
Ṙ2

]
= Pv − P∞(t),

which was proposed in 1907 by Rayleigh. Furthermore, we observe that when the applied
pressure is constant, the Rayleigh equation has a first integral

Ṙ2 =
2

3

Pv − P∞
ρ

[
1−

(
R0

R

)3
]
.

Nevertheless, when the applied pressure P∞(t) is time-varying, most of the present knowl-
edge about the dynamics of this models is based on numerical computations.

If the change of variables R = u
2
5 is introduced in the Rayleigh-Plesset equation, we

obtain

ü =
5 [Pv − P∞(t)]

2ρ
u

1
5 +

(
5Pg0R

3k
0

2ρ

)
1

u
6k−1

5

− 5S

u
1
5

− 4µ
u̇

u
4
5

,

which corresponds to a Liénard equation, more exactly, it is an equation of the type (1.3),

where h0(t) = 5[Pv−P∞(t)]
2ρ

, g1 = 5S, g2 =
5Pg0R

3k
0

2ρ
, δ = ν = 1

5
, γ = 6k−1

5
and f(x) = 4µ

x
4
5

. If

k ≥ 1, then γ ≥ 1. A direct application of Corollary 2.1 gives the following result.

Theorem 3.1. Let us assume k ≥ 1 and Pv ≤ P∞. Then there exists at least one positive
periodic solution to the equation (3.1).

As far as we know, this is the first analytical proof of a well-known numerical evidence
exposed in many related works, see for instance [9]. In a subsequent paper, we will
consider the case when the polytropic coefficient k is any real number and also the case
Pv > P∞.

4 Compact operators and Schaefer’s theorem

Throughout the paper we are going to consider the Banach space X = C1
(
[0, ω];R

)
× R

with the norm ‖(u, a)‖ = ‖u‖C1 + |a|. The following result is known as a Schaefer’s
fixed point theorem and it is a direct consequence of the Schauder’s fixed point theorem
(see [20], or more recent books [21,26]). We formulate it in a suitable for us form.

Theorem 4.1 (see [20]). Let F : X → X be a continuous operator which is compact on
each bounded subset of X. If there exists r > 0 such that every solution to

(u, a) = λF (u, a)(4.1)

for λ ∈ (0, 1) verifies

‖(u, a)‖ ≤ r,(4.2)

then (4.1) has a solution for λ = 1.
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Our aim is to apply this result to a given operator whose fixed points correspond to
periodic solutions of our differential equation. In order to define such operator and prove
its compactness the following definition is needed.

Definition 4.1. An operator H : X → L
(
[0, ω];R

)
, resp. A : X → R is called

Carathéodory if it is continuous and for every r > 0 there exists a function qr ∈ L
(
[0, ω];R+

)
,

resp. a constant Mr ∈ R+ such that∣∣H(u, a)(t)
∣∣ ≤ qr(t) for a. e. t ∈ [0, ω], ‖(u, a)‖ ≤ r,

resp. ∣∣A(u, a)
∣∣ ≤Mr for ‖(u, a)‖ ≤ r.

Lemma 4.1. Let H : X → L
(
[0, ω];R

)
and A : X → R be Carathéodory operators.

Define an operator Ω : X → C1
(
[0, ω];R

)
by

Ω(u, a)(t) = − 1

ω

[
(ω − t)

∫ t

0

sH(u, a)(s)ds+ t

∫ ω

t

(ω − s)H(u, a)(s)ds

]
for t ∈ [0, ω].

Then the operator F : X → X given by F = (Ω, A) is compact on each bounded subset of
X.

Proof. It is sufficient to prove that both Ω and A transform each bounded subset of X
into a precompact set. First, note that the image of each bounded subset of X by A is
in fact a precompact set since R is a finite-dimensional space and A is a Carathéodory
operator.

On the other hand, the definition of Ω implies

|Ω(u, a)(t)| ≤ ω

4

∫ ω

0

|H(u, a)(s)| ds for t ∈ [0, ω],(4.3) ∣∣∣∣ ddtΩ(u, a)(t)

∣∣∣∣ ≤ ∫ ω

0

|H(u, a)(s)| ds for t ∈ [0, ω],(4.4) ∣∣∣∣ d2dt2Ω(u, a)(t)

∣∣∣∣ ≤ |H(u, a)(t)| for a. e. t ∈ [0, ω].(4.5)

Furthermore, since H is a Carathéodory operator, for every r > 0 there exists a function
qr ∈ L

(
[0, ω];R+

)
such that

|H(u, a)(t)| ≤ qr(t) for a. e. t ∈ [0, ω], ‖(u, a)‖ ≤ r.(4.6)

Now let M ⊂ X be a bounded set. Obviously, there exists r > 0 such that ‖(u, a)‖ ≤ r
for every (u, a) ∈M . Then, from (4.3)–(4.6), for (u, a) ∈M , we obtain

‖Ω(u, a)‖∞ ≤
ω

4
‖qr‖1 ,∥∥∥∥ ddtΩ(u, a)

∥∥∥∥
∞
≤ ‖qr‖1 ,∣∣∣∣ d2dt2Ω(u, a)(t)

∣∣∣∣ ≤ qr(t) for a. e. t ∈ [0, ω].

By Arzelà–Ascoli theorem, the set Ω(M) is precompact.
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The following corollary is an immediate consequence of Theorem 4.1 and Lemma 4.1.

Corollary 4.1. Let H : X → L
(
[0, ω];R

)
and A : X → R be Carathéodory operators. If

there exists r > 0 (not depending on λ) such that every solution to the problem

u′′(t) = λH(u, a)(t) for a. e. t ∈ [0, ω],(4.7)

u(0) = 0, u(ω) = 0,(4.8)

a = λA(u, a)(4.9)

for λ ∈ (0, 1) verifies (4.2), then (4.7)–(4.9) has a solution for λ = 1.

5 Auxiliary results

In this section we will develop some preliminaries in order to prove the main theorem.
The first aim is to rewrite the problem (1.1), (1.2) as a fixed point problem.

Let us define the continuous operator T : X → C1
(
[0, ω];R

)
by

T (u, a)(t) = ea + u(t)−min
{
u(s) : s ∈ [0, ω]

}
.

For λ ∈ (0, 1) we consider the problem

(5.1) u′′(t) + λf(T (u, a)(t))u′(t) + λg(T (u, a)(t)) = λh(t, T (u, a)(t))

+
λ

ω

[∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s))ds

]
for a. e. t ∈ [0, ω],

u(0) = 0, u(ω) = 0,(5.2)

a = λa− λ

ω

[∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s))ds

]
.(5.3)

Remark 5.1. It can be easily seen that if (u, a) ∈ X is a solution to (5.1)–(5.3), then
the function u is periodic.

Lemma 5.1. If there exists r > 0 such that for each solution (u, a) to (5.1)–(5.3) with
λ ∈ (0, 1) the estimate (4.2) holds, then there exists at least one positive solution to (1.1),
(1.2).

Proof. We define the operators H : X → L
(
[0, ω];R

)
and A : X → R as follows:

H(u, a)(t) = −f(T (u, a)(t))u′(t)− g(T (u, a)(t)) + h(t, T (u, a)(t))

+
1

ω

[∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s))ds

]
for a. e. t ∈ [0, ω],
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A(u, a) = a− 1

ω

[∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s))ds

]
.

It is clear that both H and A are Carathéodory operators. By Corollary 4.1, the problem
(5.1)–(5.3) with λ = 1 has at least one solution (u, a). Furthermore, from (5.3) (with
λ = 1) we obtain that

(5.4)

∫ ω

0

g(T (u, a)(s))ds =

∫ ω

0

h(s, T (u, a)(s))ds,

and, consequently, from (5.1) with λ = 1, (5.2) and (5.4) we conclude that u is a periodic
function satisfying

u′′(t) + f(T (u, a)(t))u′(t) + g(T (u, a)(t)) = h(t, T (u, a)(t)) for a. e. t ∈ [0, ω].

Now we define v by
v(t) = T (u, a)(t) for t ∈ [0, ω].

Then v is a positive solution to (1.1), (1.2).

The section is completed by lemmas presenting some useful inequalities.

Lemma 5.2. Let u ∈ AC
(
[0, ω];R

)
be such that

(5.5) u(0) = u(ω).

Then the inequality

(5.6) (M −m)2 ≤ ω

4

∫ ω

0

u′
2

(s)ds

holds where

M = max
{
u(t) : t ∈ [0, ω]

}
, m = min

{
u(t) : t ∈ [0, ω]

}
.

Proof. Let us define ũ : [0, 2ω]→ R by

(5.7) ũ(t) =

{
u(t) if t ∈ [0, ω],

u(t− ω) if t ∈ (ω, 2ω].

Evidently, (5.5) implies that ũ ∈ AC
(
[0, 2ω];R

)
and also there exist t0 ∈ [0, ω] and

t1 ∈ (t0, t0 + ω) such that

ũ(t0) = m, ũ(t1) = M, ũ(t0 + ω) = m.

Then

M −m =

∫ t1

t0

ũ′(s)ds, m−M =

∫ t0+ω

t1

ũ′(s)ds.
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Using the Cauchy–Bunyakovskii–Schwarz inequality we prove that

M −m ≤

√
(t1 − t0)

(∫ t1

t0

ũ′ 2(s)ds

)
,

M −m ≤

√
(t0 + ω − t1)

(∫ t0+ω

t1

ũ′ 2(s)ds

)
.

Multiplying both inequalities and using that AB ≤ 1
4
(A+B)2 for each A,B ∈ R+ we can

prove

(M −m)2 ≤ ω

4

∫ t0+ω

t0

ũ′
2

(s)ds.

Finally, from the last inequality, in virtue of (5.7), we obtain (5.6).

Lemma 5.3. Let ρ ∈ C
(
R+;R+

)
be a non–decreasing function and let v ∈ AC1

(
[0, ω];R

)
be a positive function such that

v(0) = v(ω), v′(0) = v′(ω).

Then ∫ ω

0

v′′(t)

ρ(v(t))
dt ≥ 0.(5.8)

Proof. There exists a sequence ρn ∈ C
(
R+;R+

)
of non–decreasing functions which are

absolutely continuous such that

lim
n→+∞

‖ρn ◦ v − ρ ◦ v‖∞ = 0,(5.9)

ρn(mv) = ρ(mv) where mv = min
{
v(s) : s ∈ [0, ω]

}
.

Then,

(5.10)

∫ ω

0

v′′(t)

ρn(v(t))
dt =

∫ ω

0

ρ′n(v(t))v′
2
(t)

ρ2n(v(t))
dt ≥ 0

and

(5.11)

∣∣∣∣∫ ω

0

[
v′′(t)

ρn(v(t))
− v′′(t)

ρ(v(t))

]
dt

∣∣∣∣ ≤ ‖ρn ◦ v − ρ ◦ v‖∞ρ2(mv)

∫ ω

0

|v′′(t)| dt.

Now from (5.9)–(5.11) we obtain (5.8).

Lemma 5.4. Let v ∈ AC1
(
[0, ω];R

)
be such that

(5.12) v(0) = v(ω), v′(0) = v′(ω).

Then

(5.13)

∫ ω

0

v2(t)dt ≤
(ω
π

)2 ∫ ω

0

v′
2

(t)dt+ 2m

∫ ω

0

v(t)dt

where
m = min

{
v(t) : t ∈ [0, ω]

}
.
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Proof. Let tm ∈ [0, ω] be a point such that

(5.14) v(tm) = m,

and define

(5.15) w(t) =

{
v(t)−m for t ∈ [0, ω],

v(t− ω)−m for t ∈ (ω, 2ω].

Obviously, in accordance with (5.12) and (5.14) we have

w ∈ AC1
(
[0, 2ω];R

)
,(5.16)

w(tm) = 0, w(tm + ω) = 0.(5.17)

Using Wirtinger’s inequality, by virtue of (5.15)–(5.17), we obtain

(5.18)

∫ tm+ω

tm

w2(t)dt ≤
(ω
π

)2 ∫ ω

0

v′
2

(t)dt.

On the other hand,

(5.19)

∫ tm+ω

tm

w2(t)dt =

∫ ω

0

(v(t)−m)2dt ≥
∫ ω

0

v2(t)dt− 2m

∫ ω

0

v(t)dt.

From (5.18) and (5.19) we get (5.13).

6 A priori estimates and proof of the main result

A priori estimates of possible solutions to the problem (5.1)–(5.3) with λ ∈ (0, 1) are
established in this section. This will lead to a direct proof of Theorem 2.1.

Lemma 6.1. Let h0 ∈ L
(
[0, ω];R

)
, ρ ∈ C

(
R+;R+

)
be a non–decreasing function such

that

(6.1) h(t, x) ≤ h0(t)ρ(x) for a. e. t ∈ [0, ω], x ≥ r,

for some r > 0, and let us assume that

(6.2) g(x) ≥ h0ρ(x) for x ≥ r.

Then for each solution (u, a) to (5.1)–(5.3), we have

(6.3) a ≤ ln(1 + r).
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Proof. Let us suppose that (6.3) is false. Then

a > ln(1 + r) > 0,(6.4)

T (u, a)(t) > 1 + r for t ∈ [0, ω].(6.5)

Using (6.4) in (5.3), we get

(6.6)
λ

ω

[∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s))ds

]
< 0.

From (5.1) using (6.1), (6.5) and (6.6) we obtain

(6.7) u′′(t) + λf(T (u, a)(t))u′(t) + λg(T (u, a)(t)) < λh0(t)ρ(T (u, a)(t))

for a. e. t ∈ [0, ω].

Dividing by ρ(T (u, a)(t)) the equation (6.7), integrating in [0, ω], and using (5.2), one gets∫ ω

0

u′′(t)

ρ(T (u, a)(t))
dt+ λ

∫ ω

0

g(T (u, a)(t))

ρ(T (u, a)(t))
dt < λωh0.

According to Lemma 5.3, Remark 5.1 and λ > 0, it follows that

(6.8)

∫ ω

0

g(T (u, a)(t))

ρ(T (u, a)(t))
dt < ωh0.

On the other hand, applying (6.5) and the hypothesis (6.2) we obtain

ωh0 ≤
∫ ω

0

g(T (u, a)(t))

ρ(T (u, a)(t))
dt

which, however, contradicts (6.8).

Lemma 6.2. Let r > 0, and let η ∈ Car
(
[0, ω] × R+;R+

)
be a function non–decreasing

in the second variable such that

(6.9) −η(t, x) ≤ h(t, x) for a. e. t ∈ [0, ω], x ≥ r.

Furthermore, let us assume that

lim sup
x→0+

g(x) < +∞,(6.10)

g∗
def
= lim sup

x→+∞

[g(x)]+
x

<
(π
ω

)2
,(6.11)

lim sup
x→+∞

∫ ω
0
η(s, x)ds

x
<

4

ω

(
1− g∗

(ω
π

)2)
.(6.12)
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Then for each a0 > 0 there exists a constant K > 0 such that any solution (u, a) of
(5.1)–(5.3) with a ≤ a0 verifies

(6.13) M −m ≤ K

where
M = max

{
u(s) : s ∈ [0, ω]

}
, m = min

{
u(s) : s ∈ [0, ω]

}
.

Proof. Define the truncated function

(6.14) η̃(t, x) =

{
η(t, x) if x ≥ r,

η(t, r) if x < r

and

(6.15) ξ(t, x) = η̃(t, x) + ϕr(t)

where

(6.16) ϕr(t) = sup
{
|h(t, x)| : 0 ≤ x ≤ r

}
for a. e. t ∈ [0, ω].

Obviously, ξ is a function non–decreasing in the second variable. Using (6.9) and (6.14)–
(6.16), we obtain the inequality

(6.17) −ξ(t, x) ≤ h(t, x) for a. e. t ∈ [0, ω], x ∈ R+.

Furthermore,

(6.18) lim sup
x→+∞

∫ ω
0
ξ(s, x)ds

x
= lim sup

x→+∞

(∫ ω
0
η̃(s, x)ds

x
+
‖ϕr‖1
x

)
= lim sup

x→+∞

∫ ω
0
η(s, x)ds

x
.

According to (5.3) we can rewrite (5.1) as

(6.19) u′′(t) + λf(T (u, a)(t))u′(t) + λg(T (u, a)(t)) = λh(t, T (u, a)(t))− (1− λ)a.

Multiplying (6.19) by T (u, a)(t) and integrating on [0, ω], we obtain, with respect to
Remark 5.1,

−
∫ ω

0

u′
2

(s)ds+ λ

∫ ω

0

g(T (u, a)(s))T (u, a)(s)ds = λ

∫ ω

0

h(s, T (u, a)(s))T (u, a)(s)ds

− (1− λ)a

∫ ω

0

T (u, a)(s)ds.

Then

(6.20)

∫ ω

0

u′
2

(s)ds = λ

∫ ω

0

g(T (u, a)(s))T (u, a)(s)ds

− λ
∫ ω

0

h(s, T (u, a)(s))T (u, a)(s)ds+ (1− λ)a

∫ ω

0

T (u, a)(s)ds
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is fulfilled.
On the other hand, from (6.11) and (6.12) it follows the existence of ε0 > 0 and r0 > 0

such that

(6.21)
g(x)

x
≤ g∗ + ε0 <

(π
ω

)2
for x ≥ r0

and

(6.22) lim sup
x→+∞

∫ ω
0
η(s, x)ds

x
<

4

ω

(
1− (g∗ + ε0)

(ω
π

)2)
.

Moreover, (6.10) implies that

(6.23) Mg = sup
{
g(x) : x ∈ (0, r0]

}
< +∞.

Hence, from (6.21) and (6.23) we obtain

(6.24) g(x) ≤ (g∗ + ε0)x+Mg for x > 0.

Now, (6.24) implies

(6.25)

∫ ω

0

g(T (u, a)(s))T (u, a)(s)ds ≤ (g∗ + ε0)

∫ ω

0

(
T (u, a)(s)

)2
ds

+Mg

∫ ω

0

T (u, a)(s)ds.

Using Lemma 5.4 in (6.25) we arrive at

(6.26)

∫ ω

0

g(T (u, a)(s))T (u, a)(s)ds ≤ (g∗ + ε0)
(ω
π

)2 ∫ ω

0

u′
2

(s)ds

+
(
(g∗ + ε0)2e

a +Mg

) ∫ ω

0

T (u, a)(s)ds.

If we use the inequalities (6.17), (6.26) and the hypothesis a ≤ a0 in (6.20) we prove

(6.27)

[
1− (g∗ + ε0)

(ω
π

)2] ∫ ω

0

u′
2

(s)ds ≤
∫ ω

0

ξ(s, ea0 +M −m)T (u, a)(s)ds

+K0

∫ ω

0

T (u, a)(s)ds

where
K0 = (g∗ + ε0)2e

a0 +Mg + a0.

Obviously, possible constant solution (zero solution) to (5.1)–(5.3) satisfy (6.13) by itself.
Therefore, in what follows we can assume, without loss of generality, that M 6= m, i.e.,

M −m > 0. Thus, let ε =
ea0

M −m
. In addition,

(6.28) ε→ 0 as M −m→ +∞,
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and

T (u, a)(t) ≤ (1 + ε)(M −m) for t ∈ [0, ω].

Consequently, (6.27) implies[
1− (g∗ + ε0)

(ω
π

)2] ∫ ω

0

u′
2

(s)ds ≤
(
K0ω +

∫ ω

0

ξ(s, (1 + ε)(M −m))ds

)
(1+ε)(M−m).

According to Lemma 5.2, from the last inequality we obtain

(6.29)
4

ω

[
1− (g∗ + ε0)

(ω
π

)2]
≤

(1 + ε)2
(
K0ω +

∫ ω
0
ξ(s, y)ds

)
y

where y = (1 + ε)(M −m). Finally, (6.18), (6.22), (6.28) and (6.29) imply the existence
of a constant K such that (6.13) is verified.

Remark 6.1. Note that from the inequality (6.13), in view of (5.2), it also follows that

‖u‖∞ ≤ K.

Lemma 6.3. Let us assume that

(6.30)

∫ 1

0

[f(s)]+ ds < +∞

or

(6.31)

∫ 1

0

[f(s)]− ds < +∞.

Furthermore, assume that (6.10) is verified. Then, for each a0 ≥ 0 and K > 0 there exists
a constant K1 > 0 such that every solution (u, a) to (5.1)–(5.3) with

(6.32) ‖u‖∞ ≤ K and a ≤ a0

verifies the boundary

(6.33) ‖u′‖∞ ≤ λK1 + a0ω.

Proof. Assume that the condition (6.30) is fulfilled. Let (u, a) be a solution of (5.1)–(5.3),
then u is a periodic function and, in addition, there exist t0, t1 ∈ [0, ω] such that

(6.34) u(t0) = m, u(t1) = M

where

M = max
{
u(t) : t ∈ [0, ω]

}
, m = min

{
u(t) : t ∈ [0, ω]

}
.
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By integrating (6.19) on the interval [t0, t] ⊆ [t0, t0 + ω], we obtain

ϑ(u′)(t) + λ

∫ t

t0

f(ϑ(T (u, a))(s))ϑ(u′)(s)ds+ λ

∫ t

t0

g(ϑ(T (u, a))(s))ds

= λ

∫ t

t0

ϑ1(h)(s, ϑ(T (u, a))(s))ds− (1− λ)a(t− t0)

where ϑ : C
(
[0, ω];R

)
→ C

(
[0, 2ω];R

)
and ϑ1 : Car

(
[0, ω] × R+;R

)
→ Car

(
[0, 2ω] ×

R+;R
)
, respectively, are operators of the periodical extension, i.e.,

ϑ(v)(t) =

{
v(t) if t ∈ [0, ω],

v(t− ω) if t ∈ (ω, 2ω],
(6.35)

ϑ1(h)(t, x) =

{
h(t, x) if t ∈ [0, ω],

h(t− ω, x) if t ∈ (ω, 2ω].
(6.36)

Obviously,

(6.37) − ϑ(u′)(t) = λ

∫ t

t0

f(ϑ(T (u, a))(s))ϑ(u′)(s)ds+ λ

∫ t

t0

g(ϑ(T (u, a))(s))ds

− λ
∫ t

t0

ϑ1(h)(s, ϑ(T (u, a))(s))ds+ (1− λ)a(t− t0).

Using (6.32) and (6.34) we get

(6.38) 0 < T (u, a)(t0) ≤ T (u, a)(t) ≤ T (u, a)(t1) ≤ ea0 + 2K for t ∈ [0, ω].

Then, by (6.10) and the fact that h ∈ Car
(
[0, ω]×R+;R

)
, the number µ and the function

σ defined by

(6.39) µ = sup
{

[g(s)]+ : s ∈ (0, ea0 + 2K]
}
, σ(s) = sup

{
|h(s, x)| : x ∈ [0, ea0 + 2K]

}
,

satisfy

(6.40) 0 ≤ µ < +∞, σ ∈ L
(
[0, ω];R+

)
.

Using (6.32), (6.38)–(6.40) and t0 ≤ t ≤ t0 + ω in the equation (6.37), we obtain

(6.41) −ϑ(u′)(t) ≤ λ

∫ ea0+2K

0

[f(s)]+ ds+ λωµ+ λ ‖σ‖1 + ωa0.

Put K1 =
∫ ea0+2K

0
[f(s)]+ ds+ ωµ+ ‖σ‖1. Then, from (6.41), we have

(6.42) −ϑ(u′)(t) ≤ λK1 + ωa0 for t ∈ [t0, t0 + ω].
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On the other hand, if we integrate on the interval [t, t1 + ω] ⊆ [t1, t1 + ω] the equation
(6.19), we obtain

(6.43) ϑ(u′)(t) = λ

∫ t1+ω

t

f(ϑ(T (u, a))(s))ϑ(u′)(s)ds+ λ

∫ t1+ω

t

g(ϑ(T (u, a))(s))ds

− λ
∫ t1+ω

t

ϑ1(h)(s, ϑ(T (u, a))(s))ds+ (1− λ)a(t1 + ω − t).

Using (6.32), (6.38)–(6.40) and t1 ≤ t ≤ t1 + ω in the equation (6.43), we have

(6.44) ϑ(u′)(t) ≤ λK1 + ωa0 for t ∈ [t1, t1 + ω].

From (6.42) and (6.44) we conclude that (6.33) is verified. Therefore the proof is finished
for this case.

Now we suppose that (6.31) is fulfilled. By defining

(6.45) v(t) = u(ω − t) for t ∈ [0, ω]

we obtain that

v′′(t)−λf(T (v, a)(t))v′(t)+λg(T (v, a)(t)) = λh̃(t, T (v, a)(t))−(1−λ)a for a. e. t ∈ [0, ω],

where
h̃(t, x) = h(ω − t, x) for a. e. t ∈ [0, ω], x ∈ R+.

If we follow analogical steps as above, using (6.31) instead of (6.30), we arrive at

(6.46) ‖v′‖∞ ≤ λK1 + a0ω

with

K1 =

∫ ea0+2K

0

[f(s)]−ds+ ωµ+ ‖σ‖1 .

Now, (6.45) and (6.46) imply (6.33).

Remark 6.2. If we take a0 = 0 in Lemma 6.3, we obtain that

‖u′‖∞ ≤ λK1(6.47)

whenever (u, a) is a solution to (5.1)–(5.3) with a ≤ 0.

Lemma 6.4. We suppose that

(6.48) lim
x→0+

g(x) = −∞,
∫ 1

0

g(s)ds = −∞,

and (6.30) or (6.31) is satisfied. Then for each K > 0 there exists a constant a1 > 0 such
that every solution (u, a) to (5.1)–(5.3) with

(6.49) ‖u‖∞ ≤ K and a ≤ 0

admits the estimate

(6.50) −a1 ≤ a.
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Proof. We define σ as in (6.39) with a0 = 0. Obviously, because h ∈ Car
(
[0, ω]×R+;R

)
,

we have σ ∈ L
(
[0, ω];R+

)
. Let (u, a) be a solution to (5.1)–(5.3). From (5.3), by virtue

of (6.39) and (6.49), it follows that

a(1− λ)

λ
= − 1

ω

[∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s))ds

]
≥ − 1

ω

∫ ω

0

g(T (u, a)(s))ds− 1

ω
‖σ‖1 ,

and consequently,

− 1

ω

∫ ω

0

g(T (u, a)(s))ds ≤ a(1− λ)

λ
+

1

ω
‖σ‖1 .

Hence, according to (6.49) we obtain

(6.51) −
∫ ω

0

g(T (u, a)(s))ds ≤ ‖σ‖1 .

On the other hand, (6.48) implies that there exists s0 > 0 such that

(6.52) g(s) < −‖σ‖1
ω
≤ 0 for s ∈ (0, s0).

We denote by tm ∈ [0, ω] the point where u(tm) = min
{
u(t) : t ∈ [0, ω]

}
. Obviously,

either

(6.53) T (u, a)(tm) = ea ≥ s0,

or

(6.54) T (u, a)(tm) = ea < s0.

Clearly, if we get an estimate (6.50) in the case (6.54), the same estimate will be valid also
for every solution (u, a) to (5.1)–(5.3) verifying (6.53). Hence, without loss of generality,
we can suppose that (6.54) is fulfilled.

If T (u, a)(t) < s0 for every t ∈ [0, ω], from (6.51) and (6.52) we obtain a contradiction.
Therefore, there exist points t1, t2 ∈ (tm, tm + ω) such that

ϑ(T (u, a))(t) < s0 for t ∈ [tm, t1), ϑ(T (u, a))(t1) = s0,(6.55)

ϑ(T (u, a))(t) < s0 for t ∈ (t2, tm + ω], ϑ(T (u, a))(t2) = s0,(6.56)

where ϑ is an operator defined by (6.35). Since a ≤ 0, we have

λ

ω

[∫ ω

0

g(T (u, a)(s))ds−
∫ ω

0

h(s, T (u, a)(s))ds

]
≥ 0,
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and thus

u′′(t) + λf(T (u, a)(t))u′(t) + λg(T (u, a)(t)) ≥ λh(t, T (u, a)(t)) for a. e. t ∈ [0, ω].

Obviously,

(6.57) [ϑ(u′)(t)]′ + λf(ϑ(T (u, a))(t))ϑ(u′)(t) + λg(ϑ(T (u, a))(t))

≥ λϑ1(h)(t, ϑ(T (u, a))(t)) for a. e. t ∈ [0, 2ω]

where ϑ and ϑ1 are operators defined by (6.35) and (6.36), respectively.
First, let us assume that (6.30) is verified. Integrating on [tm, t1] the inequality (6.57)

we obtain

ϑ(u′)(t1) + λ

∫ t1

tm

f(ϑ(T (u, a))(s))ϑ(u′)(s)ds+ λ

∫ t1

tm

g(ϑ(T (u, a))(s))ds

≥ λ

∫ t1

tm

ϑ1(h)(s, ϑ(T (u, a))(s))ds.

By a change of variables and using (6.54) and (6.55) we get

ϑ(u′)(t1) + λ

∫ s0

ea
f(s)ds− λ

∫ t1

tm

ϑ1(h)(s, ϑ(T (u, a))(s))ds ≥ −λ
∫ t1

tm

g(ϑ(T (u, a))(s))ds.

According to Lemma 6.3, Remark 6.2, and the conditions (6.48) and (6.49) we obtain
that there exists a constant K1 > 0 such that (6.47) is fulfilled. Using (6.47), (6.54), the
inequality λ > 0 and the fact that x ≤ [x]+ for any x ∈ R we obtain

(6.58) −
∫ t1

tm

g(ϑ(T (u, a))(s))ds ≤ K2

where

K2 = K1 +

∫ s0

0

[f(s)]+ds+ ‖σ‖1 .

Multiplying by K1 in the inequality (6.58), we find

−K1

∫ t1

tm

g(ϑ(T (u, a))(s))ds ≤ K2K1.

Using (6.47), (6.52), and (6.55) we obtain

−
∫ t1

tm

g(ϑ(T (u, a))(s))ϑ(u′)(s)ds ≤ K2K1.

After a simple change of variables and using (6.54) and (6.55) we arrive at

(6.59) −
∫ s0

ea
g(s)ds ≤ K2K1.
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Using (6.48) we ensure the existence of a1 > 0 such that (6.50) is fulfilled.
Now assume that (6.31) holds true. Integrating on [t2, tm + ω] the inequality (6.57)

and following analogous steps as above, using (6.56) instead of (6.55), we arrive at (6.59)
with

K2 = K1 +

∫ s0

0

[f(s)]−ds+ ‖σ‖1 .

Then, the condition (6.48) implies the existence of a constant a1 > 0 such that (6.50) is
fulfilled.

Proof of Theorem 2.1. The result immediately follows from Lemma 5.1, Lemmas 6.1–6.4,
and Remark 6.1.
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