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Abstract

We consider planar systems driven by a central force which depends periodically
on time. If the force is sublinear and attractive, then there is a connected set of
subharmonic and quasi-periodic solutions rotating around the origin at different speeds;
moreover, this connected set stretches from zero to infinity. The result still holds
allowing the force to be attractive only in average provided that an uniformity condition
is satisfied and there are no periodic oscillations with zero angular momentum. We
provide examples showing that these assumptions cannot be skipped.

1 Introduction

The motion of a particle subjected to the influence of an (autonomous) central force field in
the plane may be mathematically modelled as a system of differential equations:

ẍ = −f(|x|) x

|x| , x ∈ R2\{0} . (1)

Many phenomena of the nature obey to laws of this type. For instance, the newtonian
equation for the motion of a particle subjected to the gravitational attraction of a sun which
lies at the origin

ẍ = − c x

|x|3 , x ∈ R2\{0} , (2)

corresponds to the choice f(r) := c/r2 for some positive constant c > 0. If, on the con-
trary, c < 0, equation (2) still has a relevant physical meaning, as it may be used to model
Rutherford’s scattering of α particles by heavy atomic nuclei.

If the force field (1) is attractive, i.e., f > 0, then there is a collection of solutions of (1)
which rotate around the origin at constant angular speeds. Indeed, direct computations show
that x(t) = r(cos(ωt), sin(ωt)) satisfies (1) if and only if |ω| =

√
f(r)/r. These solutions,

which we shall call copernican in what follows, are all of them periodic; however, excepting
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the case in which f(r) = c r is linear, the period 2π/|ω| = 2π
√

r/f(r) will depend on the
solution.

On the other hand, already Newton [12], in his study of Kepler’s Second Law considered
the problem of a central force divided into instantaneous impulses which take place periodi-
cally in time. Leaving aside the issue of the discreteness (which would require to work with
measure-type forces), this motivates us to consider the following question:

What is left from the copernican orbits when the central force field depends periodically
on time?

More specifically, in this paper we shall study systems of the form

ẍ = −f(t, |x|) x

|x| , x ∈ R2\{0} , (3)

where the L1−Carathéodory function

f : (R/TZ)× ]0, +∞[→ R , (t, r) 7→ f(t, r) ,

is T−periodic in the time variable t for some T > 0. It may have a singularity at r = 0;
consequently, the solutions of our equation (3) ‘live’ on the punctured plane R2\{0}.

Throughout this paper, continuous functions x : R → R2\{0} will be routinely decom-
posed in polar coordinates, x(t) = rx(t)(cos θx(t), sin θx(t)). Such a function will be called
T -radially periodic if the modulus rx is T -periodic and there exists some number ω ∈ R such
that θx(t)− ωt is T -periodic. In this case, ω = (θx(T )− θx(0))/T , so that this number may
be interpreted as the average angular speed of x. It will be called the rotation number of x,
and denoted by ω = rot(x).

For instance, xω(t) = (2+sin t)(cos ωt, sin ωt) is 2π-radially periodic, independently of the
value of the parameter ω, which is the rotation number of x. Already in this first example
we observe that radially periodic curves may not be periodic of any period; this is indeed the
case of xω if ω 6∈ Q. Actually, an arbitrary T -radially periodic curve is T -periodic if and only
if its rotation number is an integer multiple of 2π/T . If the rotation number belongs instead
to (2π/T )Q, then the curve will not be T -periodic, but a subharmonic. On the other hand,
if the modulus rx is not constant and rot(x) 6∈ (2π/T )Q, then the T - radially-periodic curve
x will not be periodic of any period; instead, it will be quasi-periodic on the two frequencies
ω1 = 2π/T and ω2 = rot(x). This is easy to check as, in complex notation, x(t) = r(t)eiθ(t)

may be decomposed as the product of the T−periodic function r(t)eiθ(t)−i rot(x)t and the
2π/ rot(x)−periodic function ei rot(x)t.

Without further assumptions, our equation (3) may not have any bounded solution at all;
this is actually the case, if, for instance, the force field is repulsive. This intuitive statement
may be checked by introducing polar coordinates x(t) = r(t)(cos θ(t), sin θ(t)) in (3), thus
obtaining the system

r̈ = µ2/r3 − f(t, r) , θ̇ = µ/r2 , (4)

where µ = r2θ̇ is the angular momentum (which remains constant along solutions, cf. [3]).
Now, if f < 0, the first equation above implies that r is strictly convex, and, consequently,
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it cannot be globally bounded. Thus, we shall assume, in a first approach, that our force is
attractive:

(H1) f(t, r) > 0 on R× ]0, +∞[ .

Even under this assumption, our equation may not have bounded orbits if f is allowed to
grow linearly on r. To check this fact, it suffices to consider forcing terms of the form
f(t, r) := h(t)r, giving rise to the following Hill’s type equation on the punctured plane:

ẍ = −h(t)x , x ∈ R2\{0} .

Observe that x = (x1, x2) : R → R2\{0} is a solution if and only if both components xi

solve the corresponding one-dimensional Hill’s equation

ẍi = −h(t)xi , xi ∈ R .

Assumption (H1) holds provided that h > 0. But the T -periodic function h > 0 may
be chosen so that the equation is hyperbolic, preventing the existence of nontrivial bounded
solutions, see [11]. We owe this observation to R. Ortega.

To avoid this second pathology, we shall restrict our study to forcing terms f which are
sublinear near infinity, i.e., there exists some function h ∈ L1

loc(R) and some number r0 > 0
such that

(H2) |f(t, r)| ≤ h(t)r on R× [r0, +∞[ , lim
r→∞

f(t, r)/r = 0 for a.e. t ∈ R .

Let us consider the set of all T -radially periodic curves in the punctured plane R2\{0}. It
becomes a topological space after being endowed with the topology of the uniform convergence
on compact intervals of time.

Theorem 1.1. Assume (H1) and (H2). Then, there exists a connected set C of T -radially
periodic solutions of (3) which goes from zero to infinity, meaning that

{min |x| : x ∈ C} = ]0, +∞[ . (5)

Assumption (H1) may be criticized on the grounds that it is probably too restrictive. One
might consider the possibility of extending this theorem to forcing terms f which are positive
only in average, i.e.,

(W1)

∫ T

0

f(t, r) dt > 0 for every r > 0 .

However, this is not enough, and we shall give a counterexample in Section 6. It will
exhibit C∞ regularity (not just Carathéodory’s) and will be bounded (not just sublinear).

Proposition 1.2. There exists a bounded and C∞ function f : (R/2πZ)× ]0, +∞[→ R ver-
ifying (W1), but such that, for any connected set C of 2π-radially periodic solutions of (3),
the interval {|x(t)| : t ∈ R, x ∈ C} is bounded.
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Condition (W1) turned out to be too weak. But the idea of formulating a generalization
of Theorem 1.1 in which f might change sign provided that it is, in some sense, positive in
average, is not completely erroneous. We define, for any ρ ≥ 1, the function

fρ(t, λ) := min
λ/ρ≤r≤λρ

f(t, r) , (t, λ) ∈ R× ]0, +∞[ . (6)

Observe that f1 = f . For ρ > 1 one still has the inequality fρ ≤ f .

Theorem 1.3. Assume that

(M1) there are numbers ρ∗ > 1 and λ1 > 0 such that

∫ T

0

fρ∗(t, λ)dt > 0 if λ ≥ λ1 .

Assume also (H2). Then, there is a connected set C of T -radially periodic solutions to (3)
coming from infinity in the sense that

the interval {min |x| : x ∈ C} is unbounded from above. (7)

Assumption (M1) is certainly weaker than (H1), and thus, Theorem 1.3 may be seen as
a generalization of Theorem 1.1 (actually, only a partial generalization, since also the thesis
(7) is weaker than than (5)). The assumptions of Theorem 1.3 apply, for instance, when f
has the form

f(t, r) := f∗(t, r) + e(t) , (8)

provided that the L1-Carathéodory function f∗ : R× ]0, +∞[→ R verifies assumptions (H1)
and (H2), and the L1(R/TZ)-function e has nonnegative mean:

1

T

∫ T

0

e(t) dt ≥ 0 . (9)

Notice however that, under suitable additional conditions, assumption (W1) may imply
(M1). This is for instance the case if f is monotone in r, meaning that f(t, ·) is either
increasing for a.e. t ∈ R of decreasing for a.e. t ∈ R (we remark that the definition does not
include those functions which are sometimes increasing and sometimes decreasing depending
on the value of t). Consequently, if f is monotone in r and verifies (W1) and (H2), Theorem
1.3 holds for equation (3).

A third class of equations where Theorem 1.3 applies corresponds to forces f of the type

f(t, r) := c(t)rγ + e(t) , x ∈ R2\{0} , (10)

where −∞ < γ < 1 and c, e ∈ L1(R/TZ) are T -periodic and verify

∫ T

0

c(t) dt > 0 ,

∫ T

0

e(t) dt ≥ 0 ,

as it may be easily checked. Nonlinearities of these forms (8,10) were previously considered in
[6], under an extra assumption at infinity, which was needed to parameterize a family of large-
amplitude solutions with the angular momentum. In this paper we avoid that assumption
by using as parameter the distance from our solution to the origin at time zero.
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As we already observed, Theorem 1.3 is not a true generalization of Theorem 1.1 because
it does not state anymore that the connected set C of radially periodic solutions approaches
the origin. It motivates the question of whether one may find actual examples where C cannot
be continued up to the origin. Somehow, this is expectable, since the assumptions (M1) and
(H2) only refer to the behavior of f in a neighborhood of infinity. We have studied in detail
equations with the form (10) and e ≡ 0 ,

ẍ = −c(t)|x|γ x

|x| , (11)

assuming that c ∈ C(R/TZ) and
∫ T

0
c(t)dt > 0. We get the following result:

Proposition 1.4. If 0 ≤ γ < 1, then (11) has a connected set C of T -radially periodic
solutions going from zero to infinity in the sense of (5).

On the other hand, for every γ < 0 there exists some continuous and 1-periodic function
cγ with positive mean and such that (11) does not have 1-radially periodic solutions x with
minR |x| = 1.

Then, what happens with the connected set C? Why, in some cases, it does not continue
up to the origin? We may obtain a further insight on the situation by going back to the
equivalent formulation (4). Observe that if x = r(cos θ, sin θ) is a solution with angular
momentum µ, then

x̃ = r(cos(−θ), sin(−θ))

is another one, this time with angular momentum −µ. Thus, together with C, there is a
second connected set of solutions coming from infinity:

C̃ =
{

x̃ : x ∈ C
}

.

It may happen that both connected sets C and C̃ coincide. This will be the situation if
C contains some solutions with zero angular momentum µ = 0. Looking back to the second
equation of (4) we see that such a solution must have zero rotation number, as it lives in a
ray emanating from the origin. Precisely, it will have the form

x(t) = r(t) v ,

where |v| = 1 and r is a T -periodic solution of the one-dimensional equation

r̈ = −f(t, r) , r > 0 . (12)

Thus, if we do not want to allow the connected set C go back to infinity through C̃, we
have to prevent it to contain such solutions:

Theorem 1.5. Assume (M1) and (H2), the assumptions of Theorem 1.3. Then, there exists
a connected set C of T -radially periodic solutions of (3) coming from infinity, i.e. (7). Fur-
thermore, C may be chosen so that either it approaches the origin in the sense of (5), or it
contains some solutions with zero angular momentum.
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Theorem 1.5 may be considered as a generalization of Theorem 1.1, since f being positive
implies that (12) does not have T -periodic solutions. This statement can be easily checked
by integrating both sides of the equation, to get

ṙ(T )− ṙ(0) =

∫ T

0

r̈(t)dt = −
∫ T

0

f(t, r(t)) dt ,

so that ṙ(T ) < ṙ(0) and r cannot be T -periodic. The argument may be repeated to show
that (12) does not have T -periodic solutions if f has the form (8) for some L1-Carathéodory
function f∗ with (H1) and (H2), and some T -periodic function e ∈ L1

loc(R) verifying (9). And
a similar situation occurs if f is monotone in r and verifies (W1) and (H2). Thus, in all these
cases there is a connected set C of T -radially periodic solutions going from zero to infinity in
the sense of (5). We shall also rely on Theorem 1.5 to prove the first part of Proposition 1.4.

Remark that Theorem 1.5 includes Theorem 1.3. This result implies the existence of T -
radially periodic solutions of (3) with big amplitudes, motivating the study the appearance of
these solutions. It turns out that they look like copernican, meaning that the ratio between
their maximum and minimum distances to the origin is close to one. Moreover, their angular
speeds get small. This result, which is related to Lemmas 1,2 and 3 of [6], holds under the
common requirements of Theorems 1.3 and 1.5: assumptions (M1) and (H2).

Proposition 1.6. Assume (M1) and (H2). Then, for each ε > 0 there exists some number
λ2 > 0 such that, for any T -radially periodic solution x = r(cos θ, sin θ) of (3) with max r ≥
λ2, one has

max r

min r
< 1 + ε , 0 < |θ̇(t)| < ε on R . (13)

The combination of some elements taken from (the proof of) Theorem 1.5 and Proposition
1.6 will lead us to:

Theorem 1.7. Assume (M1) and (H2). Then, there exists some number ω̄ > 0 with the
property that for every real number 0 < ω < ω̄ there is a T−radially periodic solution
xω = rω(cos θω, sin θω) of (3) such that rot(xω) = ω. Moreover,

lim
ω→0

(min rω) = +∞ , lim
ω→0

[
min rω

max rω

]
= 1 , (14)

and

θ̇ω > 0 for every ω ∈ ]0, ω̄[ , lim
ω→0

θ̇ω(t) = 0 uniformly w.r.t. t ∈ R . (15)

Choose some integer k ∈ N big enough so that ωk := 2π/(kT ) ∈ ]0, ω̄[ and observe that
the T -radially periodic solution having rotation number ωk, which we shall now call xk,
is actually kT -periodic, winding once around the origin on each period. We arrive to the
following result, which may be seen as a generalization of Theorem 4 of [6]:
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Corollary 1.8. Assume (M1) and (H2). Then, there exists some k1 ≥ 1 such that, for
any integer k ≥ k1, equation (3) has some subharmonic solution xk = rk(cos θk, sin θk) with
minimal period kT , which makes exactly one revolution around the origin in the period time
kT . These solutions verify

lim
k→∞

(min rk) = +∞ , lim
k→∞

[
min rk

max rk

]
= 1 ,

and

θ̇k > 0 for every integer k ≥ k1 , lim
k→∞

θ̇k(t) = 0 uniformly w.r.t. t ∈ R .

When ω 6∈ (2π/T )Q, the radially-periodic solution xω given by Theorem 1.7 is quasiperi-
odic of the frequencies ω1 = 2π/T , ω2 = ω, this was already observed. We deduce:

Corollary 1.9. Assume (M1) and (H2). Then, there exists some ω̄ > 0 such that, for any
number 0 < ω < ω̄ not commensurable with 2π/T , equation (3) has some quasiperiodic
solution xω = rω(cos θω, sin θω) of the frequencies ω1 = 2π/T, ω2 = ω. These solutions verify
(14) and (15).

For a systematic treatment of non-radially symmetric systems with a singularity, by the
use of variational methods, the reader can consult [1] and the references therein. See also [7]
for some results obtained by the use of degree theory.

2 Near infinity, radially periodic solutions are close to

copernican

In this section we exploit the sublinearity of f to obtain some insight on the solutions of
(3) with big amplitude. Our main goal will consist in showing Proposition 1.6, the result
stating that, as the amplitude grows to infinity, radially periodic solutions become similar to
copernican, while spinning slower and slower.

Along this Section we shall assume (M1) and (H2). It will be convenient to use polar
coordinates x = r(cos θ, sin θ), and consequently, we go back to the equivalent system (4). If
x is T -radially periodic, then r must be T -periodic. In combination with the first equation
of (4), it leads us to the boundary value problem

{
r̈ = µ2/r3 − f(t, r) , r > 0 ,

r(0) = r(T ) , ṙ(0) = ṙ(T ) .
(16)

Observe that the parameter µ (the angular momentum of the solution) has not a prefixed
value, and thus, solutions are couples (r, µ). For such a solution one has

−r̈ ≤ f(t, r) , (17)

i.e., r is a lower solution of (12). And for these lower solutions, the first part of Proposition
1.6 holds (we let ρ = 1 + ε):
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Lemma 2.1. For each ρ > 1 there exists some number λ2 > 0 such that every T -periodic
solution of (17) with max r ≥ λ2 verifies

max r

min r
< ρ .

Proof. Using a contradiction argument, assume that the result were not true. Then, it would
be possible to find a sequence {rn}n of lower solutions of (17) with max rn → +∞ and

max rn

min rn

≥ ρ0 for some ρ0 > 1 .

Then, min rn ≤ (max rn)/ρ0, and we may find instants of time 0 ≤ sn < tn ≤ T such that

rn(sn) = max rn , rn(tn) = (max rn)/ρ0 , rn(tn) ≤ rn(t) ≤ rn(sn) if t ∈ [sn, tn] ,

see Figure 1(a). We use now Lagrange’s Mean value Theorem and find some time cn ∈ ]sn, tn[

rn

sn tn T

max rn

Ρ0

max rn

HaL

rn

sn tncn T

HbL

Figure 1: The graph of rn and the choices of sn, tn, cn.

such that

ṙn(cn) =
rn(tn)− rn(sn)

tn − sn

=

max rn

ρ0
−max rn

tn − sn

= −(ρ0 − 1)(max rn)

ρ0(tn − sn)
≤ −(ρ0 − 1)(max rn)

ρ0T
,

see Figure 1(b). We denote K0 := (ρ0 − 1)/(ρ0T ), which is a positive constant and verifies

ṙn(cn) ≤ −K0(max rn) , n ∈ N . (18)

On the other hand, ṙ(sn) = 0, and again by the Mean Value Theorem (this time in its
integral form),

ṙn(cn) = ṙn(cn)− ṙn(sn) =

∫ cn

sn

r̈n(t)dt ≥ −
∫ cn

sn

f(t, rn(t))dt ,

which, in combination with (18), gives

∫ cn

sn

f(t, rn(t))dt ≥ K0(max rn) , n ∈ N . (19)
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We define now, for each n ∈ N,

r̃n(t) := max {rn(t), rn(tn)} , t ∈ R ,

which is again continuous and T−periodic. Moreover, on [sn, cn], rn and r̃n coincide, and
max r̃n = max rn. Using (19) we deduce that

K0(max r̃n) = K0(max rn) ≤
∫ cn

sn

f(t, rn(t))dt =

∫ cn

sn

f(t, r̃n(t))dt ≤

≤
∫ cn

sn

|f(t, r̃n(t))|dt ≤
∫ T

0

|f(t, r̃n(t))|dt ,

and then

K0 ≤
∫ T

0

|f(t, r̃n(t))|
max r̃n

dt ≤
∫ T

0

∣∣∣∣
f(t, r̃n(t))

r̃n(t)

∣∣∣∣ dt . (20)

However, assumption (H2) implies that the sequence f(t, r̃n(t))/r̃n(t) converges to zero
pointwise on [0, T ], and is dominated by the integrable function h. Lebesgue’s Convergence
Theorem then implies that

lim
n→∞

∫ T

0

∣∣∣∣
f(t, r̃n(t))

r̃n(t)

∣∣∣∣ dt = 0 ,

contradicting (20).

To continue, we remember assumption (M1) and choose some number ρ∗ > 1 as given
there. We define the function

M(λ) := 1 +

√
ρ3∗λ3

T

∫ T

0

(
max

λ/ρ∗≤r≤ρ∗λ
|f(t, r)|

)
dt , λ > 0 . (21)

Observe that M is continuous. Moreover,

M(λ)

λ2
=

1

λ2
+

√
ρ3∗
λT

∫ T

0

(
max

λ/ρ∗≤r≤ρ∗λ
|f(t, r)|

)
dt ≤ 1

λ2
+

√
ρ4∗
T

∫ T

0

(
max

λ/ρ∗≤r≤ρ∗λ

|f(t, r)|
r

)
dt ,

and the combination of assumption (H2) and Lebesgue’s Theorem implies that

M(λ)

λ2
→ 0 as λ → +∞ ,

i.e., M is subquadratic. The following result collects some properties of our equation and
the function M which will be needed later. As before, ρ∗ > 1 is given by assumption (M1):

Lemma 2.2. There exists some λ0 > 0 with the following properties:

(i) For any solution (r, µ) of (16) with max r ≥ λ0, one has that r(t0)/ρ∗ < r(t) < ρ∗ r(t0)
for any t0, t ∈ R.
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(ii) If r = r(t) is continuous and T -periodic, and verifies, for some λ ≥ λ0/ρ∗,

λ/ρ∗ < r(t) < ρ∗λ for every t ∈ R , (22)

then

0 <

∫ T

0

f(t, r(t))dt < M(λ)2

∫ T

0

1

r(t)3
dt .

Proof. Remembering (M1), there is some number λ1 > 0 such that, if λ ≥ λ1, then

∫ T

0

f(t, r(t))dt > 0 for any r ∈ C(R/TZ) verifying (22) .

Choose next λ2 > 0 as given by Lemma 2.1 for ρ = ρ∗, and let λ0 := max{ρ∗λ1, λ2}.

(i): If (r, µ) is a solution of (16) with max r ≥ λ0, then max r ≥ λ2 and for any time
t0 ∈ R one has

max r

r(t0)
< ρ∗ ,

r(t0)

min r
< ρ∗ ,

or, what is the same,
r(t0)

ρ∗
< min r ≤ max r < ρ∗r(t0) ,

and (i) follows.
(ii): Let now r ∈ C(R/TZ) verify (22) for some λ ≥ λ0/ρ∗. Then, λ ≥ λ1, and the first

part of (ii) follows from assumption (M1). Concerning the second part, we recall (21) and
observe that

M(λ)2

∫ T

0

1

r(t)3
dt ≥M(λ)2 T

ρ3∗ λ3
>

∫ T

0

(
max

λ/ρ∗≤r≤ρ∗λ
|f(t, r)|

)
dt ≥

∫ T

0

f(t, r(t))dt ,

as claimed.

The following result states the boundedness of the set of solutions (r, µ) of (16) for which
the minimum of r lies between two given bounds. It will follow from Lemma 2.2(i):

Corollary 2.3. Given constants 0 < k < K, there exists some M > 0 such that, whenever
(r, µ) is a T−periodic solution of (16) with k ≤ min r ≤ K, then

|µ| ≤ M, max r ≤ M .

Proof. After possibly replacing K by a bigger quantity, it is not restrictive to assume that
K ≥ λ0, the constant appearing in Lemma 2.2. Then, any solution (r, µ) of (16) with
k ≤ min r ≤ K verifies

max r < M1 := ρ∗K . (23)
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Next, we remember that f is L1-Carathéodory and find some function h ∈ L1(R/TZ)
such that |f(t, x)| ≤ h(t) for a.e. t ∈ R and all x ∈ [k, M1]. We let

M2 :=

√
M3

1

T

∫ T

0

h(t)dt .

Choose now a solution (r, µ) of (16) with k ≤ min r ≤ K. In view of (23), max r ≤ M1, and
integrating both sides of the equation of (16) we get

0 = µ2

∫ T

0

1

r(t)3
dt−

∫ T

0

f(t, r(t))dt ≥ µ2 T

M3
1

−
∫ T

0

h(t)dt ,

and we deduce that |µ| ≤ M2. It completes the proof.

Our next step will consist in showing that the angular momentum of radially periodic
solutions with big amplitude may be bounded by the subquadratic function M applied to
the distance from our solution to the origin.

Lemma 2.4. There exists some λ0 > 0 such that every solution (r, µ) of (16) with max r ≥ λ0

verifies
0 < |µ| < M(r(t0)) for any t0 ∈ R . (24)

Proof. Let λ0 > 0 be as in Lemma 2.2 and let (r, µ) be a solution of (16) with max r ≥ λ0.
Then Lemma 2.2(i) implies that (22) holds for λ = r(t0) and any t0 ∈ R. In particular,
r(t0) ≥ λ0/ρ∗, and Lemma 2.2(ii) gives

0 <

∫ T

0

f(t, r(t))dt < M(r(t0))
2

∫ T

0

1

r(t)3
dt .

On the other hand, integrating on the equation of (16) we observe that

0 =

∫ T

0

r̈(t)dt = µ2

∫ T

0

1

r(t)3
dt−

∫ T

0

f(t, r(t)) dt ,

and the result follows.

To close this Section, we prove Proposition 1.6. We have only to combine Lemmas 2.1
and 2.4.

Proof of Proposition 1.6. Fix λ0 > 0 as in Lemma 2.4. Choose now some positive number
ε > 0 and find λ1 ≥ λ0 such that M(λ)/λ2 < ε for any λ ≥ λ1. Now, let λ2 > 0 be as given
by Lemma 2.1 for ρ = 1 + ε. We may replace, if we want, λ2 by a greater number, so that it
is not restrictive to assume that λ2 ≥ λ1.

Finally, pick some solution x = r(cos θ, sin θ) of (3) with max r ≥ λ2. We consider the
angular momentum µ = r(t)2θ̇(t), which does not depend on time. Thus, (r, µ) is now a
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solution of (16), and Lemma 2.1 implies that max r/ min r < 1 + ε. On the other hand, since
max r ≥ λ1 ≥ λ0, we have

r(t)2
∣∣θ̇(t)

∣∣ = |µ| ≤ M(r(t)) < ε r(t)2 , t ∈ R ,

so that |θ̇(t)| < ε for any t ∈ R. This concludes the proof.

3 Radially periodic solutions in the plane versus peri-

odic solutions of a one-dimensional equation

In this Section we provide an equivalent formulation of Theorem 1.5 using polar coordinates.
With this aim, let x = r(cos θ, sin θ) be a T−radially periodic solution of (3); as observed in
the previous Section, r = rx must be a solution of the periodic boundary value problem (16),
the parameter µ = µx = r2 θ̇ being the angular momentum of the solution.

Conversely, let now (r, µ) be a solution of (16). Then

θr,µ(t) =

∫ t

0

µ

r(τ)2
dτ , t ∈ R ,

solves the second equation of system (4). It further verifies that θr,µ(t+T ) = θr,µ(t)+ θr,µ(T )
for any t ∈ R, and, consequently,

xr,µ(t) = r(t)(cos θr,µ(t), sin θr,µ(t)) , t ∈ R ,

is a T−radially periodic solution of (3), its rotation number being θr,µ(T )/T . Since θr,µ(0) =
0, this solution verifies

xr,µ(0) = (r(0), 0) ∈ ]0, +∞[×R ,

i.e., at the initial time our solution crosses the horizontal axis on its positive side. This
discussion leads us to consider the mappings

Φ : R→ X , (r, µ) 7→ xr,µ , Ψ : X → R, x 7→ (rx, µx) ,

the sets R and X being defined by

R :=
{

sols. (r, µ) of (16)
}

, X :=
{

T -rad. per. sols. x of (3) with x(0) ∈ ]0, +∞[×R
}

.

Observe that Φ and Ψ are mutually inverse bijections. Moreover, ifR and X are endowed,
respectively, with the topologies inherited from R times the space C(R/TZ) of continuous and
T−periodic functions on the real line, and the topology of uniform convergence on compact
sets, then Φ and Ψ become mutually inverse homeomorphisms.

What relevance has this discussion with respect to Theorem 1.5? To answer this question
we recall that, roughly speaking, this result states the existence of a ‘large’ connected set
C of T -radially periodic solutions of (3). In principle, C may be not contained into X , as

12



the functions of C are not obliged to cross the positive part of the horizontal axis at time
zero. Observe, however, that our equation (3) is rotation-invariant. By this we mean that, if
x = rx(cos θx, sin θx) is a solution, and R is the rotation of some angle θ0 around the origin,
then Rx = rx(cos(θx + θ0), sin(θx + θ0)) is again a solution. In this way, we may rotate the
elements of C to build a second connected set C ′ of solutions of (3) which is now contained
inside X :

C ′ :=
{

rx

(
cos

(
θx − θx(0)

)
, sin

(
θx − θx(0)

))
: x = rx(cos θx, sin θx) ∈ C

}
.

Notice that {min |x| : x ∈ C ′} = {min |x| : x ∈ C}, so that there is no restriction in
looking for the connected set C in the smaller space X . The homeomorphism Ψ will then
send it into another connected set K ⊂ R, which will verify

(K1) the interval
{

min r : (r, µ) ∈ K
}

is unbounded (from above),

and one of the following:

(K2a)
{

min r : (r, µ) ∈ K
}

= ]0, +∞[

(K2b)
{

(r, µ) ∈ K : µ = 0
}
6= ∅.

In this way, the following result may be seen as a corollary of Theorem 1.5:

Lemma 3.1. Assume (M1) and (H2). Then, there exists a connected set K ⊂ R verifying
(K1), and either (K2a) or (K2b) above.

Actually, Lemma 3.1 is equivalent to Theorem 1.5, because Φ and Ψ are homeomorphisms.
And this will be the spirit of our approach; we shall prove Theorem 1.5 in the form given by
Lemma 3.1. Before, it will be convenient to establish a functional analysis framework for our
problem.

4 Two-sided continuation for equations depending on

a parameter

Let Y be a Banach space, Ω ⊂ R× Y an open set, and let

H : Ω → Y, (λ, y) 7→ H(λ, y) ,

be a continuous operator verifying the standard compactness assumption:

(C) Subsets of R× Y which are bounded, closed, and contained inside Ω, are mapped by H
into relatively compact sets.

This property plays an important role, as it will allow us to use the Leray-Schauder degree
arguments. We look for solutions of the fixed-point equation

y = H(λ, y) , (λ, y) ∈ Ω . (25)

For this, we further assume the existence of some λ0 ∈ R and some open and bounded
set Υλ0 ⊂ Y such that {λ0} ×Υλ0 ⊂ Ω and
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(i) Equation (25) has no solutions (λ, y) ∈ Ω such that λ = λ0 and y ∈ Y \Υλ0 .

(ii) degLS(IdY −H(λ0, ·), Υλ0) 6= 0.

To state the main result of this section it will be convenient to introduce some notation.
Given any set A ⊂ Ω, we divide it into its (not necessarily disjoint) left and right pieces A±.
The right one A+ is defined by

A+ :=
{

(λ, y) ∈ A : λ ≥ λ0

}
,

while A− is given analogously after reversing the inequality. We also consider the set Σ of
solutions of (25),

Σ :=
{

(λ, y) ∈ Ω : y = H(λ, y)
}

. (26)

Proposition 4.1. Assume (C), (i), and (ii). Then, there exists a connected subset C ⊂ Σ
such that each piece C± lies under the following disjunctive: either

(a±) C± is unbounded in R× Y ,

(b±) or C± goes up to the boundary of Ω, i.e. its distance to the boundary of Ω is zero.

Ha+L

Hb+L

Hb-L

Ha-L

λ →

y
↑

C−

C+

Ω

λ0

{λ0} ×Υλ0

Figure 2: The four possibilities for the connected set C

Remark. The two possibilities (a−), (b−) are to be combined with (a+), (b+), giving then rise
to four different situations: (a−)-(a+), (a−)-(b+), (b−)-(a+), and (b−)-(b+).

This result is well known, and even though we could not find it in the literature in the
form presented here, related results may be found, for instance, in [2, 4, 8, 9, 10]. We shall
actually need only a corollary of this result, which we describe next. It will be convenient
to introduce first the following notation: given any subset Γ ⊂ Ω and any λ ∈ ]0, +∞[ we
denote by Γλ the vertical section Γλ := {y ∈ Y : (λ, y) ∈ Γ}.
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In the case we are interested in, Ω will be a cylinder

Ω = ]0, +∞[×V ,

where V is an open (and possibly unbounded) subset of Y . With other words, we are assuming
that Ωλ = V is always the same set for every λ ∈ ]0, +∞[. As before, we shall also need (C),
we fix some value λ0 > 0 and we denote by Ω± the sides of Ω to the left and the right of λ0.

But this time we shall further assume the existence of some open1 subset Υ ⊂ Ω+ verifying

(1.) the adherence Υ is still contained in Ω+,

(2.) Υ is bounded over bounded intervals of λ, i.e. Υ ∩ ([λ0, λ ] × Y ) is bounded for every
λ > λ0,

(3.) Equation (25) has no solutions (λ, y) ∈ Ω+ such that (λ, y) 6∈ Υ.

Hb'L

HaL

Hb''L

λ →

y
↑

C

λ00

Υ

]0, +∞[×∂V

Figure 3: The three possibilities for the connected set C

Observe that assumption (2.) implies in particular that Υλ0 is bounded, while, by (1.),
{λ0} × Υλ0 ⊂ Ω. Both things were required in Proposition 4.1. On the other hand, observe
that (3.) implies assumption (i) there. As in (26), we denote by Σ to the set of solutions of
our equation (25):

Corollary 4.2. Assume (1.), (2.), and (3.) above. Assume further that (ii) holds2. Then,
there exists a connected subset C ⊂ Σ such that Cλ 6= ∅ for any λ ≥ λ0. Moreover, either

(a) C ∩ (]0, λ0[×Y ) is unbounded,

(b′) or C goes all the way up to λ = 0, i.e., Cλ 6= ∅ for any λ > 0,

(b′′) or C ∩ (]0, λ0[×Y ) goes up to the boundary of V , i.e. its distance to ]0, λ0[×∂V is zero.

1Here, the adjective ‘open’ is referred to Ω+.
2In particular, Υλ0 6= ∅.

15



Proof. Applying Proposition 4.1 we deduce the existence of a connected set C for which each
piece C± lies under the disjunctive (a±)-(b±). For instance, C+ must verify either (a+) or
(b+). But this time, our assumptions (1.) and (3.) prevent (b+) from happening, so that we
must have (a+), and in view of (2.), we deduce that Cλ 6= ∅ for any λ ≥ λ0, as claimed.

We still have the disjunctive (a−)-(b−). Possibility (a−) is now called (a). Concerning
to possibility (b−), one observes that the boundary of our cylindrical domain Ω may be
decomposed into two parts: {0} × V̄ and ]0, +∞[×∂V . Thus, if the distance from C− to ∂Ω
is zero, it is because either the distance to {0} × V̄ is zero or the distance to ]0, +∞[×∂V
is zero. The first possibility is what we called (b′) and the second one is (b′′). The proof is
complete.

Finally, we state a one-sided variant of Corollary 4.2 which we shall need later. It is also
well-known and the proof is skipped:

Corollary 4.3. Under the framework of Corollary 4.2, for any λ∗ ≥ λ0, there exists a
connected subset C∗ ⊂ Σ such that

{
λ > 0 : C∗λ 6= ∅} = [λ∗, +∞[ .

5 A connected set of solutions coming from infinity

Throughout this Section we assume (M1) and (H2). In order to apply the abstract framework
developed in the previous section to find connected sets of solutions (r, µ) of (16), we have
to reformulate this problem as a fixed point equation in a Banach space. The equation will
depend on a one-dimensional parameter; however, this parameter will not be µ, but the value
λ of our T -periodic unknown r at the integer multiples of the period. For this reason, our
first step will be to rewrite r as

r = λ(1 + r̃) ,

where λ = r(0) and r̃ = r/λ− 1. It follows now that r̃(0) = 0, motivating us to consider the
space

C0(R/TZ) :=
{

r̃ ∈ C(R/TZ) such that r̃(0) = 0
}

,

which is endowed with the uniform norm ‖ ·‖∞. This space has the following property: given
any integrable function h ∈ L1(R/TZ) there exists a unique function Kh ∈ C0(R/TZ) which
has W 2,1 regularity on [0, T ] and whose second derivative there is h. Moreover, the mapping
K : L1(R/TZ) → C0(R/TZ) defined in this way is linear and compact. Observe that r̃ = Kh
is continuous and T -periodic by the way it has been defined; however, the left and right
derivatives at the integer multiples of T will coincide if and only if the mean-value projection
of h on the space of constant functions (naturally identified with R),

Ph :=
1

T

∫ T

0

h(t)dt ,

vanishes.
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On the other hand, since r was taken positive, λ ∈ ]0, +∞[ and r̃ > −1 on R. Thus, we
shall look for our solutions (λ, r̃, µ̃) on the set

Ω := ]0, +∞[×V ,

where V :=
{

(r̃, µ̃) ∈ C0(R/TZ)× R : r̃ > −1
}

is an open subset of the Banach space

Y := C0(R/TZ)× R ,

(the elements of this space are pairs of the form y = (r̃, µ̃)).
Observe that, instead of the angular momentum µ we have used here a new letter µ̃.

Well, problem (16) has the property that, if (r, µ) is a solution, then so is (r,−µ). We do not
want this situation to be translated to our abstract framework, and that is the reason why
we have introduced the new variable µ̃. When µ̃ ≥ 0, then µ̃ = µ will be just the angular
momentum, but if µ̃ < 0 then we will be looking for solutions with zero angular momentum
µ = 0. It means that we are going to loose the solutions with negative angular momentum;
on the other hand, if there is some solution with µ = 0, then it will be repeated for each value
of µ̃ ∈ ]−∞, 0]. Having this in mind, the ‘modified Nemitski functional’ for our problem (16)
is defined by

N : Ω → L1(R/TZ) , (λ, r̃, µ̃) 7→





−f
(·, λ(1 + r̃)

)

λ
if µ̃ < 0

µ̃2

λ4(1 + r̃)3
− f

(·, λ(1 + r̃)
)

λ
if µ̃ ≥ 0 .

We rewrite (16) as a Lyapunov-Schmidt-type system on Ω:

r̃ = K(Id− P )N(λ, r̃, µ̃) , PN(λ, r̃, µ̃) = 0 . (27)

This system may be seen as a fixed point equation on V depending on the parameter λ:
(

r̃
µ̃

)
= H

(
λ,

(
r̃
µ̃

))
:=

(
K(Id− P )N(λ, r̃, µ̃)

µ̃ + PN(λ, r̃, µ̃)

)
, λ ∈ ]0, +∞[ ,

(
r̃
µ̃

)
∈ V . (28)

Observe that H : ]0, +∞[×V → Y is continuous; moreover, it verifies the compactness
assumption which we labeled (C) in the previous Section. We want to apply Corollary 4.2,
but before, we have to place ourselves inside the framework of this result. Thus, we fix some
number ρ∗ > 1 as given by assumption (M1), we recall the function M : ]0, +∞[→ R defined
in (21), and we pick some number λ0 > 0 verifying simultaneously the statements of Lemmas
2.2 and 2.4. Finally, we define

Υ :=

{(
λ,

(
r̃
µ̃

))
∈ ]0, +∞[×Y : λ ≥ λ0,

1

ρ∗
− 1 < r̃(t) < ρ∗ − 1 ∀t ∈ R , 0 < µ̃ < M(λ)

}
.

Observe that Υ is an open subset of Ω+ =

{(
λ,

(
r̃
µ̃

))
∈ Ω : λ ≥ λ0

}
. The following result

states that the other assumptions of Corollary 4.2 are also satisfied.
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Lemma 5.1. Statements (1.), (2.), (3.), and (ii) from the previous section hold.

Proof. (1.) and (2.) follow immediately from the definition of Υ. To see (3.), choose some
λ ≥ λ0 and some fixed point (r̃, µ̃) of H(λ, ·). We let r := λ(1 + r̃) and µ = max{µ̃, 0}, so
that (r, µ) is a solution of (16). Moreover, max r ≥ r(0) = λ ≥ λ0, and, for t0 = 0, Lemma
2.2 (i) implies that λ/ρ∗ < r(t) < ρ∗λ, or, equivalently,

1

ρ∗
− 1 < r̃(t) < ρ∗ − 1 , t ∈ R .

On the other hand, Lemma 2.4 states that 0 < |µ| < M(λ). It follows that µ = µ̃ > 0
and (λ, r̃, µ̃) ∈ Υ, proving (3.).

Before going into the proof of (ii) we first notice that, as a consequence of our sublinearity
assumption (H2) and the function M being subquadratic, on the set Υ we have:

lim
λ→+∞

∥∥N(λ, r̃, µ̃)
∥∥

L1 = 0 as λ → +∞ , uniformly with respect to (r̃, µ̃) .

But the linear operators I − P : L1(R/TZ) → L1(R/TZ) and K : L1(R/TZ) → C0(R/TZ)
are continuous, and, consequently,

lim
λ→+∞

∥∥K(Id− P )N(λ, r̃, µ̃)
∥∥
∞ = 0 as λ → +∞ , uniformly with respect to (r̃, µ̃) ,

on Υ. Thus, we may find some number λ∗ ≥ λ0 such that, if λ ≥ λ∗ and (r̃, µ̃) ∈ Υλ, then

1

ρ∗
− 1 < K(Id− P )N(λ, r̃, µ̃) < ρ∗ − 1 . (29)

Let us show now (ii). In view of (3.), degLS

(
IdY − H(λ, ·), Υλ

)
does not depend on

λ ≥ λ0, and we shall actually show that this degree is equal to −1. Our strategy will consist
in using a homotopy to link H(λ∗, ·) and the mapping

F : Υλ∗ → Y ,

(
r̃
µ̃

)
7→

(
0

µ̃ + PN(λ∗, 0, µ̃)

)
.

Before constructing the homotopy let us observe that

Υλ∗ = O× ]0,M(λ∗)[ , (30)

where O =
{
r̃ ∈ C0(R/TZ) : 1/ρ∗ − 1 < r̃ < ρ∗ − 1

}
, which is open and contains r̃ ≡ 0.

Since

IdY − F : O× ]0,M(λ∗)[→ Y ,

(
r̃
µ̃

)
7→

(
r̃

−PN(λ∗, 0, µ̃)

)
,

then, the product formula (see, for instance, [5]) gives

degLS(IdY − F, Υλ∗) = deg
(
− PN(λ∗, 0, ·) ]0,M(λ∗)[

)
.
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On the other hand, Lemma 2.2 (ii) implies, for r(t) ≡ λ∗, that

PN(λ∗, 0, 0) < 0 < PN(λ∗, 0,M(λ∗)) ,

and consequently, degLS(IdY − F, Υλ∗) = −1.

We define now our homotopy M : [0, 1]×Υλ∗ → Y by

M

(
s,

(
r̃
µ̃

))
:=

(
sK(Id− P )N(λ∗, r̃, µ̃)

µ̃ + PN(λ∗, s r̃, µ̃)

)
,

(
s,

(
r̃
µ̃

))
∈ [0, 1]×Υλ∗ .

In this way, M is completely continuous, M(1, ·) = H(λ∗, ·) and M(0, ·) = F . To complete
the argument we still have to show that M(s, ·) has no fixed points in ∂Υλ∗ for any s ∈ [0, 1].
But, in view of (30),

∂Υλ∗ =
(
∂O × [

0,M(λ∗)
]) ∪

(
O × {

0,M(λ∗)
})

.

In the set ∂O × [
0,M(λ∗)

]
there are no fixed points of M(s, ·) since, by (29),

sK(Id− P )N(λ∗, r̃, µ̃) ∈ O , (r̃, µ̃) ∈ Υλ∗ .

On the other hand, Lemma 2.2 (ii) implies

PN(λ∗, s r̃, 0) < 0 < PN(λ∗, s r̃,M(λ∗)) , r̃ ∈ O ,

and then, O × {
0,M(λ∗)

}
does not contain fixed points of M(s, ·) either. It concludes the

proof.

We are now ready to prove the main result of the paper:

Proof of Theorem 1.5. As observed at the end of Section 3, Theorem 1.5 is equivalent to
Lemma 3.1; thus, we shall prove this result instead. Combining Lemma 5.1 and Corollary
4.2 we find some connected set C ⊂ ]0, +∞[×Y of solutions (λ, r̃, µ̃) of our Lyapunov-Schmidt
system (27) with

{λ : (λ, r̃, µ̃) ∈ C} ⊃ [λ0, +∞[ , (31)

and, either

(a)
{
(r̃, µ̃) : (λ, r̃, µ̃) ∈ C, 0 < λ < λ0

}
is unbounded,

(b′) or
{
λ : (λ, r̃, µ̃) ∈ C} =]0, +∞[,

(b′′) or inf
{

min r̃ : (λ, r̃, µ̃) ∈ C, 0 < λ < λ0

}
= −1.

We define
K :=

{(
λ(1 + r̃), max{µ̃, 0}) : (λ, r̃, µ̃) ∈ C

}
,

which is a connected set of solutions (r, µ) of (16). Moreover, since r̃(0) = 0 for any (λ, r̃, µ̃) ∈
C, then (31) implies that the interval {max r : (r, µ) ∈ K} is unbounded, and, by Lemma 2.1,
also the interval {min r : (r, µ) ∈ K} is unbounded, showing our assertion (K1).
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It remains to show the alternative (K2a)-(K2b). We shall assume that none of these
possibilities hold to arrive to a contradiction with the disjunctive (a)-(b′)-(b′′).

Indeed, if (K2a) does not hold, there must exist some lower bound k > 0 such that

min r ≥ k , (r, µ) ∈ K , (32)

and in particular
λ ≥ k (λ, r̃, µ̃) ∈ C , (33)

contradicting (b′). Another consequence of (32) is that

r̃ ≥ k

λ
− 1 >

k

λ0

− 1 > −1 , (λ, r̃, µ̃) ∈ C, 0 < λ < λ0 ,

contradicting (b′′).

On the other hand, if (K2b) does not hold either, then µ > 0 for all (r, µ) ∈ K, and

K =
{(

λ(1 + r̃), µ
)

: (λ, r̃, µ) ∈ C} . (34)

Now, choose some element (λ, r̃, µ) ∈ C with 0 < λ < λ0. We let r := λ(1 + r̃); by (34),
(r, µ) ∈ K and (r, µ) is a solution of (16) with min r < λ0. But, by (32), also min r ≥ k, and
Corollary 2.3 implies the existence of some M > 0 (depending on k and λ0 but not on r or
µ), such that

λ(1 + max r̃) ≤ M and |µ| ≤ M ,

and, in view of (33),
k(1 + max r̃) ≤ M and |µ| ≤ M ,

contradicting (a). This contradiction concludes the proof.

We are going to prove now Theorem 1.7. In order to do so, we first establish an elementary
result on a priori bounds for the first derivative of T -radially periodic functions whose second
derivative is controlled:

Lemma 5.2. Let the W 2,1
loc (R) function x : R→ R2 be T -radially periodic. If c ∈ L1(R/TZ)

verifies |ẍ(t)| ≤ c(t) for a.e. t ∈ R , then

max |ẋ| ≤ 2 min |x|+ T‖c‖L1 , max |x| −min |x| ≤ (
2 min |x|+ T‖c‖L1

)
T .

Proof. Since both |x| and |ẋ| are T -periodic, we may find points t0, s0 ∈ R such that

|ẋ(t0)| = max |ẋ|, |x(s0)| = min |x|, s0 ≤ t0 ≤ s0 + T .

On the other hand, remembering that |ẍ| ≤ c,

|ẋ(s)− ẋ(t0)| ≤ ‖c‖L1 , s ∈ [s0, s0 + T ] . (35)
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We integrate in both sides of this inequality, to obtain

∣∣∣x(s0 + T )− x(s0)− ẋ(t0)
∣∣∣ =

∣∣∣∣
∫ s0+T

s0

ẋ(s)dt− ẋ(t0)

∣∣∣∣ ≤
∫ s0+T

s0

∣∣∣ẋ(s)− ẋ(t0)
∣∣∣dt ≤ T‖c‖L1 ,

and thus, max |ẋ| = |ẋ(t0)| ≤ |x(s0 +T )|+ |x(s0)|+T‖c‖L1 = 2 min |x|+T‖c‖L1 the first half
of the statement. We choose now s1 ∈ [s0, s0 + T ] such that |x(s1)| = max |x| and observe
that

max |x| −min |x| ≤
∣∣∣x(s1)− x(s0)

∣∣∣ =

∣∣∣∣
∫ s1

s0

ẋ(s)dt

∣∣∣∣ ≤
∫ s1

s0

|ẋ(s)|dt ≤ (
2 min |x|+ T‖c‖L1

)
T ,

concluding the proof.

Proof of Theorem 1.7. Using Proposition 1.6, choose some λ2 > 0 such that any T -radially
periodic solution x = r(cos θ, sin θ) of (3) with max r ≥ λ2 verifies

θ̇ 6= 0 on R , min r ≥ 1 . (36)

Combine now Lemma 5.1 with Corollary 4.3 and use similar arguments to those carried out in
the proof of Theorem 1.5 to obtain the existence of a connected set C∗ of T -radially periodic
solutions x = r(cos θ, sin θ) of (3) such that

{r(0) : r(cos θ, sin θ) ∈ C∗} = [λ∗, +∞[ , (37)

for some λ∗ ≥ λ2. Then, θ̇ 6= 0 for any x = r(cos θ, sin θ) ∈ C∗, and, after possibly replacing
C∗ by

C̃∗ =
{

r
(
cos(−θ), sin(−θ)

)
: r(cos θ, sin θ) ∈ C∗

}
,

we may assume that
θ̇ > 0 for any r(cos θ, sin θ) ∈ C∗. (38)

We consider now the set
I := {rot(x) : x ∈ C∗} ,

which is an interval, because C is connected and rot is continuous. From (38) we see that
I ⊂ ]0, +∞[. On the other hand, (37) and Proposition 1.6 imply that

I ⊃ ]0, ω̄[

for some ω̄ > 0. With other words, for any 0 < ω < ω̄ there exists some element xω ∈ C∗
such that rot(xω) = ω. The first part of (15) follows now from (38).

To conclude the proof, it will suffice to show that limω→0 max |xω| = +∞, since (14) and
the second part of (15) will then follow from Proposition 1.6. Thus, we use a contradiction
argument and assume that there is some sequence ωn → 0 such that max |xωn | is bounded,
say, by some constant K > 0. Taking into account the second part of (36) we observe that

1 ≤ |xωn| ≤ K , n ∈ N . (39)
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But f was assumed to be L1-Carathéodory, and then, there is some function c ∈ L1(R/Z)
such that |f(t, r)| ≤ c(t) for a.e. t ∈ R/Z and every r ∈ [1, K]. From the equation (3) we
conclude that

|ẍωn(t)| ≤ c(t) for a.e. t ∈ R and all n ∈ N . (40)

Inequality (39) states that the sequence {xωn} is uniformly bounded, and Lemma 5.2
states that also {ẋωn} is uniformly bounded. In particular, {xωn} is equicontinuous, and, in
view of (40), also {ẋωn} is equicontinuous. Thus, Ascoli-Arzelà’s Theorem applies and states
that, after possibly passing to a subsequence, one may assume that there exists some C1

function x∗ : R → R2 such that {xωn} → x∗ and {ẋωn} → ẋ∗ uniformly on compact sets. It
immediately follows that x∗ is T -radially periodic. On the other hand, max |xωn | ≥ λ2 for
any n, and we deduce that max |x∗| ≥ λ2. Finally rewriting our equation (3) in its integral
form (for x = xωn)

ẋωn(t) = ẋωn(0) +

∫ t

0

f(s, |xωn(s)|) xωn(s)

|xωn(s)|ds , t ∈ R ,

and taking limits as n →∞, we see that also x∗ is a solution of (3). But then, (36) implies
that rot x∗ 6= 0, contradicting the continuity of rot. It concludes the proof.

6 Examples, counterexamples...

In this last Section we construct the examples announced in Propositions 1.2 and 1.4. We
start with Proposition 1.2, and, with this aim, we consider the following increasing sequence
of positive, 2π-periodic functions:

rn(t) := n +
1

4
sin t , n ≥ 1 , t ∈ R .

Our proof for this result will be based on the following elementary result of real analysis:

Lemma 6.1. There exists a bounded and C∞ function f : (R/2πZ)× ]0, +∞[→ R such that
f(t, rn(t)) = −1 for any n ∈ N and

∫ 2π

0

f(t, r)dt > 0 , r ∈ ]0, +∞[ .

We shall not give a detailed proof of Lemma 6.1 here, as it may be considered an exercise;
we just point out that f may be chosen with the form f(t, r) = u(r − (1/4) sin t) for some
suitable function u : R→ R.

We remark that the condition above on the positivity of the integrals over horizontal lines
may be improved. Indeed, one easily checks that given some constant M > 0, the function
f can be chosen so that

∫ 2π

0
f(t, r)dt ≥ M for any r > 0. In this way, also Proposition 1.2

could be sharpened; given M > 0 the function f may be chosen so that
∫ T

0
f(t, r)dt ≥ M for

any r > 0.
Lemma 6.1 will lead us to Proposition 1.2. We see it below:
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Proof of Proposition 1.2. We choose f as given by Lemma 6.1 and observe that the sequence
{rn}n is made of strict upper solutions for the equation −r̈ = f(t, r). In other words,

−r̈n(t) > f(t, rn(t)) , t ∈ R , n ∈ N. (41)

Let now C be a connected set of 2π-radially periodic solutions of (3). Using the results of
Section 3 we see that K := Ψ(C) is a connected set of solutions (r, µ) of (16). We recall that
our aim is to show that the interval

{
|x(t)| : t ∈ R, x ∈ C

}
=

{
r(t) : t ∈ R, (r, µ) ∈ K

}

is bounded. With this aim we choose some element (rN, µN) ∈ K and fix some n0 ∈ N such
that rn0(t) > rN(t) for any t ∈ [0, T ]. We consider the sets

A :=
{

(r, µ) ∈ K : r(t) < rn0(t) for all t ∈ R
}

,

B :=
{

(r, µ) ∈ K : r(t∗) > rn0(t∗) for some t∗ ∈ R
}

.

Observe that A and B are open in K. Moreover, we claim that A ∪ B = K. Indeed, the
contrary would mean the existence of some element (r, µ) ∈ K such that

r ≤ rn0 on R , r(t0) = rn0(t0) for some t0 ∈ R ,

which is not possible because, in view of (17), r is a lower solution of −r̈ = f(t, r) while, as
observed in (41), rn0 is an strict upper solution.

Since K is connected, one of these sets must be empty. But (rN, µN) ∈ A, and we deduce
that B = ∅. It concludes the proof.

We undertake now the proof of Proposition 1.4. This result is divided in two parts, the
first one concerning the case 0 ≤ γ < 1, and the second about the case γ < 0, and they will
be treated separately.

The first part will follow from Theorem 1.5. We only have to check that the one-
dimensional equation

−r̈ = c(t)rγ , r > 0 , (42)

does not have T -periodic solutions if 0 < γ < 1 and c ∈ C(R/TZ) has positive mean. Our
strategy will consist in building a continuous family of lower solutions for this equation. Well,
not all of them exactly lower solutions, but something close to that:

Lemma 6.2. Assume that 0 ≤ γ < 1 and
∫ T

0
c(t)dt > 0. Then, there is a continuous function

ψ : (R/TZ)× [0, +∞[→ R, (t, p) 7→ ψ(t, p), verifying

(i) ψ(t, 0) = 0 and limp→+∞ ψ(t, p) = +∞ uniformly with respect to t ∈ R/TZ.

(ii) ψ is a C2 mapping on the set Ω := {(t, p) ∈ (R/TZ)× [0, +∞[: ψ(t, p) > 0}; moreover,

−∂ttψ(t, p)− c(t)ψ(t, p)γ < 0 , (t, p) ∈ Ω .
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Proof. Let c̄ = (1/T )
∫ T

0
c(t)dt > 0 and c̃(t) = c(t) − c̄. Then, c̃ has zero mean value and it

is possible to find some T -periodic function H : R → R of class C2 such that Ḧ = c̃. This
function H is determined up to constants, and then, we may choose it so that H(t) > 0 for
any t ∈ R. We define

ψ(t, p) :=
[
max

{
0, p− (1− γ)H(t)

}] 1
1−γ

, (t, p) ∈ (R/TZ)× [0, +∞[ .

Now, (i) is immediate. On the other hand, one easily checks that ψ solves the first-order
equation

−∂tψ(t, p)− Ḣ(t)ψ(t, p)γ = 0 , (t, p) ∈ Ω ,

from where (ii) follows easily.

Proof of Proposition 1.4 for 0 ≤ γ < 1. Using a contradiction argument, assume that r =
r(t) were a T -periodic solution of (42) and define

p∗ := min
{

p > 0 such that the graphs of ψ(·, p) and r intersect
}

.

Then, ψ(t, p∗) ≤ r(t) for every t ∈ R and, for some t0, one has the equality ψ(t0, p∗) = r(t0),
which is contradictory with the fact that r and ψ(·, p∗) are, respectively, a solution and a
strict lower solution of (42). It completes the proof.

We show now the second part of Proposition 1.4. With this aim, we start by choosing
some γ < 0 which will be henceforth fixed and observe that any solution x of the equation

ẍ = −c(t)|x|γ x

|x| , (43)

with min |x| = 1 verifies
|ẍ(t)| ≤ |c(t)| for a.e. t ∈ R .

But then, Lemma 5.2 gives a priori bounds for x and |ẋ|, which, in our case, read:

|x(t)|, |ẋ(t)| ≤ 3 + ‖c‖L1 , t ∈ R . (44)

At this point we introduce a contradiction argument, and, from now on, we shall assume
that

[A] for any c ∈ C(R/Z) with
∫ 1

0
c(t)dt > 0, equation (43) has some 1-radially

periodic solution x with min |x| = 1.

In this situation, the bounds (44) may be combined with an approximation argument to
deduce that, in fact, (43) must have 1-radially periodic solutions for a wider class of functions
c = c(t):

Lemma 6.3. Assume [A]. Then, equation (43) has some 1-radially periodic solution x with

min |x| = 1 for any c ∈ L1(R/Z) with
∫ 1

0
c(t)dt ≥ 0, .
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Proof. Fix c ∈ L1(R/Z) with
∫ 1

0
c(t)dt ≥ 0 and choose some sequence {cn} ⊂ C(R/Z) with∫ 1

0
cn(t)dt > 0 such that {cn} → c in the L1 sense. Correspondingly, for each n ∈ N we find

an associated 1-radially periodic solution xn of (43) with c = cn such that min |xn| = 1. But
{cn} is bounded in L1(R/Z), and (44) states that {xn} and {ẋn} are uniformly bounded on
R. In particular, {xn} is equicontinuous, and using Ascoli-Arzelà Theorem, we may assume,
after possibly passing to a subsequence, that {xn} converges uniformly on compact sets to
some continuous function x∗ : R → R2 with min |x∗| = 1. It is not restrictive to assume
that, moreover, {ẋn(0)} converges to some number β ∈ R. Since xn is 1-radially periodic for
each n, we conclude that x∗ is also 1-radially periodic. Finally, from the integral form of our
equation

ẋn(t) = ẋn(0)−
∫ t

0

cn(t)|xn(t)|γ xn(t)

|xn(t)| dt , n ∈ N ,

it follows that ẋn converges uniformly on compact sets to the function

y(t) := β −
∫ t

0

c(t)|x∗(t)|γ x∗(t)
|x∗(t)| dt , t ∈ R ,

and then, y = ẋ∗. In particular, x∗ solves (43) and the proof is complete.

To prepare the next step we define, for each 0 < δ < 1/2, the function cδ ∈ L1(R/Z) by

cδ(t) :=





1− 2δ

2δ
if − δ ≤ t ≤ δ ,

−1 if δ < t < 1− δ ,

and extended periodically. Observe that
∫ 1

0
cδ(t)dt = 0 and consequently, Lemma 6.3 states

the existence of some 1-radially periodic solution xδ of the equation

ẍδ = −cδ(t)|xδ|γ xδ

|xδ| ,

with min |xδ| = 1. We define rδ := |xδ|, which, remembering (17), verifies

r̈δ(t) ≥ −cδ(t)rδ(t)
γ .

and, in particular, we have the inequality

r̈δ(t) ≥ rδ(t)
γ > 0 , t ∈ ]δ, 1− δ[ , (45)

so that rδ is convex on [δ, 1− δ]. The next step is devoted to show that, if δ is small, then rδ

has a ‘U-like shape’ on this interval.

Lemma 6.4. If δ ∈ ]0, 1/2[ is small enough, then ṙδ(δ) < 0 < ṙδ(1− δ).
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Proof. Choose 0 < δ < 1/2 small enough so that 20 δ < 5γ(1− 2δ)2. We shall see that this δ
satisfies the conditions above.

With this aim, we start by observing that, for any 0 < δ < 1/2, ‖cδ‖L1 < 2, and, by
Lemma 5.2, we know that both rδ = |xδ| and |ẋδ| are bounded by 5. When combined with
(45), the first fact gives

r̈δ(t) ≥ 5γ , t ∈ ]δ, 1− δ[ , (46)

On the other hand, the second fact implies that |ṙδ(t)| ≤ |ẋδ(t)| ≤ 5 and we get

|rδ(1− δ)− rδ(δ)| = |rδ(−δ)− rδ(δ)| ≤ 10 δ . (47)

We use now a contradiction argument, and assume that, for instance, ṙδ(δ) ≥ 0. Then,
by (46), ṙ(t) ≥ 5γ(t− δ) for any t ∈ [δ, 1− δ], and we obtain that

r(1− δ)− r(δ) ≥ 5γ(1− 2δ)2/2 ,

and, in view of (47), 10δ ≥ 5γ(1−2δ)2/2. This contradicts our choice of δ and thus, ṙδ(δ) < 0.
Similarly, ṙδ(1− δ) < 0.

The end of the proof of Proposition 1.4. The combination of (45) and Lemma 6.4 implies
that, if δ is small enough, then rδ has an unique critical point t0 ∈ [δ, 1− δ], which is, by the
way, a local minimum. But rδ is 1-periodic, and thus, it must attain its maximum somewhere
on ]1− δ, 1 + δ[. In particular, the set

{t ∈ ]1− δ, 1 + δ[: ṙδ(t) = 0}

is nonempty, and we call t± to the minimum and the maximum of this set. Consequently,

1− δ < t− ≤ t+ < 1 + δ , ṙδ(t−) = ṙδ(t+) = 0 .

t0∆ 1-∆ 1+∆t- t+

Figure 4: The graph of rδ

Now,

0 =

∫ t−

t0

r̈δ(s)ds =

∫ 1−δ

t0

r̈δ(s)ds +

∫ t−

1−δ

r̈δ(s)ds ≥
∫ 1−δ

t0

rδ(s)
γds−

∫ t−

1−δ

(
1− 2δ

2δ

)
rδ(s)

γds .
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Observe now that, if s ∈ [t0, 1 − δ[ , then r(s)γ > r(1 − δ)γ, while, if s ∈ ]1 − δ, t−], then
r(s)γ < r(1− δ)γ. It follows that

0 > r(1− δ)γ(1− δ − t0)−
(

1− 2δ

2δ

)
r(1− δ)γ(t− − 1 + δ) ,

or, what is the same,
t− − (1− δ)

2δ
>

1− δ − t0
1− 2δ

. (48)

On the other hand, a similar reasoning starting from the equality

0 =

∫ 1+t0

t+

r̈δ(s)ds =

∫ 1+δ

t+

r̈δ(s)ds +

∫ 1+t0

1+δ

r̈δ(s)ds ,

leads us to the inequality
1 + δ − t+

2δ
>

t0 − δ

1− 2δ
,

which, when added to (48) yields t− > t+, a contradiction. The contradiction comes from
having assumed [A] and concludes the proof.
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