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Abstract

We study the dynamics of Kepler problem with linear drag. We
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and travel from infinity to the singularity. In the process the energy
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takes all real values and the angular velocity becomes unbounded.
We also prove that there are two types of linear motions: capture-
collision and ejection-collision. The behaviour of solutions at collisions
is the same as in the conservative case. Proofs are obtained using the
geometric theory of ODEs and two regularizations for the singularity
of Kepler equation. The first, already considered in Diacu (1999), is
mainly used for the study of the linear motions. The second, the well
known Levi-Civita transformation, allows to complete the study of the
asymptotic values of the energy and to prove the existence of collision
solutions with arbitrary energy.

Keywords: Kepler equation, linear drag, collision, Levi-Civita
transformation

1 Introduction

Recently, there has been new interest in modeling and analyzing the effect of
dissipative forces on the dynamics of small bodies (see, for example the recent
European programme Stardust, http://www.strath.ac.uk/stardust/). In this
connection, the study of the restricted three body problem with dissipation
has been considered in Celletti et al. (2011), where some numerical results
covering many aspects of its dynamics are given. In Margheri et al. (2012), for
the same problem, some analytical results are obtained about the existence
or not of periodic orbits for general drag forces. The results in Margheri et al.
(2012) are of local nature and we would also like to describe some aspects
of the dynamics of the system from a more global point of view. A natural
starting point for this task is to set the mass µ of one of the primaries equal
to zero and to address first the corresponding Kepler problem with drag. The
corresponding equation in the inertial frame is

z̈ +D(z, ż)ż = − z

|z|3

where z ∈ C and D(z, ż) is a real-valued function describing the drag force.
This force can model different non-gravitational effects such as particle colli-
sions, solar radiation or atmospheric resistance (Celletti et al. (2011), Leach
(1987)). This explains why different types of drag forces have been consid-
ered in the literature, including, in particular, Stokes dissipation and the
Poynting-Robertson force. Several authors (see Danby (1962), Mittleman
& Jezewski (1982), Mavraganis & Michalakis (1994)) have worked with the
choice

D(z, ż) =
α

|z|2
, (1)
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where α > 0 is a parameter. This formula seems particularly meaningful
when modeling collisions of particles or photons. Moreover, from a mathe-
matical point of view, it has an exceptional feature: orbits can be obtained
in a closed form. This is shared by the larger family of drag forces, which
also follow an inverse square law in the distance to the singularity, consid-
ered in Breiter & Jackson (1998), Diacu (1999). All these drags correspond
to integrable equations.

To develop a qualitative theory of Kepler problem for general families of
drag forces seems a natural task. As far as we know the first contributions
in these directions are Corne & Rouche (1973) and Diacu (1999). The first
paper is concerned with a general family of drag forces while the second deals
with the generalized Stokes force also considered in Breiter & Jackson (1998).
In Diacu (1999) a global description of the rectilinear trajectories is obtained
using the integrability of the corresponding system and some properties of
the motions near collision are given, taking advantage of the presence of a
singular point on the collision manifold of a suitably regularized problem.

To continue the program of the qualitative study of dissipative Kepler
problems, in this paper we will consider the case of a linear dissipation,
corresponding to

D(z, ż) = ε, (2)

where ε is a positive constant. At first sight this might seem the simplest
choice for the drag force. However, orbits cannot be obtained explicitly in
this case, and different techniques must be used to analyze the corresponding
dynamics. We expect that the methods developed in this paper will give
some hints for the study of the general non-integrable case. We find an
additional reason to analyze the linear drag (2): the corresponding force is
simultaneously a member of two important families of drag forces (Stokes
and Jacobi). As already mentioned we refer to Celletti et al. (2011) for more
details on Stokes forces. The second family can be extracted directly from
Jacobi’s textbook on Mechanics Jacobi (2009). We find somehow surprising
that Jacobi already dedicated a chapter of his course to the study of Kepler
problem with dissipation. Indeed he assumed

D(z, ż) = ε|ż|p−1,

where p is a parameter, and the linear case corresponds to p = 1.
The Kepler equation corresponding to the linear drag is

z̈ + εż = − z

|z|3
. (3)

The results in Corne & Rouche (1973) are applicable to equation (3) and
the main conclusion which follows is that the set {(z, ż) ∈ C2 : z = 0}
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is a global attractor. The notion of attractor must be understood in an
appropriate sense. Essentially, it says that all solutions satisfy

|z(t)| → 0 as t ↑ t1

where the two cases t1 < ∞ and t1 = ∞ are possible. Note that the first
case corresponds to collisions. Having this as a starting point, in our paper
we give a detailed description of the qualitative dynamics of (3).

More precisely, in Section 2 we discuss some qualitative properties of
solutions with non-zero angular momentum. By a direct analysis of the dif-
ferential equation which determines the evolution of the radial component of
the solutions, we prove that the particles travel from infinity to the singular-
ity along trajectories that are well defined for all times, see Propositions 2.1
and 2.2. This means that there are no collisions at finite time. Moreover, us-
ing a regularization of Kepler problem already presented in Diacu (1999), we
prove that, as the particles approach the singularity, their angular velocity
becomes unbounded, see Proposition 2.5.

In Section 3 we analyze the linear motions (that is the motions with zero
angular momentum) of (3). They will be classified in two families: ejection-
collision and capture-collision. We will prove that ejections and collisions
occur with finite energy, see Proposition 3.1. The unique separatrix will be
characterized in terms of the asymptotic values of the energy. The proofs
use mainly techniques coming from phase-portrait analysis. Finally, following
the lines of Sperling (1969/1970) and Ortega (2011), we will show that the
behavior at collisions is the same as in the conservative case.

In order to study the asymptotic behaviour of the energy on the solutions
of equation (3), in Section 4 we adapt to the dissipative setting the classical
Levi-Civita regularization. It is well known1 that in the conservative setting
the Levi-Civita change of variables transforms Kepler problem into a linear
equation of the form w′′− E

2
w = 0, where the energy E takes constant values

along the motions w. It must be noticed that only those solutions lying on
a suitable manifold do correspond to physically meaningful motions. In the
dissipative case the energy is not constant along the motions and so it has to
be added as an additional unknown. Moreover in the dissipative framework,
we get a regularized nonlinear system of polynomial type. The flow on
the corresponding invariant manifold can be interpreted as the Levi-Civita
regularized system. We have used this system to prove that the energy along
a non rectilinear motion tends to ±∞ as t tends to ∓∞, see Proposition
4.1, and that ejection and collisions can occur with any prescribed value

1Besides the classical works by Levi-Civita it is interesting to mention Goursat’s paper
Goursat (1889). The authors thank Dr. Lei Zhao for calling their attention to this paper.
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of the energy, see Proposition 4.2. We note that a regularization of the
restricted three body problem via the Levi-Civita change of variables has
been already considered in Celletti et al. (2011) to investigate numerically the
qualitative behaviour of the solutions of a dissipative restricted three body
problem. Ours is a more analytical approach, which stresses the geometrical
interpretation of the regularization for the Kepler problem with linear drag.
Perhaps the regularized system which we present here has some independent
interest since it could be an useful tool in the study of the dynamics of more
complex systems in dissipative celestial mechanics.

We gather below some straightforward facts about equation (3) which
will be useful in what follows.

If we introduce the ’energy function’

E(z, ż) =
|ż|2

2
− 1

|z|
, (4)

then along the solutions of (3) it is

Ė(t) :=
dE

dt
(z(t), ż(t)) = −ε|ż(t)|2. (5)

This fact rules out the existence of periodic orbits. Moreover, it is easily
checked that the angular momentum satisfies

z ∧ ż = Ce−εt, C := z(0) ∧ ż(0), (6)

where the symbol ’∧’ denotes the vector product.
We rewrite now equation (3) using polar coordinates. If we consider

the change of variables z = reiθ, the new coordinates satisfy the following
differential system: {

r̈ − rθ̇2 + εṙ = − 1
r2

d
dt
r2θ̇ = −εr2θ̇.

(7)

Recalling that |z ∧ ż| = ±r2θ̇, by (6) we get that the radial component of
the solutions of (3) satisfies

r̈ − α2 e−2εt

r3
+ εṙ = − 1

r2
(8)

where α = |C|.
In the next section we will study the non rectilinear motions of (3), whose

radial component satisfies (8) with α 6= 0.
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2 Motions with nonzero angular momentum

Let z(t) be a solution of (3) defined on the maximal interval Iz =]t0, t1[ with
0 ∈ Iz. The results in Corne & Rouche (1973) imply that

|z(t)| → 0 as t ↑ t1. (9)

In particular z(t) is bounded in [0, t1[. This result is valid for arbitrary
solutions, including those with zero angular momentum. In this section we
will study the non rectilinear motions, whose radial component satisfies (8)
with α 6= 0. In our first result we prove that these solutions are defined
everywhere.

Proposition 2.1 Let z = reiθ be a solution of (3) with α 6= 0. Then z(t) is
well defined for all times, that is Iz =]−∞,+∞[.

Proof. It is enough to prove that r(t), understood as a solution of (8), is
defined on the whole real line. Let us first prove that t1 = +∞. Assume by
contradiction that t1 < +∞. By (5) we know that the energy function

E(t) = E(z(t), ż(t)) =
1

2
(ṙ(t))2 +

α2e−2εt

2r2(t)
− 1

r(t)

is decreasing along the solutions of (3). Since by (9) it is

lim
t↑t1

(
α2e−2εt

2r(t)2
− 1

r(t)

)
= +∞

we get a contradiction with the inequality E(t) < E(0), t ∈ [0, t1[. Then, we
conclude that r(t) is defined in [0,+∞[.

To prove that t0 = −∞ we will employ the following inequality, valid for
an arbitrary parameter A > 0,

A

x3
− 1

x2
≥ − 4

27A2
for each x > 0. (10)

Again we proceed by contradiction and assume that t0 > −∞. Then, by the
general theory of continuation of solutions of ODEs either

lim sup
t→t+0

[r(t) + |ṙ(t)|] = +∞

or
lim inf
t→t+0

r(t) = 0.
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Assume first that there exists a sequence tn ↓ t0 such that r(tn) → 0. If we
define

b(t) :=
α2e−2εt

r(t)3
− 1

r(t)2
, (11)

from the differential equation (8) and the inequality (10),

r̈(t) + εṙ(t) = b(t) ≥ − 4e4εt

27α4
≥ − 4

27α4
=: γ

if t ∈]t0, 0]. The differential inequality r̈ + εṙ ≥ γ is equivalent to d
dt

(eεtṙ) ≥
γeεt and it implies that

ṙ(t) ≤ (ṙ(0)− γ

ε
)e−εt +

γ

ε
, t ∈]t0, 0].

We have found the upper estimate

ṙ(t) ≤ |ṙ(0)− γ

ε
|e−εt0 +

|γ|
ε

=: β, t ∈]t0, 0],

which has several consequences. First we observe that for each t ∈]t0, 0] we
can select N large enough so that tn < t if n ≥ N . Hence

r(t) = r(tn) +

∫ t

tn

ṙ(ξ)dξ ≤ r(tn) + β(t− t0).

Letting n→∞ we deduce that

r(t) ≤ β(t− t0), if t ∈]t0, 0]. (12)

In particular,
lim
t→t+0

r(t) = 0. (13)

Our next step will be to prove the existence of a number δ > 0 such that

ṙ(t) ≥ 0 if t ∈]t0, t0 + δ].

Together with a previous estimate this will imply that 0 ≤ ṙ ≤ β and so
ṙ(t) remains bounded on ]t0, t0 + δ]. To prove the positivity of ṙ near t0 we
observe that it is possible to find a sequence t∗n ↓ t0 satisfying ṙ(t∗n) ≥ 0. This
is a consequence of (13). Also, if b(t) is defined by (11), we have that the
inequality

b(t) > 0 if t ∈]t0, t0 + δ] (14)
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will hold for appropriate δ. Going back to (8) we deduce that r̈ + εṙ > 0 on
the interval ]t0, t0 + δ]. Hence the function eεtṙ(t) is increasing and

eεt
∗
n ṙ(t∗n) < eεtṙ(t) if t ∈]t0, t0 + δ] and n ≥ N∗,

where N∗ is such that t∗n < t if n ≥ N∗. We easily deduce that ṙ is non-
negative near t0. Once we know that the limit (13) holds and ṙ(t) is bounded
we observe that the function b(t) is integrable (in the Lebesgue sense) on the
interval ]t0, t0 +δ]. Indeed, if we integrate (8) between t and t0 +δ, we obtain

ṙ(t0 + δ)− ṙ(t) + ε(r(t0 + δ)− r(t)) =

∫ t0+δ

t

b(τ)dτ

and so the integral remains finite as t ↓ t0. Once again we apply (13) to find
numbers µ > 0 and δ1 ∈]0, δ] such that

b(t) ≥ µ

r(t)3
, t ∈]t0, t0 + δ1].

We have arrived at a contradiction because the above inequality and (12)
imply that b(t) has a divergent integral. This discussion shows that the
solutions cannot go to zero. In particular the function b(t) remains bounded
on ]t0, 0]. It remains to discuss the possibility of a blow-up, that is r(t) +
|ṙ(t)| → ∞ as t → t+0 > −∞. However, this is excluded because r(t) is a
solution of r̈ + εṙ = b(t), and we conclude that t0 = −∞.

2

As a corollary we get:

Proposition 2.2 Let z(t) = r(t)eiθ(t) be a non collinear solution of (3).
Then

|z(t)| → ∞, |ż(t)| → ∞ as t→ −∞ and |z(t)| → 0 as t→ +∞.

Before the proof of this result we present two lemmas. The first is a simple
observation on differential inequalities. The second is concerned with the
solutions of (8).

Lemma 2.3 Assume that γ, τ ∈ R and R(t) is a function in C2(] −∞, τ ])
satisfying

R̈(t) + εṘ(t) ≥ γ, t ∈]−∞, τ ], Ṙ(τ) <
γ

ε
.

Then Ṙ(t)→ −∞ as t→ −∞.

The proof of this lemma is obtained via a straightforward integration of the
inequality d

dt
(eεtṘ(t)) ≥ γeεt.
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Lemma 2.4 Let r(t) be a solution of (8) with α 6= 0. Then

ṙ(τ) < − 4

27εα4
e4ετ

for some τ ∈ R.

Proof. By a contradiction argument assume that the inequality

ṙ(t) ≥ − 4

27εα4
e4εt

holds for every t ∈ R. Then the function

f(t) = r(t) +
1

27ε2α4
e4εt

should be increasing and the limit r(−∞) should exist and could not be
+∞. Note that r(−∞) = f(−∞) ≤ f(t) for each t ∈ R. In consequence the
function b(t) defined by (11) would satisfy b(t) → +∞ as t → −∞. From
r̈ + εṙ = b(t) we could deduce the existence of a number τ̂ ∈ R such that

r̈(t) + εṙ(t) ≥ 1 if t ∈]−∞, τ̂ ].

As another consequence of the existence of the finite limit r(−∞) we could
select a sequence tn → −∞ with ṙ(tn)→ 0. In particular there should exist
n large enough so that tn < τ̂ and ṙ(tn) < 1

ε
. If we apply Lemma 2.3 with

R = r, γ = 1 and τ = tn we conclude that ṙ(−∞) = −∞. We have arrived at
the searched contradiction because r(−∞) < +∞ and ṙ(−∞) = −∞ cannot
hold simultaneously.

2

Proof of Proposition 2.2. The limit as t → +∞ is a consequence of the
results in Corne & Rouche (1973) together with Proposition 2.1. The limits
as t→ −∞ are a consequence of

lim
t→−∞

ṙ(t) = −∞. (15)

Note that |z(t)| = r(t) and |ż(t)| ≥ |ṙ(t)|. To prove (15) we fix the number
τ given by Lemma 2.4. Then, taking also into account (10), we apply again
Lemma 2.3 with R = r and γ = − 4

27α4 e
4ετ .

2

Remark 2.1 An obvious consequence of Proposition 2.2 which will be
useful in what follows is that there exists a sequence tn → +∞ such that
ṙ(tn) ≤ 0 and ṙ(tn)→ 0 as n→ +∞.
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To prove our next result, namely the unboundedness of the angular ve-
locity of non rectilinear motions, we introduce the regularization of (3) pre-
sented in Diacu (1999) to study the Kepler problem for a generalized drag
force. This framework will be also used in the next section to give a fairly
complete description of the linear motions.

As in Diacu (1999), we set u = ṙ, φ = θ̇ and use the rescaling of time
dτ = r−2dt. Then, taking into account system (7), we have that (3) is
equivalent to the following first order system in the new time τ :

r′ = ur2

u′ = −εur2 + r3φ2 − 1
φ′ = −2uφr − εφr2.

(16)

Since by the previous proposition we know that 0 < r(t) ≤ M, t ≥ 0 for a
suitable M, it is τ =

∫ t
0

1
r2(σ)

dσ ≥ t
M2 , so that τ → +∞ when t→ +∞.

Proposition 2.5 There exists a sequence tn → +∞ such that

|θ̇(tn)| → +∞, n→ +∞.

Proof. By contradiction, assume that there exists a constant M > 0 such
that

|φ(τ)| ≤M, τ ∈ [0,+∞[. (17)

Summing up the first and second equations of system (16) and integrating
we get

u(τ) + εr(τ) = u(0) + εr(0) +

∫ τ

0

r3(σ)φ2(σ) dσ − τ. (18)

By Proposition 2.2 and subsequent remark, we can consider a sequence τn →
+∞ such that rn := r(τn)→ 0 and un := u(τn)→ 0 as n→ +∞. Moreover,
since r(τ)→ 0 as τ → +∞ and (17) holds, we can find τ̄ > 0 such that

r3(σ)φ2(σ) ≤ 1

2
, σ ∈ [τ̄ ,+∞[.

Then, by (18) for any τn > τ̄ we obtain

un + εrn ≤ u(0) + εr(0) +

∫ τ̄

0

r3(σ)φ2(σ) dσ − τn + τ̄

2
.

Taking the limit as n → ∞ we get a contradiction, since the first member
of the inequality tends to zero and the second to −∞. Therefore, |φ(τ)| is
unbounded in [0,+∞[ and the same is true for θ̇(t).

2
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Notice that, since the plane φ = 0 is invariant, if φ(0) = θ̇(0) 6= 0, then
the sign of θ̇(t) is constant, so that, in the statement above, |θ̇(tn)| = θ̇(tn)
if θ̇(0) > 0 and |θ̇(tn)| = −θ̇(tn) if θ̇(0) < 0.

Remark 2.2 System (16) is of polynomial type and so it is well defined
on the whole space R3. It has no equilibria and there are two invariant
planes, namely the plane r = 0 (which is the collision manifold) and the
plane φ = 0 (which corresponds to rectilinear motions), see Figure 1 below.
The study of the near collisions solutions presented in Diacu (1999) for the
generalized Stokes drag takes advantage of the presence of the equilibrium
(r, u, φ) = (0, 1, 0) on the collision manifold r = 0 for the regularized problem.
In the case of the linear drag, there are no equilibria on the collision manifold.
Moreover, although we know by Proposition 2.2 and Remark 2.1 that r(t)→
0 as t → +∞, and that u(τn) = ṙ(τn) → 0− for a suitable τn → +∞, by
Proposition 2.5 we get that the non rectilinear orbits eventually escape from
any compact set of the (r, u, φ) phase space.

u

r

φ

Figure 1: Flow in the invariant planes of system (16)

Many asymptotic behaviours of the non rectilinear orbits are compatible
with these facts, and the configuration of the flow on the invariant manifolds
r = 0 and φ = 0, together with the continuous dependence of the solu-
tions on the initial conditions, are not sufficient to choose between different
alternatives.
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3 Study of the linear motions

In this section we use the framework provided by the regularized system (16)
to study the rectilinear motions of (3).

Setting α = 0 in (8) we see that the linear motions of the Kepler equation
with linear drag are governed by the scalar equation

r̈ + εṙ = − 1

r2
(19)

where r > 0. The energy function along the rectilinear motions is given by

E(r, ṙ) =
ṙ2

2
− 1

r
(20)

and along these solutions it is

Ė(t) = −εṙ2(t). (21)

We recall that a solution of (19) is said an ejection-collision solution if it is
defined in a bounded interval ]t0, t1[ and satisfies

lim
t→t+0

r(t) = lim
t→t−1

r(t) = 0, lim
t→t+0

ṙ(t) = +∞, lim
t→t−1

ṙ(t) = −∞.

and is said a capture-collision solution if it is defined on an interval of the
form ]−∞, t1[ with t1 ∈ R and satisfies

lim
t→−∞

r(t) = +∞, lim
t→t−1

r(t) = 0, lim
t→t−1

ṙ(t) = −∞.

In the setting of (16), the linear motions correspond to the motions on
the invariant plane φ = 0, which are governed by the system{

r′ = ur2

u′ = −εur2 − 1.
(22)

In what follows we will focus on system (22) and give a fairly complete
description of its solutions and of the behaviour of the corresponding energy.

Proposition 3.1 The solutions of (19) are either ejection-collision or capture-
collision solutions, and ejections and collisions occur with finite energy.

Moreover, in the phase-plane (r, ṙ) associated to (19) there exists a capture-
collision orbit γ whose energy tends to zero as t→ −∞ and which separates
the ejection-collision orbits from the remaining capture-collision orbits, whose
energy tend to +∞ as t→ −∞.
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Proof. We will first determine the asymptotic behaviour of the solutions
of (22) in their domain ]τ0, τ1[, showing as well that τ1 = +∞ and that,
depending on the initial condition, τ0 may be finite or not. Then, we will
study the behaviour of the energy on the solutions. Finally, in order to
classify properly the solutions of (19) as ejection-collision or capture-collision
solutions, we will go back to the original time t to address the finiteness or
not of the endpoints t0 and t1 of the domain of the solutions of (19).

The proof is divided in several steps. The more evident facts we use are
just stated. From now on we assume τ0 < 0 < τ1.

i) The equality
H := u+ εr + τ = constant (23)

holds along the solutions of (22), that is H is a constant of motion.

This follows immediately summing and integrating the two equations of sys-
tem (22).

ii) The line r = 0 is an orbit so that Ω := {(r, u) : r > 0} is invariant.

In what follows we will work in Ω.

iii) The isoclines r′ = 0 and u′ = 0 determine the regions (see Figure 2)

A0 = {(r, u) ∈ Ω : u ≥ 0}, A1 = {(r, u) ∈ Ω : 0 > u > − 1

εr2
},

A2 = {(r, u) ∈ Ω : u ≤ − 1

εr2
}.

The set A1 is positively invariant while A0 and A2 are negatively in-
variant.

iv) all the orbits eventually enter into A1.

By contradiction, assume that an orbit remains in A0 or A2. If the orbit
remains in A0, then u(τ) ≥ 0 if τ ∈ J =]τ0, τ1[. Then, r′ ≥ 0 and u′ < 0 for
every τ ∈ J. In particular 0 ≤ u(τ) ≤ u(0) if τ ∈ [0, τ1[. From (23) it follows
that

εr(τ) = u(0) + εr(0)− u(τ)− τ ≤ u(0) + εr(0).

We conclude that the positive orbit remains in the rectangle [0, u(0)
ε

+ r(0)]×
[0, u(0)]. This implies that τ1 = +∞ and the limits r(+∞), u(+∞) exist and
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0A

1A

2A

u

r

Figure 2: Regions defined by the isoclines r′ = 0 and u′ = 0 of system (22)

are finite. This is absurd since (r(+∞), u(+∞)) should be an equilibrium.
If the orbit remains in A2 then

u(τ) ≤ − 1

εr2(τ)
, τ ∈]τ0, τ1[.

This case is easier. From u′ > 0, r′ < 0 we deduce that the positive orbit
should remain in [0, r(0)] × [u(0), 0] and converge to an equilibrium, and
again we arrive at a contradiction, ending the proof that all the orbits enter
eventually in A1.

v) for every orbit, it is τ1 = +∞ and, moreover, r(+∞) = 0, u(+∞) =
−∞.

It is not restrictive to assume (r(τ), u(τ)) ∈ A1 if τ ∈ [0, τ1[. Hence r′ <
0, u′ < 0 and, in particular, 0 < r(τ) ≤ r(0), τ ∈ [0, τ1[. Next we prove that
τ1 = +∞. Otherwise r(τ) and

u(τ) = u(0) + εr(0)− εr(τ)− τ

would remain bounded for τ ∈ [0, τ1[ and the solution could be extended to
a larger interval. Once we know that τ1 = +∞ we deduce that the limits
r(+∞) ∈ [0, r(0)[ and u(+∞) ∈ [−∞, u(0)[ exist. Then

lim
τ→+∞

[u(τ) + τ ] = u(0) + εr(0)− εr(+∞)

14



is finite and it must be u(+∞) = −∞. The existence of finite r(+∞) implies
that, for some sequence τn → +∞, r′(τn) = u(τn)r2(τn) → 0 as n → +∞.
As a consequence r(τn)→ 0 and therefore r(+∞) = 0.

The behaviour of the solutions in the past and the finiteness or not of τ0

depend on the initial condition.
More precisely, we have the following three cases:

vi)-1) if (r(0), u(0)) ∈ A0, then τ0 = −∞, and r(−∞) = 0, u(−∞) = +∞.

We know that r′ > 0 and u′ < 0 if τ ∈]τ0, 0[, and so 0 < r(τ) < r(0). By
using (23) and repeating a previous argument we deduce that τ0 = −∞.
Since r(−∞) is finite we deduce from (23) that u(−∞) = +∞. Finally, an
argument completely analogous to the the last one in v) shows that r(−∞) =
0.

vi)-2) if (r(0), u(0)) ∈ A2, then τ0 > −∞, and r(τ+
0 ) = +∞, u(τ+

0 ) = −∞.

We know that u′ > 0, r′ < 0 on ]τ0, 0[. Let us prove that τ0 > −∞ by a
contradiction argument. If τ0 = −∞, then r(−∞) ∈]r(0),+∞], u(−∞) ∈
[−∞, u(0)[ and from (23) we deduce that r(−∞) = +∞. From the first
equation of system (22) we get∫ 0

τ

u(σ) dσ =
1

r(τ)
− 1

r(0)

implying that u(τ) is integrable in ]−∞, 0]. This is absurd because u(τ) ≤
u(0) < 0. Once we know that τ0 > −∞, we can say that r(τ+

0 ) ∈]r(0),+∞],
u(τ+

0 ) ∈ [−∞, u(0)[ and at least one of these two numbers is not finite. Since

lim
τ→τ+0

[u(τ) + εr(τ)] = u(0) + εr(0)− τ0 ∈ R,

we deduce that none of them can be finite.

vi)-3) The remaining case: the parabolic orbit in A1.

We note that the orbits of (22) with initial conditions in A0 or in A2 do
not fill completely the phase-space Ω. In fact, since the set A1 is connected,
there exists at least one orbit remaining in A1 for all τ. For such orbits it is
r(τ)→ +∞ and u(τ)→ 0 as τ → τ0 = −∞ (the fact that τ0 = −∞ follows
immediately from (23)). To show that there is only one of such trajectories
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we consider the change of variables (r, u, τ)→ (s, u, η) where r = 1
s
, dη = dτ

s2

which transforms system (22) in the following
ds

dη
= −us2

du

dη
= −εu− s2.

(24)

Any trajectory of (22) which remains in A1 for all time τ is transformed
in a trajectory of (24) approaching (s, u) = (0, 0) as η → −∞. Note that∫ 0

−∞ r(σ)2dσ = +∞. By theorem 7.1 of chapter 2 in Zhang et al. (1992) the
origin is a saddle-node for (24). This means that, up to a homeomorphism,
the phase portrait around the origin is equivalent to the one illustrated in
the following figure:

Figure 3: Topological representation of the phase plane of system (24) around
the saddle-node

In consequence there is a unique orbit emanating from the origin. This
implies that the orbit γ of (22) which never leaves A1 is unique. This is a
separatrix between the orbits which, in the past, eventually enter A0 from
the ones that eventually enter A2. The proof in Zhang et al. (1992) is long
because it gives a complete picture of the dynamics. Actually, we only need
the uniqueness of the orbit emanating from the origin. In an appendix at the
end of the paper we have extracted from Zhang et al. (1992) the geometric
argument proving this uniqueness.

We pass now to the study of the behaviour of the energy on the solutions.
We show first that the limit of the energy as τ → +∞ is finite for all the orbits
of (22). The energy E(τ) = E(r(τ), u(τ)) satisfies E ′(τ) = −εr2(τ)u2(τ). We
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have proved that, eventually, any solution (r(τ), u(τ)) ∈ Ω of (22) enters A1

so that, without loss of generality, we may assume that r(τ) ≤ r(0), u(τ) < 0
for any τ ∈ [0,+∞[. From (23) we get

τ−εr(0)−u(0) ≤ −u(τ) = |u(τ)| = εr(τ)−εr(0)−u(0)+τ ≤ τ−u(0) (25)

and so

lim
τ→+∞

u(τ)

τ
= −1.

Then, by the first equation of (22) we obtain

1

r(τ)
− 1

r(0)
=

∫ τ

0

|u(σ)| dσ

and, after integrating the inequality (25), we deduce that

lim
τ→+∞

τ 2r(τ) = 2. (26)

It follows immediately that r2u2 behaves like 4
τ2

as τ → +∞. As a conse-
quence, E ′(τ) is integrable in [0,+∞[ so that

lim
τ→+∞

E(τ) = E(0) +

∫ +∞

0

E ′(σ) dσ ∈ R

and the energy has a finite limit.
A similar argument shows that for all orbits above γ, the ones which

eventually enter A0 in the past, it is

lim
τ→−∞

E(τ) ∈ R.

For trajectories which lie below γ, which eventually enter A2 in the past,

since r(τ+
0 ) = +∞, u(τ+

0 ) = −∞ it is E(τ+
0 ) =

u2(τ+0 )

2
− 1

r(τ+0 )
= +∞. Finally,

if (r(0), u(0)) ∈ γ from r(−∞) = +∞, u(−∞) = 0 it follows immediately
E(−∞) = 0.

To end the proof of the proposition, it remains only to study the finiteness
or not of t0 and t1, the endpoints of the maximal intervals of definition of the
solutions of (19). Consider a solution r(t) of (19) defined in ]t0, t1[ and let
]τ0, τ1[ be the domain of the corresponding solution of (22), (r(τ), u(τ)) :=
(r(T (τ)), ṙ(T (τ))) of (22). If T (τ) is the inverse function of τ(t) =

∫ t
0

1
r2(σ)

dσ,
we investigate the finiteness or not of

t0 = lim
τ→τ+0

T (τ), t1 = lim
τ→τ−1

T (τ).
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We start by showing that it is always t1 < +∞. In fact, T ′(τ) = r2(τ),
and from (26) it follows that r2(τ) is integrable in [0,+∞[, since it behaves
like 4

τ4
for large τ. We conclude that

t1 =

∫ +∞

0

T ′(σ) dσ ∈ R.

As to the time t0, we have to distinguish three cases. If (r(0), ṙ(0)) =
(r(0), u(0)) is above γ, an argument similar to the one used above shows that
t0 > −∞.

If (r(0), ṙ(0)) is lies on γ, we know that τ0 = −∞, r(τ+
0 ) = +∞ and

therefore

t0 = −
∫ 0

τ0

r2(σ) dσ = −∞.

If (r(0), ṙ(0)) is below γ we know that u(τ) < 0 for each τ ∈]τ0, 0]. After
integrating the second equation in (22) we are lead to the identity

ln

∣∣∣∣u(0)

u(τ)

∣∣∣∣ =

∫ 0

τ

u′(σ)

u(σ)
dσ = −ε

∫ 0

τ

r(σ)2dσ −
∫ 0

τ

dσ

u(σ)
.

From τ0 > −∞ and u(τ+
0 ) = −∞ we deduce that the integral

∫ 0

τ0

dσ
u(σ)

is finite
and

t0 = −
∫ 0

τ0

r2(σ) dσ = −∞.

Our proof is concluded.
2

A consequence of Proposition 3.1 is that the behaviour of solutions at
collisions or ejections is the same as in the conservative case. Indeed, given
a solution r(t) of (19) defined on a maximal interval I having t∗ as a finite
end point, the expansions below hold

r(t) = (
9

2
)1/3(t− t∗)2/3 +O((t− t∗)4/3) (27)

ṙ(t) = ±2

3
(
9

2
)1/3(t− t∗)−1/3 +O((t− t∗)1/3) (28)

as t→ t∗, t ∈ I. The sign + corresponds to ejections and − is for collisions.
These estimates were obtained by Sperling in Sperling (1969/1970) in the

context of a general perturbed Kepler problem of the type

z̈ = − z

|z|3
+ P (t, z, ż).
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It was assumed in Sperling (1969/1970) that the perturbation P is bounded
and this is not true in our case, since we have P = −εż. Fortunately we
know that the energy is finite at t∗ and this will be sufficient to justify the
estimates. From Ė = −εṙ2 we deduce that the function

K(t) =
1

2

∫ t

t̂

ṙ(τ)2dτ

is finite and continuous at t = t∗. Here t̂ is any fixed instant lying on the
interval I. From the previous formulas we deduce that

1

2
ṙ(t)2 − 1

r(t)
= E(t̂)− 2εK(t)

and, since ṙ does not change sign in a neighborhood of t∗, we deduce that
r(t) satisfies one of the two differential equations

ṙ = ±
√
b(t) +

2

r
,

where b(t) is continuous on I ∪ {t∗}. Now it is possible to repeat the proof
in Sperling (1969/1970) (see also Ortega (2011)) to verify that (27) and (28)
hold in our case.

4 Asymptotic values of the energy through

the Levi-Civita regularization

The Levi-Civita transformation is defined by the change of variables

z = w2, ds =
dt

|z|
, z ∈ C \ {0}. (29)

We recall that the map z = w2 is not a diffeomorphism of C \ {0} and
so this change is not one-to-one. The crucial property of z = w2 is that
it is a covering map and every solution z = reiθ of (3) produces two lifts

w1 = r1/2ei
θ
2 , w2 = r1/2ei(

θ
2

+π).
Some computations show that equation (3) is transformed in the following

equation

w′′ − |w
′|2

w̄
+ ε|w|2w′ + w

2|w|2
= 0 (30)
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where the derivatives are taken with respect to time s. In order to remove
the singularity from the equation, we express the energy and its derivative
in terms of the new variables, getting

E = 2
|w′|2

|w|2
− 1

|w|2
, E ′ = −2ε(E|w|2 + 1). (31)

Substituting the first equality above in (30) we arrive to the following system
w′ = v
v′ = Ew

2
− ε|w|2v

E ′ = −2ε(E|w|2 + 1)
(32)

which defines a polynomial vector field in R5. Not all orbits of this system are
in correspondence with orbits of the original Kepler problem. As an example
consider the solution of (32) given by w = v = 0, E(s) = −2εs, whose orbit
is a line in R5 that is unrelated to (3). From the formula for the energy (31)
we deduce that physically meaningful solutions should satisfy

E|w|2 + 1− 2|w′|2 = 0. (33)

This implies that the system (32) has to be considered on the manifold M
defined by this equation.2 Note that if we define the function

J (E,w,w′) := E|w|2 + 1− 2|w′|2

then the derivative along the vector field satisfies

dJ
ds

= −2ε|w|2J .

In particular M = J −1(0) is invariant under the flow. To establish the
precise correspondence between orbits of (3) and (32)-(33) we start with a
solution z(t) = r(t)eiθ(t) of (3) defined on a maximal interval I with 0 ∈ I.
Define Sundman’s integral

S(t) =

∫ t

0

dτ

r(τ)

and consider the energy along the solution

E(t) =
1

2
|ż(t)|2 − 1

|z(t)|
.

2It can be proved thatM is a connected manifold of dimension four that is not compact
and has the same type of homotopy of a 3-sphere S3.
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The function S is an increasing diffeomorphism between I and some open
interval J . The inverse function T = T (s), s ∈ J , allows to define the solution
of (32)-(33),

w(s) = r(T (s))1/2ei
θ(T (s))

2 , v = w′, E(s) = E(T (s)).

When z(t) has non-zero angular momentum we know that I =] −∞,+∞[
and r(t)→ 0 as t→ +∞. From here we deduce that S(t)→ +∞ as t→ +∞
and so J =]s0,+∞[ with −∞ ≤ s0 < 0. We observe that the interval J is
maximal for the solution of (32) because |w(s)| → ∞ as s → s+

0 . At this
point we are ready to describe the asymptotic behaviour of the energy.

Proposition 4.1 If z(t) is a solution of (3) with non zero angular momen-
tum, then

lim
t→±∞

E(t) = ∓∞.

Proof. Let us prove first that E(t) → +∞ as t → −∞. From (15) of
Proposition 2.2 we know that ṙ(t)→ −∞ as t→ −∞. Hence we can find a
time t∗ such that |ż(t)| ≥ |ṙ(t)| ≥ 1 if t ≤ t∗. In consequence

E(t) = E(t∗) + ε

∫ t∗

t

|ż(τ)|2dτ ≥ E(t∗) + ε(t∗ − t)→ +∞ as t→ −∞.

We use Levi-Civita regularization to analyze the behaviour at +∞. Let
E(s) = E(T (s)). Assume by contradiction that lims→+∞E(s) = E0 ∈ R
(recall that this limit exists because the energy is decreasing.) Since w(s)→ 0
as s → +∞, from (32) we have E ′(s) ≤ −ε for sufficiently large s, and we
deduce E(s)→ −∞ as s→ +∞, a contradiction. Going back to the variable
t, we get our result.

2

Let us return to the discussion on how to go from (3) to (32)-(33), now
for rectilinear solutions. If the angular momentum vanishes and the solution
z(t) = r(t) has a maximal interval I =]t0, t1[, the corresponding interval
J =]s0, s1[ will not be maximal for (32). The reason is that a collision solution
of (3) can be produced by the rule r(t+1 ) = r(t−1 ) = 0, E(t+1 ) = E(t−1 ) (see
Ortega (2011)) and this generalized solution will lead to a classical solution
of (32)-(33). Note that the number s1 is finite as a consequence of the
expansion (27). The same can be said about s0 if t0 > −∞. At this point it
may be interesting to observe that the transformed of a linear motion must
satisfy very particular initial conditions at collisions. From r(t1) = 0 and the
identity (33) we obtain

w(s1) = 0, v(s1) = − 1√
2
, E(s1) = E1 ∈ R.
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The same conclusion is obtained in the past if t0 > −∞, now v(s0) = 1√
2
.

The proof of our last result will suggest how to go (locally in time) from
solutions of (32)-(33) to solutions of (3).

Proposition 4.2 For any time t1 ∈ R and any energy value E1 ∈ R, there
exists a solution u(t) of (19) defined in a maximal interval of the form I =
]t0, t1[ for which

lim
t→t−1

E(r(t), ṙ(t)) = E1. (34)

An analogous statement holds considering the initial time t0 of an ejection
trajectory and any fixed energy value E0 ∈ R.

Proof. Fix any time t1 ∈ R and any energy value E1 ∈ R, and consider the
solution s→ (w(s), v(s), E(s)) of the system (32) with initial conditions

w(0) = 0, v(0) = − 1√
2
, E(0) = E1.

The solution of the previous Cauchy problem is unique and well defined in a
neighborhood of s = 0. Moreover, there exists a left neighborhood of s = 0,
say Iδ := [−δ, 0] for a suitable positive δ, such that w(s) > 0 in Iδ. Setting

T (s) = t1 −
∫ 0

s
w2(σ) dσ, we see that the restriction to Iδ of T (s) admits an

inverse function T−1 : [t1 − η, t1] → Iδ, s = S(t), which is continuous on
Jη := [t1 − η, t1] and C2 on Jη \ {t1}. Then, on Jη \ {t1} we can define the
C2 function r(t) := w2(S(t)). A computation shows that r(t) satisfies the
equation

r̈ + εṙ =
1

r2
J − 1

r2
. (35)

Since the initial conditions lie on M, the function J vanishes along the
solution of (32) and we conclude that r(t) satisfies (19). By the definition of
r(t), it is clear that r(t) > 0 in Jη and that limt→t−1

r(t) = 0, and since by
Proposition 3.1 all the linear motions are of collision type it follows also that
limt→t−1

ṙ(t) = −∞. Moreover, from J ≡ 0 we obtain

E(S(t)) = 2
(w′)2(S(t))

w2(S(t))
− 1

w2(S(t))
=
ṙ2(t)

2
− 1

r(t)
= E(r(t), ṙ(t))→ E1

as t→ t−1 , and also (34) is proved. The statement about the ejection trajec-
tories can be proved adapting in a straightforward manner the above proof.

2
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5 Conclusions

In this paper we have studied the dynamics of a Kepler problem with linear
drag. Our results about the solutions z(t) of this problem can be classified
in two categories. We summarize them below. Recall that z = reiθ and
E = 1

2
|ż|2 − 1

|z| .

1. Non-vanishing angular momentum (θ̇ 6= 0)

• There are no collisions

• limt→−∞ |z(t)| =∞, limt→+∞ z(t) = 0

• limt→±∞E(t) = ∓∞

• lim inft→∞ |ṙ(t)| = 0, lim supt→∞ |θ̇(t)| =∞.

It would be interesting to obtain a more precise description of the asymptotic
behaviour of the velocity ż(t) but this seems a delicate question.

2. Collinear solutions (θ̇ = 0, z = r)

We have shown that the linear orbits are of one of the following two types

• ejection-collision, −∞ < t0 < t1 < +∞,

lim
t→t+0

r(t) = lim
t→t−1

r(t) = 0, lim
t→t+0

ṙ(t) = +∞, lim
t→t−1

ṙ(t) = −∞

• capture-collision, −∞ = t0 < t1 < +∞,

lim
t→−∞

r(t) = +∞, lim
t→t−1

r(t) = 0, lim
t→t−1

ṙ(t) = −∞.

In both cases,

• the energy has a finite limit at collisions.

Moreover,

• the energy has a finite limit at ejections. Ejection and collisions may
occur with any (finite) value of the energy.

At a capture the behaviour of velocity/energy is more delicate. There exists a
unique capture-collision orbit acting as a separatrix between ejection-collision
and capture-collision solutions. This orbit is important because it can be seen
as an analogue of parabolic orbits in the dissipative world. It satisfies
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• limt→−∞E(t) = 0 (separatrix).

For the remaining capture-collision orbits

• limt→−∞E(t) = +∞.

Finally we proved that the behaviour at collisions is the same as in the
conservative case

• r(t) ∼ (9
2
)1/3(t− t∗)2/3 as t→ t∗, where t∗ = t1 or t∗ = t0 > −∞.

A fundamental tool to study the asymptotic behaviour of the energy on
the motions of equation (3) has been the Levi-Civita regularization, adapted
to the dissipative framework. Perhaps the regularized system has some in-
dependent interest since, it could be an useful tool in the qualitative study
of the dynamics of more complex systems in dissipative celestial mechanics.

Overall, we expect that the methods developed in this paper will give us
some hints for the study of the general non-integrable case, allowing us to give
some rigorous results about the topology of the phase space for the dissipative
restricted three body problem, starting maybe by considering more general
drags for the Kepler problem.

6 Appendix: uniqueness of the parabolic or-

bit

We consider the system (24) and prove that there exists at most one non-
trivial orbit γ whose α-limit is the origin. The geometry of the vector field
X associated to the system is sketched below in Figure 4,
and the qualitative analysis of the flow shows that for any such orbit γ there
exists a sequence of instants ηn → −∞ such that the orbit lies on the region
R at these instants. Since R is positively invariant the whole orbit γ must
be contained in R. The divergence of the vector field X is negative on a
small disk around the origin, namely

div X = −2su− ε < 0 if u2 + s2 < ε.

Let us assume by contradiction that γ1 and γ2 are two orbits whose α-limit
set is the origin. We can select a small disk D such that both orbits get out
of it (see Figure 5). Let pi, i = 1, 2, be the first point of γi lying on ∂D.
Since the two orbits are contained in the region R we know that the points
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u

s

R 

Figure 4: Vector field associated to system (24)

p1 and p2 are in the fourth quadrant. Assume for instance that p2 is below
p1, then we draw a vertical segment emanating from p2 and touching γ1 only
at the end point q. Consider the Jordan curve Γ composed by the segment
σ from q to p2 and the arcs α1 = 0̂q contained in γ1 and α2 = 0̂p2 contained
in γ2. The bounded domain determined by Γ will be called Ω.

D∂

0

1pΩ
q

2p

C

V

C

V

C

V

Figure 5: Construction used to prove the uniqueness of the parabolic orbit
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The outward normal unit vector n is the horizontal vector (1, 0) in σ and
it is perpendicular to the vector field in α1 ∪ α2. Then

〈X,n〉 = −us2 > 0 on σ and 〈X,n〉 = 0 on α1 ∪ α2.

The divergence theorem implies that
∫ ∫

Ω
div X =

∫
σ
〈X,n〉, and we have a

contradiction because these integrals have opposite signs. 2
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