
Global bifurcation of solutions of the mean curvature
spacelike equation in certain
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Universidad de Granada, 18071 Granada, Spain

E-mail: aromero@ugr.es

‡ Departamento de Matemática Aplicada,
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1 Introduction and main results

Let I ⊆ R be an open interval endowed with the (negative definite) metric −dt2. Denote by
M the (N + 1)-dimensional product manifold I × RN with N ≥ 1 endowed the Lorentzian
metric

g = −dt2 + f 2(t)dx2, (1.1)

where f ∈ C∞(I), f > 0, is called the scale factor or warping function. Clearly, M is a
Lorentzian warped product, in the sense of [21], with base (I,−dt2), fiber

(
RN , dx2

)
and

warping function f . This type of spacetimes plays a central role in General Relativity. For
dimM = 4, t may be interpreted as the relative time of a family of privileged observers, the
so-called co-moving observers, and for them the quantity f(t) is the radius of their spatial
universe at time t. Then, the positive (resp. negative) sign of f ′(t) indicates that these
observers perceive expansion (resp. contraction) at a given time t. Moreover, for warping
functions close to 1, the corresponding spacetimeM may be thought as a deformation of the
Lorentz-Minkowski spacetime, so these spacetimes are good candidates to explore stability
of physical properties expressed for a empty universe in terms of the Lorentz-Minkowski
spacetime. In this paper, we will refer M as a (flat fiber) Friedmann-Lemâıtre-Robertson-
Walker (FLRW) spacetime. More generally, if the fiber ofM is changed to an N -dimensional
Riemannian manifold of constant sectional curvature we arrive to the notion of (general)
FLRW spacetime.

In the four dimensional case, FLRW spacetimes have been useful to obtain exact so-
lutions of Einstein’s field equations of General Relativity because they describe spatially
homogeneous and isotropic (expanding or contracting) universes. These geometric proper-
ties are in complete agreement with the experience and, therefore, these models have been
useful to describe the large scale of the universe from the point of view of the relativistic
cosmology. The pioneering and important results obtained by the use of FLRW models were
first derived by Friedmann in 1922 and 1924 [14, 15]. In 1927, Lemâıtre [18] arrived inde-
pendently at similar results as those of Friedmann. Robertson and Walker explored later
the problem further during the 1930s [25, 26, 27, 30]. In particular, Robertson rigorously
proved that a spatially homogeneous and isotropic spacetime must be locally isometric to
a FLRW spacetime in 1935. For more details of FLRW spacetimes, see [21, Chapter 12] or
the monograph of Choquet-Bruhat [9] and the references therein.

Given f ∈ C∞(I), f > 0, for each u ∈ C∞(Ω), where Ω is a domain of RN , such that
u(Ω) ⊂ I we can consider its graph M =

{
(u(x), x) : x ∈ Ω

}
in the FLRW spacetime M.

The graph inherits a metric from (1.1), given by

−du2 + f 2(u)dx2, (1.2)

on Ω, which is positive definite if and only if u satisfies

|∇u| < f(u), (1.3)

everywhere on Ω, where ∇u is the gradient of u in RN and |∇u| its lenght. When the metric
(1.2) is Riemannian, the graph M is called spacelike. In this case, the pointing future unitary
normal vector field on M is given by

1

f(u)
√
f(u)2− | ∇u |2

(
f 2(u),∇u

)
, (1.4)
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and the corresponding mean curvature function H satisfies

div

(
∇u

f(u)
√
f 2(u)− |∇u|2

)
+

f ′(u)√
f 2(u)− |∇u|2

(
N +

|∇u|2

f 2(u)

)
= NH, (1.5)

where div denotes the divergence operator of RN and f ′(u) := f ′ ◦ u. Equation (1.5) and
(1.3) is called the mean curvature spacelike equation in the FLRW spacetimeM. Specially
relevant is the case when H is constant, then it is called the constant mean curvature
spacelike equation (the maximal graph equation if H = 0).

In the related literature, most of the efforts have been directed to the case f ≡ 1
(Minkowsky spacetime). When H ≡ 0 and Ω = RN , Calabi [7] proved that equation
(1.5) under (1.3) has only linear entire solutions for N ≤ 4. Further, Cheng and Yau
[8] extended the result for all N . This striking result contrasts with the answer to the
classical Bernstein conjecture for the minimal graph equation which states that the only
entire solutions of the minimal graph equation in RN+1 are linear only for N ≤ 7, [22].
When f ≡ 1, Ω = RN and H is a positive constant, some celebrated results for equation
(1.5) were obtained by Treibergs [29]. If f ≡ 1, Ω is a bounded C2,α domain with some
α > 0 and H = H(u, x) ∈ C0,α (R× Ω) is bounded, Bartnik and Simon [2] proved that
equation (1.5) with u = ϕ on ∂Ω has a strictly spacelike solution u ∈ C2,α

(
Ω
)
, where

ϕ is bounded and has an extension ϕ ∈ C2,α
(
Ω
)

satisfying |∇ϕ| ≤ 1 − θ in Ω for some
θ > 0. More recently, Bereanu, Jebelean and Torres established in [4, 5] some nonexistence,
existence and multiplicity results for positive radial solutions of equation (1.5) with f ≡ 1,
Ω = BR = BR(0) :=

{
x ∈ RN : |x| < R

}
with R > 0, u = 0 on ∂Ω. Recently, when f ≡ 1,

the first author [10] studied the nonexistence, existence and multiplicity of positive radial
solutions of equation (1.5) on the unit ball with u = 0 on ∂BR and NH = −λf(s, x) via
bifurcation method [23, Theorem 1.3], which were extended to the general domain in [12].

Rather less attention has been paid to the case when f is not a constant. Only in the
recent years, the authors of [3, 16, 20] have studied the existence of radially symmetric space-
like graphs by combining Leray-Schauder degree or the classical Schauder fixed Theorem
with approximation processes.

To study equation (1.5), we follow the method developed in [3, 16, 20], namely, we intro-
duce a conformal change of variables that lead to an equivalent prescribed mean curvature
problem in the Lorentz-Minkowski spacetime (see (1.10)). Define the “conformal” time

ϕ(t) =

∫ t

0

dξ

f(ξ)
, (1.6)

for all t ∈ I. Clearly, ϕ is strictly increasing with ϕ(0) = 0. Therefore, it defines a
diffeomorphism ϕ : I → J , where J is an open interval of R with 0 ∈ J . Now, we can define
a map F : I ×RN −→ J ×RN by F (t, x) = (ϕ(t), x), which is clearly a diffeomorphism and
satisfies F ∗ (ḡ) = g, where g is the Lorentzian metric given by (1.1) and

ḡ = f 2
(
ϕ−1(s)

) (
−ds2 + dx2

)
, (1.7)

where ϕ−1 is the inverse function of ϕ. By a simple computation we have

ϕ−1(s) =

∫ s

0

f
(
ϕ−1(ξ)

)
dξ. (1.8)
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In other words, F is an isometry from
(
I × RN , g

)
onto

(
J × RN , ḡ

)
. If as previously M

denotes the graph defined by u then F (M) is the graph in J × RN of the function v given
by

v = ϕ(u). (1.9)

From the previous formula we get |∇u| = f(u) |∇v|, and therefore, it follows that M is
spacelike if and only if F (M) is spacelike, and in this case we have |∇v| < 1. Moreover, it
is not difficult to show that

div

(
∇u

f(u)
√
f 2(u)− |∇u|2

)
=

1

f(u)
div

(
∇v√

1− |∇v|2

)
− f ′(u) |∇v|2

f(u)
√

1− |∇v|2
.

Therefore, u ∈ C2 (BR), u (BR) ⊂ I, where BR be the standard open ball in RN which is
centered at the origin and has radius R, under the constraint |∇u| < f(u), is a solution of
equation (1.5) if and only if v, v (BR) ⊂ J , under the constraint |∇v| < 1, is a solution of
the equation

div

(
∇v√

1− |∇v|2

)
+
Nf ′ (ϕ−1(v))√

1− |∇v|2
= Nf

(
ϕ−1(v)

)
H
(
ϕ−1(v), x

)
. (1.10)

The form of the previous equation suggests to consider the function v as defining a spacelike
graph in the product spacetime

(
J × RN ,−ds2 + dx2

)
, which is just an open subset of the

(N + 1)-dimensional Lorentz-Minkowski spacetime, with mean curvature

− f ′ (ϕ−1(v))√
1− |∇v|2

+ f
(
ϕ−1(v)

)
H
(
ϕ−1(v), x

)
.

We consider the following 0-Dirichlet boundary value problem −div

(
∇v√

1− |∇v|2

)
= λ

(
Nf ′ (ϕ−1(v))√

1− |∇v|2
−Nf (ϕ−1(v))H (ϕ−1(v), x)

)
in BR,

v = 0 on ∂BR,
(1.11)

where λ is a real parameter, which can represent in some sense the strength of warping
function, H : I × BR → R is a continuous function and is radially symmetric with respect
to x.

The aim of this paper is to investigate the existence of positive radially symmetric
spacelike solutions for problem (1.11) by means of the global bifurcation method.

Passing to polar coordinates, the problem (1.11) is reduced to the following ODE with
mixed boundary conditions −

(
rN−1φ (v′)

)′
= λNrN−1

(
f ′(ϕ−1(v))√

1−v′2 − f (ϕ−1(v))H (ϕ−1(v), r)

)
, r ∈ (0, R),

v′(0) = v(R) = 0,
(1.12)

where r = |x|, φ (s) = s/
√

1− s2. A solution v of problem (1.12) is understood in the
classical sense, i.e., it belongs to C1[0, R] ∩ C2(0, R) such that problem (1.12) is satisfied.

Since the graph associated to v is spacelike, we deduce that ‖v‖∞ < R. So, the image
of nonnegative v lies in [0, R]. Hence, from now on, we always assume that [0, R] ⊂ ϕ(I),
which is equivalent to

If (R) :=

[
0,

∫ R

0

f
(
ϕ−1(s)

)
ds

]
⊂ I.
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It follows that H is bounded.

Let λ1 be the first eigenvalue of{
−
(
rN−1u′

)′
= λrN−1u, r ∈ (0, R),

u′(0) = u(R) = 0.

Let
X =

{
v ∈ C1[0, R] : v′(0) = v(R) = 0

}
with the norm ‖v‖ := ‖v′‖∞. From the fact ‖v‖∞ ≤ ‖v′‖∞R, it is easy to verify that the
norm ‖v‖ is equivalent to the usual norm ‖v‖∞+‖v′‖∞. For any A ⊆ R×X, we use prR(A)
denoting the projection of A on R.

The following theorem is our main result.

Theorem 1.1. Assume that f ′(t) ≥ 0 for any t ∈ If (R) and f ′(t) > f(t)H(t, r) for
any r ∈ [0, R], t ∈ If (R) \ {0}, and there exist f0 ∈ [0,+∞], H0 ∈] − ∞,+∞] with
f0 +H0 ∈ [0,+∞] such that

lim
t→0+

Nf ′(t)

ϕ(t)
= f0, lim

t→0+

Nf (t)H (t, r)

ϕ(t)
= −H0

uniformly for r ∈ (0, R). Then,

(a) if f0 + H0 = 1, there is an unbounded component C of the set of positive solutions
of problem (1.12) bifurcating from (λ1, 0) such that C ⊆ (((R+ \ {0})×X) ∪ {(λ1, 0)}),
(λ1,+∞) ⊆ prR (C ), ‖vλ‖ < 1 and limλ→+∞ ‖vλ‖ = 1 for (λ, vλ) ∈ C \ {(λ1, 0)},

(b) if f0 + H0 = +∞, there is an unbounded component C of the set of positive so-
lutions of problem (1.12) emanating from (0, 0) and joining to (+∞, 1) such that C ⊆
(((R+ \ {0})×X) ∪ {(0, 0)}) and ‖vλ‖ < 1 for any (λ, vλ) ∈ C \ {(0, 0)} with λ < +∞,

(c) if f0 +H0 = 0, there is an unbounded component C of the set of positive solutions of
problem (1.12) in R+×X which joins (+∞, 1) to (+∞, 0) and ‖vλ‖ < 1 for any (λ, vλ) ∈ C
with λ < +∞.

Following [24], we add the point ∞ to our space R × X so that (+∞, 1) and (+∞, 0)
are elements of C . Figure 1 illustrates the global bifurcation branches of Theorem 1.1. It
follows from Theorem 1.1 that problem (1.12) possesses at least one positive solution for
any λ ∈ (λ1,+∞) if f0 +H0 = 1, and has at least one positive solution for any λ ∈ (0,+∞)
if f0 + H0 = +∞, see (a) and (b) of Figure 1. Moreover, when f0 + H0 = 0, there exists
λ∗ > 0 such that problem (1.12) has at least two positive solutions for any λ ∈ (λ∗,+∞),
see (c) of Figure 1. As a further remark, let us note that a simple rescaling shows that if
0 < f0 +H0 < +∞, then there is a branch emanating from with the (λ1/ (f0 +H0) , 0) with
the same properties as in Theorem 1.1 (a).

The remainder of this paper is arranged as follows. In Section 2, we study the global
bifurcation phenomenon of an approximation problem. Section 3 is devoted to prove Theo-
rem 1.1. Finally, for the sake of completeness an Appendix is included in Section 4, where
a detailed derivation of the mean curvature spacelike equation (1.5) is given.
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2 Global bifurcation for an approximation problem

Expanding the left member of the first equation of problem (1.12), we have that

− v′′

(1− v′2)3/2
= (N − 1)

v′

r
√

1− v′2
+Nλ

(
f ′ (ϕ−1(v))√

1− v′2
− f

(
ϕ−1(v)

)
H
(
ϕ−1(v), r

))
.

Note that the above equation is singular at r = 0, which raises some essential difficulties.
To remove this singularity, we consider the following approximation problem − v′′

(1−v′2)3/2
= (N − 1) v′

(r+ε)
√

1−v′2 +Nλ

(
f ′(ϕ−1(v))√

1−v′2 − f (ϕ−1(v))H (ϕ−1(v), r)

)
,

v′(0) = v(R) = 0
(2.1)

for any given ε ∈ (0, 1].
To study the bifurcation phenomenon of problem (2.1), we consider the following auxil-

iary problem {
−
(
(r + ε)N−1φ (v′)

)′
= (r + ε)N−1g(r), r ∈ (0, R),

v′(0) = v(R) = 0
(2.2)

for any given g ∈ Y , where Y denotes the Banach space of continuous functions on [0, R]
endowed with the uniform norm ‖ · ‖∞. Define the continuous linear operator H : Y −→
C1[0, R] by

Hu(r) = (r + ε)1−N
∫ r

0

(s+ ε)N−1u(s) ds

(a) f0 + H0 = 1 (b) f0 + H0 = +∞

(c) f0 + H0 = 0

Figure 1: Bifurcation diagrams of Theorem 1.1.
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for any r ∈ [0, R].

Lemma 2.1. For each g ∈ Y , problem (2.2) has a unique solution given by

v =

∫ R

r

φ−1 ◦H(g) ds = Ψε(g)

for any r ∈ [0, R].

Proof. Integrating the first equation of problem (2.2) from 0 to r ∈ [0, R], we have that

−φ (v′) = H(g).

Note that φ : (−1, 1) → R is an increasing diffeomorphism satisfying φ(0) = 0. It follows
that

v′ = −φ−1 ◦H(g).

Integrating the last equation from R to r, in view of v(R) = 0, we arrive at

v =

∫ R

r

φ−1 ◦H(g) ds

which is the desired conclusion.

From Lemma 2.1, we can see that v is a solution of problem (2.2) if and only if v = Ψε(g).
Furthermore, we have the following compactness result.

Lemma 2.2. The operator Ψε : Y −→ B1(0) is continuous and sends bounded sets in
Y into relatively compact sets in B1(0), where B1(0) = {u ∈ X : ‖u‖ < 1}.

Proof. Noting the argument of Lemma 2.1, we have that

|φ (v′)| =
∣∣∣∣(r + ε)1−N

∫ r

0

(s+ ε)N−1g(s) ds

∣∣∣∣ ≤ R‖g‖∞ := M

for any r ∈ [0, R]. It follows that

|v′| ≤ φ−1(M) < 1,

where φ−1 denotes the inverse function of φ. So, Ψε maps Y into B1(0).
The continuity of Ψε is obvious. Similar to that of [19, Lemma 2.1], it suffices to prove

that if {gn} is a bounded subsequence in Y with ‖gn‖∞ ≤M for some positive constant M
and any n ∈ N, then vn = Ψε (gn) contains a convergent subsequence in B1(0). Clearly, one
has that {H (gn)} is uniformly bounded. For any r ∈ [0, R], by some simple calculations,
we can show that∣∣(H (gn))′ (r)

∣∣ =

∣∣∣∣gn(r)− (N − 1)

∫ r
0

(s+ ε)N−1gn(s) ds

(r + ε)N

∣∣∣∣
≤ M

(
1 + (N − 1)

∫ r
0

(s+ ε)N−1 ds

(r + ε)N

)
= M

(
1 +

(N − 1)

N

(r + ε)N − εN

(r + ε)N

)
≤ M(2N − 1)

N
.
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For any r, r′ ∈ [0, R], it follows from the above inequality and the Lagrange mean theorem
that ∣∣(H (gn))′ (r)− (H (gn))′ (r′)

∣∣ ≤ M(2N − 1)

N
|r − r′| .

So, the sequence {H (gn)} is also equi-continuous. By the Arzelà-Ascoli Theorem, there is
a subsequence of {H (gn)}, which we rename the same, which is convergent in Y . The limit
of {H (gn)} in Y is denoted by g0. Then, it is easy to verify that φ−1(s) = s/

√
1 + s2. So,

φ−1 : Y −→ Y is continuous. It follows that v′n = −φ−1 (H (gn)) converges to−φ−1 (g0) := v0

in Y . Reasoning as the first paragraph, we have that ‖v0‖∞ < 1. Therefore, we have that
vn converges to

∫ r
0
v0(s) ds := v in B1(0).

We also need consider the following auxiliary problem{
−
(
(r + ε)N−1u′

)′
= (r + ε)N−1h(r) in (0, R),

u′(0) = u(R) = 0
(2.3)

for a given h ∈ Y . Analogously to that of Lemmas 2.1 and 2.2, we can show that problem
(2.3) has a unique solution, which is denote by Φε(h), and Φε : Y −→ X is continuous,
compact and linear.

Further, we consider the following problem with a parameter{
−
(

(r + ε)N−1 v′√
1−t2v′2

)′
= (r + ε)N−1g(r), r ∈ (0, R),

v′(0) = v(R) = 0
(2.4)

for any t ∈ (0, 1] and any given g ∈ Y . Letting w = tv, problem (2.4) is equivalent to{
−
(
(r + ε)N−1φ (w′)

)′
= t(r + ε)N−1g(r), r ∈ (0, R),

w′(0) = w(R) = 0.
(2.5)

By Lemma 2.1, problem (2.5) has a unique solution w = Ψε(tg). So v = Ψε(tg)/t is the
unique solution of problem (2.4). For any g ∈ Y , define

Gε(t, g) =

{
Ψε(tg)
t

if t ∈ (0, 1],
Φε (g) if t = 0.

Then we can show that:

Lemma 2.3. Gε : [0, 1]× Y −→ X is completely continuous.

Proof. We first prove the continuity of Gε. For any gn, g ∈ Y and tn, t ∈ [0, 1] with
gn → g in Y and tn → t in [0, 1] as n→ +∞, it is sufficient to show that Gε (tn, gn) := vn →
Gε(t, g) := v in X.

If t > 0, without loss of generality, we can assume that tn > 0 for any n ∈ N. It follows
from Lemma 2.2 that vn → v in X as n→ +∞.

If t = 0 and there exists a subsequence tni
of tn such that tni

= 0, then vni
=

Gε (tni
, gni

) = Φε (gni
) → Φε (g) = v in X as i → +∞. So, next we assume that t = 0

and tn > 0 for any n ∈ N. From Lemma 2.1 we know that problem (2.5) has only trivial
solution when t = 0. By Lemma 2.2, we have that wn → 0 in X as n→ +∞.
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Note that vn satisfies{
− v′′

(1−w′2n )3/2
− (N − 1) v′

(r+ε)
√

1−w′2n
= gn(r), r ∈ (0, R),

v′(0) = v(R) = 0.

It follows that there existsN0 > 0 such that ‖vn‖C2[0,R] ≤ C for any n ≥ N0 and some positive
constant C which depends only on g and ε. So, there exists v ∈ X and a subsequence vnk

of vn such that vnk
→ v in X as k → +∞. Note that

v′′nk
= −(N − 1)

v′nk

(
1− w′2nk

)
r + ε

−
(
1− w′2nk

)3/2
gnk

(r), r ∈ (0, R).

Integrating the above equation from 0 to r ∈ (0, R), we get that

v′nk
(r) =

∫ r

0

(
−(N − 1)

v′nk

(
1− w′2nk

)
s+ ε

−
(
1− w′2nk

)3/2
gnk

(s)

)
ds.

Noting wnk
→ 0 in X as k → +∞, by the Lebesgue Dominated Convergence Theorem, we

have that

v′(r) =

∫ r

0

(
−(N − 1)

v′

s+ ε
− g(s)

)
ds.

It follows that {
−
(
(r + ε)N−1v′

)′
= (r + ε)N−1g(r), r ∈ (0, R),

v′(0) = v(R) = 0.

Hence, one has that v = Φε(g) = Gε(0, g). We claim that vn → v in X. Otherwise, there
would exist a subsequence

{
vmj

}
of {vn} in X and ε0 > 0 such that for any j ∈ N, we

have
∥∥vmj

− v
∥∥ ≥ ε0. But reasoning as above,

{
vmj

}
would contain a further subsequence

vmjl
→ v in X as l→ +∞, which contradicts

∥∥∥vmjl
− v
∥∥∥ ≥ ε0. Therefore, vn → v in X.

Next, we show the compactness of Gε. Clearly, Gε(t, ·) is compact for any fixed t ∈
[0, 1]. We claim that the continuity of Gε with respect to t at any t0 ∈ [0, 1] is uniform for
g ∈ Y . That is to say, for any ε > 0 and g ∈ Y , there exists δ = δ (ε, t0) > 0 such that
‖Gε (t, g)−Gε (t0, g)‖ < ε when |t− t0| < δ with t ∈ [0, 1]. Suppose, by contradiction, that
there exist ε0 > 0, g0 ∈ Y such that for any n ∈ N, existing tn ∈ [0, 1] with |tn − t0| < 1/n
such that

‖Gε (tn, g0)−Gε (t0, g0)‖ ≥ ε0. (2.6)

Clearly, up to a subsequence, we have tn → t0 ∈ [0, 1] as n → +∞. Letting n → +∞ in
(2.6), in view of the continuity of Gε, we have that

0 = lim
n→+∞

‖Gε (tn, g0)−Gε (t0, g0)‖ ≥ ε0,

which is a contradiction.
For any (tn, gn) ∈ [0, 1] × Y with {gn} is bounded in Y for any n ∈ N, it suffices to

show that {Gε (tn, gn)} possesses a convergent subsequence. Without loss of generality,
we assume that tn → t0 ∈ [0, 1]. We have known that {Gε (t1, gn)} has a convergent

subsequence. So, there exists a subsequence
{
g

(1)
n

}
of {gn} such that the diameter of{

Gε

(
t1, g

(1)
n

)}
less than 1. Analogously, there exists

{
g

(2)
n

}
⊆
{
g

(1)
n

}
such that the diameter
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of
{
Gε

(
t2, g

(2)
n

)}
less than 1/2. In general, there exists

{
g

(k)
n

}
⊆
{
g

(k−1)
n

}
such that the

diameter of
{
Gε

(
tk, g

(k)
n

)}
less than 1/k, k ≥ 3.

Next, we show that
{
Gε

(
tn, g

(n)
n

)}
must be convergent. We have shown that, for any

ε > 0 and g ∈ Y , there exists δ = δ (ε, t0) > 0 such that ‖Gε (t, g)−Gε (t0, g)‖ < ε/3
when |t− t0| < δ with t ∈ [0, 1]. Take N1 > 3/ε such that |tn − t0| < δ for any n > N1.
Consequently, when m > n > N1, we have that∥∥Gε

(
tm, g

(m)
m

)
−Gε

(
tn, g

(n)
n

)∥∥ <
∥∥Gε

(
tm, g

(m)
m

)
−Gε

(
t0, g

(m)
m

)∥∥
+
∥∥Gε

(
t0, g

(m)
m

)
−Gε

(
tn, g

(m)
m

)∥∥
+
∥∥Gε

(
tn, g

(m)
m

)
−Gε

(
tn, g

(n)
n

)∥∥
<

ε

3
+
ε

3
+

1

n
< ε.

It follows that
{
Gε

(
tn, g

(n)
n

)}
is the Cauchy sequence. Thus, one has thatGε

(
tn, g

(n)
n

)
→ v0

for some v0 ∈ X.

Finally, we prove that Gε

(
t
(n)
n , g

(n)
n

)
→ v0 as n→ +∞. Clearly, there exists an N2 > 0

such that |tn − t0| < δ,
∣∣∣t(n)
n − t0

∣∣∣ < δ and
∥∥∥Gε

(
tn, g

(n)
n

)
− v0

∥∥∥ < ε/3 any n > N2. Hence,

when n > N2, we obtain that∥∥Gε

(
t(n)
n , g(n)

n

)
− v0

∥∥ <
∥∥Gε

(
t(n)
n , g(n)

n

)
−Gε

(
t0, g

(n)
n

)∥∥
+
∥∥Gε

(
t0, g

(n)
n

)
−Gε

(
tn, g

(n)
n

)∥∥
+
∥∥Gε

(
tn, g

(n)
n

)
− v0

∥∥
<

ε

3
+
ε

3
+
ε

3
< ε.

Therefore, we obtain that Gε

(
t
(n)
n , g

(n)
n

)
→ v0 in X as n→ +∞.

Let λ1(ε) be the first eigenvalue of{
−
(
(r + ε)N−1v′

)′
= λ(r + ε)N−1v, r ∈ (0, R),

v′(0) = v(R) = 0.
(2.7)

It is well known that λ1(ε) is simple, isolated and the associated eigenfunctions have one
sign in [0, R) (see [17, 31]).

For any fixed λ, consider the following problem{
−
(
(r + ε)N−1φ (v′)

)′
= λ(r + ε)N−1v, r ∈ (0, R),

v′(0) = v(R) = 0.
(2.8)

Obviously, problem (2.8) is equivalent to the operator equation v = Ψε(λv) := Ψε,λ(v). By
Lemma 2.2, we see that Ψε,λ : B1(0) → B1(0) is complete continuous. Furthermore, by
Lemma 2.3, we can obtain the following topological degree jumping result.

Lemma 2.4. For any r ∈ (0, 1), one has that

deg (I −Ψε,λ,Br(0), 0) =

{
1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ)
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for some δ > 0, where Br(0) = {u ∈ X : ‖u‖ < r}.

Proof. Since λ1(ε) is isolated, there exists δ = δ(ε) > 0 such that problem (2.7) does
not have eigenvalue in (λ1(ε), λ1(ε) + δ). We claim that the Leray-Schauder degree

deg (I −Gε(t, λ·),Br(0), 0)

is well defined for any λ ∈ (0, λ1(ε) + δ) \ {λ1(ε)} and t ∈ [0, 1]. It is clear for t = 0. So, in
view of Lemma 2.3, it is sufficient to show that v = Gε(t, λv) has no solution with ‖v‖ = r
for r sufficiently small and any t ∈ (0, 1]. Otherwise, there exists a sequence {vn} such that
vn = Ψε,λ (tvn) /t and ‖vn‖ → 0 as n → +∞. Letting w̃n = vn/ ‖vn‖, one has that w̃n
satisfies {

− w̃′′n
(1−w′2n )3/2

− (N − 1) w̃′n

(r+ε)
√

1−w′2n
= λw̃n, r ∈ (0, R),

w̃′n(0) = w̃n(R) = 0.

Similar to Lemma 2.3, we can show that, for some convenient subsequence, w̃n → w̃ as
n → +∞ and w̃ verifies problem (2.7) with ‖w̃‖ = 1. This implies that λ is an eigenvalue
of problem (2.7), a contradiction.

Now, from the invariance of the degree under homotopies, we obtain that

deg (I −Ψε,λ,Br(0), 0) = deg (I −Gε(1, λ·),Br(0), 0) = deg (I −Gε(0, λ·),Br(0), 0)

= deg (I − λΦε,Br(0), 0) .

Since Φε is compact and linear, by Theorem 8.10 of [13], we obtain that

deg (I − λΦε,Br(0), 0) =

{
1 if λ ∈ (0, λ1(ε)) ,
−1 if λ ∈ (λ1(ε), λ1(ε) + δ) .

Therefore, we have that

deg (I −Ψε,λ,Br(0), 0) =

{
1 if λ ∈ (0, λ1(ε)) ,
−1 if λ ∈ (λ1(ε), λ1(ε) + δ) .

This completes the proof.

Graphs which are solutions of problem (2.1) are spacelike on the open ball BR(0). The
following lemma ensures a priori that each possible solution v of problem (2.1) is spacelike
on the boundary of BR(0), too.

Lemma 2.5. Let v be any solution of problem (2.1). Then |v′| < 1 on [0, R].

Proof. It is enough to show |v′(R)| < 1. Suppose, by contradiction, that there exists
{rk} ⊂ (0, R) such that

lim
k→+∞

rk = R, lim
k→+∞

|v′ (rk)| = |v′(R)| = 1 and lim
k→+∞

|φ (v′) (rk)| = +∞.

By some elementary calculations, we have that(
(r + ε)N−1φ (v′)

)′
(r + ε)N−1φ (v′)

= Nλ

(
f (ϕ−1(v))H (ϕ−1(v), r)

φ (v′)
− f ′ (ϕ−1(v))

v′

)
.

11



Clearly, there exists r ∈ (0, R) such that |v′| > 1/2 for all r ∈ (r, R). Integrating the above
equality from r to rk, we obtain that

log
∣∣∣(rk + ε)N−1 φ (v′ (rk))

∣∣∣ − log
∣∣∣(r + ε)N−1 φ (v′ (r))

∣∣∣
= Nλ

∫ rk

r

(
f (ϕ−1(v))H (r, ϕ−1(v))

φ (v′)
− f ′ (ϕ−1(v))

v′

)
dr.

Letting k → +∞, we can see that the left member tends to infinity while the right one is
bounded, which is a contradiction.

Next, we show a Rabinowitz’s type global bifurcation result for fully nonlinear operator
equation which may not be globally defined. Let E be a real Banach space with the norm
‖ · ‖, O be an open subset of R×E and prE(O) be the projection of O on E. Consider the
following fully operator equation

u = F (λ, u), (2.9)

where F : O −→ prE(O) is completely continuous with F (λ, 0) = 0 for any λ ∈ prR(O) with
prR(O) being the projection of O on R.

Proposition 2.1. Let a, b ∈ prR(O) with a < b, such that u = 0 is an isolated solu-
tion of (2.9) for λ = a and λ = b, where a, b are not bifurcation points, furthermore assume
that

deg (I − F (a, ·),Br(0), 0) 6= deg (I − F (b, ·),Br(0), 0) , (2.10)

where Br(0) = {u ∈ prE(O) : ‖u‖ < r} is an isolating neighborhood of the trivial solution.
Let

S := {(λ, u) : (λ, u) satisfies equation (2.9) and u 6≡ 0 }
O
∪ ([a, b]× {0}).

Then S possesses a maximal subcontinuum C ⊂ O such that [a, b] × {0} ⊂ C and one of
the following three properties is satisfied by C :

(i) C is unbounded in O,
(ii) meets ∂O,
(iii) meets (µ, 0), where µ ∈ prR (O) \ [a, b].

Proof. Define
Γ = {Ω ⊆ O : Ω = Ω0 ∪ Ω∞} ,

where Ω0 = Br(0) × [a, b] and Ω∞ is a bounded open subset of O \ (prR (O)× {0}). We
claim that equation (2.9) has a nontrivial solution (λ, u) ∈ ∂Ω for any Ω ∈ Γ. Let f = I−F ,
K = f−1(0) ∩ Ω, A = [a, b] × {0} and B = f−1(0) ∩ (∂Ω \ ({a} ×Br(0) ∪ {b} ×Br(0))).
Clearly, K can be regarded as a compact metric space, and A is a compact subset of K. If
B 6= ∅, obviously, B is also a compact subset of K. Apply the Whyburn’s lemma [32, Chap.
I, Statement (9.3)], we have that either there exists a continuum in K connecting A to B or
else, there is a separation KA, KB of K with A ⊂ KA, B ⊂ KB. If the former case occurs,
the claim is verified. If the latter holds, we can find open sets U and V in O such that
KA ⊂ U and KB ⊂ V with U ∩V = ∅. Set Ω∗ = Ω∩ (U ∪V ). Then it is not difficult to see
that Ω∗ ∈ Γ. It follows that there are no nontrivial solutions of equation (2.9) which belong
to ∂Ω∗. Then, by the generalized homotopy [28, Theorem 4.1] and the excision principle of
Leray-Schauder degree, one has that

deg (I − F (a, ·),Br(0), 0) = deg (I − F (b, ·),Br(0), 0) , (2.11)
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contradicting (2.10). If B = ∅, we can find an open set U in O such that KA ⊂ U . Then
reasoning as the above, we still can get a contradiction.

By contradiction, we assume that C not satisfies any the above three properties. Then,
there exists Ω ∈ Γ such ∂Ω not contains nontrivial solution of equation (2.9), which con-
tracts the above claim.

If O = R × E, Proposition 2.1 is just Theorem 4.12 of [28]. So, Proposition 2.1 can be
seen the local version of Theorem 4.12 of [28].

Theorem 2.1. Assume that f ′(t) ≥ 0 for any t ∈ If (R) and f ′(t) > f(t)H(t, r) for
any r ∈ [0, R], t ∈ If (R) \ {0}, and there exist f0 ∈ [0,+∞], H0 ∈ R ∪ {−∞,+∞} with
f0 +H0 ∈ [0,+∞] such that

lim
t→0+

Nf ′(t)

ϕ(t)
= f0, lim

t→0+

Nf (t)H (t, r)

ϕ(t)
= −H0

uniformly for r ∈ (0, R). Then,
(a) if f0 +H0 = 1, there is an unbounded component Cε of the set of positive solutions of

problem (2.1) bifurcating from (λ1(ε), 0) such that Cε ⊆ (((R+ \ {0})×X) ∪ {(λ1(ε), 0)}),
(λ1(ε),+∞) ⊆ prR (Cε), ‖vε,λ‖ < 1 and limλ→+∞ ‖vε,λ‖ = 1 for (λ, vε,λ) ∈ Cε \ {(λ1(ε), 0)},

(b) if f0 + H0 = +∞, there is an unbounded component Cε of the set of positive so-
lutions of problem (2.1) bifurcating from (0, 0) and joining to (+∞, 1) such that Cε ⊆
(((R+ \ {0})×X) ∪ {(0, 0)}) and ‖vε,λ‖ < 1 for any (λ, vε,λ) ∈ Cε \ {(0, 0)} with λ < +∞,

(c) if f0 + H0 = 0, there is an unbounded component Cε of the set of positive solu-
tions of problem (2.1) in R+ × X which joins (+∞, 1) to (+∞, 0) and ‖vε,λ‖ < 1 for any
(λ, vε,λ) ∈ Cε \ {(0, 0)} with λ < +∞.

Proof. (a) Let ξ(t, r) = Nf(t)H(t, r) +H0ϕ(t). Then, we have that

lim
t→0+

ξ(t, r)

ϕ(t)
= 0

Let η(s, r) = ξ (ϕ−1(s), r). It is easy to see that

lim
s→0+

η(s, r)

s
= 0

uniformly for r ∈ (0, R). Letting ζ(s) = Nf ′ (ϕ−1(s))− f0s, one has that

lim
s→0+

ζ(s)

s
= 0.

Consider{
, r −

(
(r + ε)N−1φ (v′)

)′
= λ(r + ε)N−1

(
f0v+ζ(v)√

1−v′2 − (η(v)−H0v)
)
,

v′(0) = v(R) = 0
(2.12)

as a bifurcation problem from the trivial solution axis.
For each ε > 0, define Fλ(s, v) : [0, 1]× B1(0)→ Y

Fλ(s, v) = λ

(
f0v + sζ(v)√

1− sv′2
+H0v − sη(v, r)

)
.
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Then, it is easy to see that Fλ is continuous and takes bounded sets into bounded sets.
Consider the following problem{

−
(
(r + ε)N−1φε (v′)

)′
= (r + ε)N−1Fλ(s, v),

v′(0) = v(R) = 0.
(2.13)

Then, problem (2.13) can be equivalently rewritten as

v = Ψε (Fλ(s, v)) := Tε,λ(s, v).

By Lemma 2.2, Tε,λ : [0, 1]×B1(0)→ B1(0) is completely continuous. In particular, Hε,λ :=
Tε,λ(1, ·) : B1(0)→ B1(0) is completely continuous.

Let
η̃(u, r) = max

0≤s≤u
|ξ(s, r)| for any r ∈ (0, R).

Then, we have that η̃ is nondecreasing with respect to u and

lim
u→0+

η̃(u, r)

u
= 0. (2.14)

Further, it follows from (2.14) that∣∣∣∣η(v, r)

‖v‖

∣∣∣∣ ≤ η̃(v, r)

‖v‖
≤ η̃ (‖v‖∞, r)

‖v‖
≤ R

η̃(R‖v‖, r)
R‖v‖

→ 0 as ‖v‖ → 0 (2.15)

uniformly in r ∈ (0, R). In a similar manner, we can show that∣∣∣∣ζ(v)

‖v‖

∣∣∣∣→ 0 as ‖v‖ → 0. (2.16)

We claim that the Leray-Schauder degree deg (I − Tε,λ(s, ·),Br(0), 0) is well defined for
λ ∈ (0, λ1(ε) + δ)\{λ1(ε)} and r small enough. Suppose, on the contrary, that there exists a
sequence {vn} such that vn = Tε,λ (s, vn) and ‖vn‖ → 0 as n→ +∞. Letting ŵn = vn/ ‖vn‖,
we have that ŵn satisfies − ŵ′′n

(1−v′2n )3/2
− (N − 1) ŵ′n

(r+ε)
√

1−v′2n
= λ

(
f0ŵn√
1−sv′2n

+ sζ(vn)

‖vn‖
√

1−sv′2n
− sη(vn,r)

‖vn‖ +H0ŵn

)
,

ŵ′n(0) = ŵn(R) = 0.

Then, by (2.15), (2.16) and an argument similar to that of Lemma 2.3, we can show that
ŵn → ŵ in X as n→ +∞ and{

−
(
(r + ε)N−1ŵ′

)′
= λ(r + ε)N−1ŵ, r ∈ (0, R),

ŵ′(0) = ŵ(R) = 0.

Clearly, one has ‖ŵ‖ = 1. So, λ is an eigenvalue of problem (2.7), which is absurd. Note that
the above argument also shows that if (µ, 0) is a bifurcation point of nontrivial nonnegative
solutions of problem (2.12), then µ is an eigenvalue of problem (2.7).

Now, by the invariance of the degree under homotopies, we obtain that

deg (I −Hε,λ,Br(0), 0) = deg (I − Tε,λ(1, ·),Br(0), 0) = deg (I − Tε,λ(0, ·),Br(0), 0)

= deg (I −Ψε,λ,Br(0), 0) .

14



Using Lemma 2.4, we have that

deg (I −Hε,λ,Br(0), 0) =

{
1 if λ ∈ (0, λ1(ε)) ,
−1 if λ ∈ (λ1(ε), λ1(ε) + δ) .

By Proposition 2.1 with O = R × B1(0), there exists a continuum Cε of nontrivial solu-
tion of problem (2.12) bifurcating from (λ1(ε), 0) which satisfies one of the following three
properties:

(i) Cε is unbounded in O,
(ii) meets ∂O,
(iii) Cε ∩ (R \ {λ1(ε)} × {0}) 6= ∅.
By Lemma 2.5, we know that the second alternative is impossible. Since (0, 0) is the

only solution of problem (2.1) for λ = 0 and 0 is not an eigenvalue of problem (2.7),
so Cε ∩ ({0} ×X) = ∅. From the argument of Theorem 4.1 of [3], we know that vε is
nonnegative and decreasing for any (λ, vε) ∈ Cε.

We claim that Cε ∩ (R \ {λ1(ε)} × {0}) = ∅. Otherwise, there exists a nontrivial non-
negative solution sequence (λn, vε,n) ∈ Cε \ {(λ1(ε), 0)} such that λn → µ and vε,n → 0 as
n → +∞. Let wε,n := vε,n/ ‖vε,n‖, by (2.15), (2.16) and an argument like that of Lemma
2.3, we can show that wε,n → wε as n→ +∞ and wε verifies problem (2.7) with ‖wε‖ = 1.
It follows that µ = λ1(ε), a contradiction.

Therefore, Cε is unbounded in (0,+∞)× B1(0) and vε is nontrivial nonnegative for any
(λ, vε) ∈ Cε \ {(λ1(ε), 0)}. Furthermore, as that of Proposition 3.3 of [3], we can show that
vε is positive and strictly decreasing for any (λ, vε) ∈ Cε \ {(λ1(ε), 0)}. The fact of ‖vε‖ < 1
for any fixed (λ, vε) ∈ Cε implies that the projection of Cε on R+ is unbounded.

Finally, we show the asymptotic behavior of vε,λ as λ → +∞ for (λ, vε,λ) ∈ Cε \
{(λ1(ε), 0)}. Suppose, by contradiction, that there exist a constant δ > 0 and (λn, vε,n) ∈
Cε \ {(λ1(ε), 0)} with λn → +∞ as n→ +∞ such that ‖vε,n‖2 ≤ 1− δ2 for any n ∈ N. Note
that (λn, vε,n) satisfies the following problem{

−
(
(r + ε)N−1φ (v′)

)′
= λN(r + ε)N−1a(r)v, r ∈ (0, R),

v′(0) = v(R) = 0,
(2.17)

where

a(r) =

f ′(ϕ−1(v))√
1−v′2 − f (ϕ−1(v))H (ϕ−1(v), r)

v(r)
.

Since f ′(t) ≥ 0, we have that

a(r) ≥ f ′ (ϕ−1(v))− f (ϕ−1(v))H (ϕ−1(v), r)

v(r)
.

The assumptions of f0 + H0 = 1 and f ′(t) > f(t)H(t, r) for any r ∈ [0, R], t ∈ If (R) \ {0}
imply that there exists a positive constant ρ > 0 such that

a(r) ≥ ρ

for any r ∈ [0, R].
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Let ϕ1 be a positive eigenfunction associated to λ1(ε). It is easy to see that ϕ1 is
decreasing in [0, R]. Multiplying the first equation of problem (2.17) by ϕ1, and obtain after
integrations by parts that

λ1

δ

∫ R

0

(r + ε)N−1vε,nϕ1 dr =
1

δ

∫ R

0

(r + ε)N−1v′ε,nϕ
′
1 dr ≥

∫ R

0

(r + ε)N−1
v′ε,nϕ

′
1√

1−
∣∣v′ε,n∣∣2 dr

= λnN

∫ R

0

(r + ε)N−1a(r)vε,nϕ1 dr

≥ λnNρ

∫ R

0

(r + ε)N−1vε,nϕ1 dr.

It follows that λn ≤ λ1(ε)/ (Nδρ), which is a contradiction.
(b) Let

f(r, s, y) =
f ′ (ϕ−1(s))√

1− y2
− f

(
ϕ−1(s)

)
H
(
ϕ−1(s), r

)
.

For any n ∈ N, define

fn(r, s, y) =


ns, s ∈

[
0, 1

n

]
,(

f
(
r, 2

n
, y
)
− 1
)
ns+ 2− f

(
r, 2

n
, y
)
, s ∈

(
1
n
, 2
n

)
,

f(r, s, y), s ∈
[

2
n
,+∞

)
.

Then, consider the following problem{
−
(
(r + ε)N−1φ (v′)

)′
= λN(r + ε)N−1fn (r, v, v′) , r ∈ (0, R),

v′(0) = v(R) = 0.

By the conclusion of (a) and an argument similar to that of [12, Theorem 1.2], we can obtain
the desired conclusion.

(c) For any n ∈ N, define

fn(r, s, y) =


1
n
s, s ∈

[
0, 1

n

]
,(

f
(
r, 2

n
, y
)
− 1

n2

)
ns+ 2 1

n2 − f
(
r, 2

n
, y
)
, s ∈

(
1
n
, 2
n

)
,

f(r, s, y), s ∈
[

2
n
,+∞

)
and consider the following problem{

−
(
(r + ε)N−1φ (v′)

)′
= λN(r + ε)N−1fn (r, v, v′) , r ∈ (0, R),

v′(0) = v(R) = 0.

Then, by an similar argument to that of Theorem 1.3 of [12] and the conclusion of (a), we
can deduce the desired conclusion.

3 Proof of Theorem 1.1

Multiplying the first equation of problem (2.1) by
√

1− v′2, we get that{
− v′′

1−v′2 = (N − 1) v′

(r+ε)
+Nλ

(
f ′ (ϕ−1(v))− f (ϕ−1(v))H (ϕ−1(v), r)

√
1− v′2

)
,

v′(0) = v(R) = 0.
(3.1)
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Clearly, problem (3.1) is equivalent to problem (2.1). Define

ψ(s) = −1

2
log

(
1 + s

1− s

)
, s ∈ (−1, 1).

Then, ψ is a decreasing diffeomorphism and satisfied ψ(0) = 0. Following [3], we can rewrite
the problem (3.1) as follows{

−
(

1
2

log
(

1+v′

1−v′
))′

= (N−1)v′

r+ε
+Nλ

(
f ′ (ϕ−1(v))− f (ϕ−1(v))H (ϕ−1(v), r)

√
1− v′2

)
,

v′(0) = v(R) = 0.
(3.2)

From the argument of Theorem 4.1 of [3], for any solution vε of problem (3.2), we know
that, up to a subsequence, vε is convergent in X and the limit is a solution v of problem
(1.12). Therefore, in view of the definition of superior limit (see [32]), C := lim supε→0+ Cε

is the solution set of problem (1.12).
To investigate the global structure of C , we consider the eigenvalue problem (2.7) again.

Lemma 3.1. Up to a subsequence, one has that λ1(ε) converges to λ1 as ε→ 0+.

Proof. Firstly, we have the following Rayleigh quotient

λ1(ε) = inf
v 6=0,v∈X

∫ R
0

(r + ε)N−1v′2 dr∫ R
0

(r + ε)N−1v2 dr
.

It follows that

λ1(ε) ≤ inf
v 6=0,v∈X

∫ R
0

(r + 1)N−1v′2 dr∫ R
0
rN−1v2 dr

:= λ.

Then, λ is the first eigenvalue of{
−
(
(r + 1)N−1u′

)′
= λrN−1u, r ∈ (0, R),

u′(0) = u(R) = 0.

So, one has λ < +∞ (see [17, 31]). Hence, λ1(ε) is bounded. Passing if necessary to a
subsequence, we have limε→0+ λ1(ε) = µ.

Let ϕε,1 be the positive eigenfunction with ‖ϕε,1‖ = 1 corresponding to λ1(ε). Passing
to a subsequence if necessary, there exists ϕ1 ∈ Y such that

lim
ε→0+

‖ϕε,1 − ϕ1‖∞ = 0.

Note that

−ϕ′′ε,1 − (N − 1)
ϕ′ε,1
r + ε

= λ1(ε)ϕε,1, r ∈ (0, R).

So, for any a ∈ (0, R], we have that∣∣ϕ′′ε,1∣∣ ≤ N − 1

a
+ λ1(ε)R, r ∈ [a,R].

Since limε→0+ λ1(ε) = µ, for any fixed σ ∈ (0, µ), there exists δ ∈ (0, 1] such that λ1(ε) <
µ+ σ when ε ∈ (0, δ). So, when ε ∈ (0, δ), we have that∣∣ϕ′′ε,1∣∣ ≤ N − 1

a
+R(µ+ σ), r ∈ [a,R].
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It follows that ϕε,1 is uniformly bounded in C2[0, R]. So, one has that ϕε,1 converges to ϕ1

in C1[a,R].
Note that {

−ϕ′′ε,1 − (N − 1)
ϕ′ε,1
r+ε

= λ1(ε)ϕε,1, r ∈ (0, R),

ϕ′ε,1(0) = ϕε,1(R) = 0.
(3.3)

Integrating the first equation of problem (3.3) between a and R, we infer that

ϕ′ε,1(a)− ϕ′ε,1(R) =

∫ R

a

(
(N − 1)

ϕ′ε,1
r + ε

+ λ1(ε)ϕε,1

)
dr.

By the Lebesgue Dominated Convergence Theorem, we get that

ϕ′1(a)− ϕ′1(R) =

∫ R

a

(
(N − 1)

ϕ′

r
+ µϕ1

)
dr.

It follows that
−
(
rN−1ϕ′1

)′
= µrN−1ϕ1, r ∈ (0, R). (3.4)

Clearly, we have ϕ1(R) = 0.
Next, we show that ϕ′1(0) = 0. Integrating the first equation of problem (3.3) from 0

and R, we have that

(N − 1)

∫ R

0

ϕ′ε,1
r + ε

dr = −ϕ′ε,1(R)−
∫ R

0

λ1(ε)ϕε,1 dr.

It follows that

(N − 1)

∣∣∣∣∫ R

0

ϕ′ε,1
r + ε

dr

∣∣∣∣ ≤ 1 +R2(µ+ σ).

It is not difficult to verify that ϕε,1 is decreasing in [0, R]. It follows that

(N − 1)

∫ R

0

∣∣ϕ′ε,1∣∣
r + ε

dr = (N − 1)

∣∣∣∣∫ R

0

ϕ′ε,1
r + ε

dr

∣∣∣∣ ≤ 1 +R2(µ+ σ).

Hence, we have that {
−(N − 1)

ϕ′ε,1
r + ε

}
is a set of positive integrable functions. By the Fatou Lemma, we conclude that−(N−1)ϕ′1/r
is also integrable on [0, R]. For any r ∈ (0, R], integrating equation (3.4) from r to R, we
get that

ϕ′1(r)− ϕ′1(R) =

∫ R

r

(
(N − 1)

ϕ′1
τ

+ µϕ1

)
dτ.

Since ϕ1 ∈ Y , the limit of the right member exists when r tends to 0. So, we have the
existence of limr→0+ ϕ

′
1(r). Then, by integrability of ϕ′1/r, we conclude that limr→0+ ϕ

′
1(r) =

0.
Consequently, we obtain that ϕε,1 converges to ϕ1 in C1[0, R] and{

−
(
rN−1ϕ′1

)′
= µrN−1ϕ1, r ∈ (0, R),

ϕ′1(0) = ϕ1(R) = 0.

18



Since ϕε,1 is positive with ‖ϕε,1‖ = 1, we have that ϕ1 is nonnegative with ‖ϕ1‖ = 1. It
follows that µ = λ1.

Now, we can present the proof of our main result. From now on, for simplicity, we take
ε = 1/n and rewrite Cε by Cn.

Proof of Theorem 1.1. (a) From Lemma 3.1 and Theorem 2.1, we know that (λ1, 0) ∈
lim infn→+∞ Cn. The compactness of Hε,λ implies that

(
∪+∞
n=1Cn

)
∩ BR(0) is relatively com-

pact. Theorem 2.1 of [11] implies that C is connected. Since (+∞, 1) ∈ Cn, we have
(+∞, 1) ∈ C . So C joins (λ1, 0) to (+∞, 1). From Theorem 2.1, we can see that v is
nonnegative for any (λ, v) ∈ C . Define

F (λ, v) = λNrN−1

(
f ′ (ϕ−1(v))√

1− v′2
− f

(
ϕ−1(v)

)
H
(
ϕ−1(v), r

))
+
(
rN−1φ (v′)

)′
for any (λ, v) ∈ R×B1(0) with v ≥ 0, 6≡ 0. Then, by some simple calculations, we have that

Fv(λ, 0)v = lim
t→0+

F (λ, tv)

t
= λrN−1v +

(
rN−1v′

)′
.

So, if (µ, 0) is a bifurcation point of nonnegative solution set of problem (1.12), one has
µ = λ1. It follows that C ∩ ((R \ {λ1})× {0}) = ∅. Furthermore, by Proposition 3.3 of [3],
we have that v is positive and strictly decreasing for any (λ, v) ∈ C \ {(λ1, 0)}.

(b) Clearly, one has that (0, 0) ∈ C . By Theorem 2.1 of [11] again, we know that C is
connected. So, we have that C joins (0, 0) to (+∞, 1). In view of Proposition 3.3 of [3],
it is sufficient to show that C ∩ ((0,+∞) × {0}) = ∅. Otherwise, there exists a sequence
(λn, vn) ∈ C such that (λn, vn) → (µ, 0) with vn 6≡ 0 for some µ > 0 as n → +∞. By
Proposition 3.3 of [3] and Theorem 2.1, we have that vn > 0 and is decreasing in [0, R).

Since f0 +H0 = +∞, we have that

λnN
(
1− v′2n

)3/2 f ′ (ϕ−1 (vn))− f (ϕ−1 (vn))H (ϕ−1 (vn) , r)

vn
> λ1 for any r ∈ (0, R)

and n large enough. Since vn is decreasing, we have that

λnN
(
1− v′2n

)3/2 f ′ (ϕ−1 (vn))− f (ϕ−1 (vn))H (ϕ−1 (vn) , r)

vn
− N − 1

r
v′3n > λ1

for any r ∈ (0, R) and n sufficiently large. From [10], we know that

−
(
rN−1v′n

)′
= λnNr

N−1
(
1− v′2n

)3/2

(
f ′ (ϕ−1 (vn))√

1− v′2n
− f

(
ϕ−1 (vn)

)
H
(
ϕ−1 (vn) , r

))
−(N − 1)rN−2v′3n .

Applying the Sturm comparison theorem [6, Lemma 3], vn has at least a zero in (0, R),
which is a contradiction.

(c) It is easy to see that (+∞, 0) ∈ C and (+∞, 1) ∈ C . Applying Lemma 3.1 of [12],
we obtain that C is connected. Again by Proposition 3.3 of [3], it is enough to show that
C ∩([0,+∞)×{0}) = ∅. Suppose, by contradiction, that there exists a sequence (λn, vn) ∈ C
with vn 6≡ 0 such that (λn, vn)→ (µ, 0) for some µ ≥ 0 as n→ +∞. As that of (b), one has
that vn is positive and decreasing.
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Let wn = vn/ ‖vn‖. We can see that wn satisfies

−w′′n = λnN
(
1− v′2n

)3/2

(
f ′ (ϕ−1 (vn))

vn
√

1− v′2n
wn −

f (ϕ−1 (vn))H (ϕ−1 (vn) , r)

vn
wn

)

+
(N − 1)

r

(
1− v′2n

)
w′n := gn(r). (3.5)

Since ‖wn‖ = 1, vn → 0 in X and f0 +H0 = 0, we have that

(
1− v′2n

)3/2

(
f ′ (ϕ−1 (vn))

vn
√

1− v′2n
wn −

f (ϕ−1 (vn))H (ϕ−1 (vn) , r)

vn
wn

)
→ 0

as n→ +∞. For any a ∈ (0, R] and any r ∈ [a,R], we see that∣∣∣∣(N − 1)

r

(
1− v′2n

)
w′n

∣∣∣∣ ≤ (N − 1)

a
.

It follows that

|w′′n| ≤
(N − 1)

a
+ 1

for any r ∈ [a,R] and sufficiently large n. So, wn converges to some w0 in C1[a,R]. Hence,
for each r ∈ (0, R], we have that

lim
n→+∞

gn(r) =
(N − 1)w′0

r
.

Integrating equation (3.5) from r to R, we get that

w′n(r)− w′n(R) =

∫ R

r

gn(τ) dτ.

The Lebesgue Dominated Convergence Theorem implies that

w′0(r)− w′0(R) =

∫ R

r

(N − 1)w′0
τ

dτ.

It follows that
−
(
rN−1w′0

)′
= 0, r ∈ (0, R). (3.6)

We claim that w′0(0) = 0. Integrating equation (3.5) from 0 and R, we obtain that∫ R

0

(N − 1)

r

(
1− v′2n

)
w′n dr = −w′n(R)−∫ R

0

λnN
(
1− v′2n

)3/2

(
f ′ (ϕ−1 (vn))

vn
√

1− v′2n
wn −

f (ϕ−1 (vn))H (ϕ−1 (vn) , r)

vn
wn

)
dr.

It follows that ∣∣∣∣∫ R

0

(N − 1)

r

(
1− v′2n

)
w′n dr dr

∣∣∣∣ ≤ C
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for some positive constant C. By the monotonicity of wn, we derive that∫ R

0

(N − 1)

r

(
1− v′2n

)
|w′n| dr =

∣∣∣∣∫ R

0

(N − 1)

r

(
1− v′2n

)
w′n dr dr

∣∣∣∣ ≤ C.

So, {
−(N − 1)

(
1− v′2n

) w′n
r

}
is a set of positive integrable functions. From the Fatou Lemma, we get that −(N − 1)w′0/r
is also integrable on [0, R]. For any r ∈ (0, R], integrating equation (3.6) from r to R, we
have that

w′0(r)− w′0(R) =

∫ R

r

(N − 1)
w′0
τ
dτ.

Since w′0/r is integrable on [0, R], the limit of the right member exists when r tends to 0.
It implies the existence of limr→0+ w

′
0(r). Noting the integrability of w′0/r, one has that

limr→0+ w
′
0(r) = 0.

Clearly, we have w0(R) = 0. Therefore, we obtain{
−
(
rN−1w′0

)′
= 0, r ∈ (0, R),

w′0(0) = w0(R) = 0.

It follows that w0 ≡ 0, which contradicts the fact of ‖w0‖ = 1.

4 Appendix: Deduction of equation (1.5)

To the best of our knowledge, equation (1.5) was first given in [1] without derivation
process. For the convenience of readers and the integrity of the paper, here we include the
detailed derivation.

Let ei, i = 1, . . . , N , denote the natural basis of RN . Choose eN+1 such that

〈eN+1, ei〉 =

{
−1 if i = N + 1,
0 if i ∈ {1, . . . , N},

where 〈·, ·〉 denote the inner product of M. Then

fe1, . . . , feN , eN+1

are the natural basis of M.
We assume that u ∈ C2(Ω) and let M = {(u(x), x) : x ∈ Ω}. Then we have coordinates

(x1, . . . , xN) on M with coordinate tangent vectors Xi = fei + uieN+1, where ui = ∇iu =
∂u/∂xi, i = 1, . . . , N . Then, the induced metric on M is

gij = 〈Xi, Xj〉 = f 2(u)δij − uiuj, i, j ∈ {1, . . . , N},

where δij = 1 (0) if j = i (j 6= i).
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We claim that det (gij) = f 2(N−1)(u) (f 2(u)− |∇u|2). Indeed, we have that

det (gij) =

∣∣∣∣∣∣∣f 2(u)EN −

 u1
...
uN

( u1 · · · uN
)∣∣∣∣∣∣∣

= f 2(N−1)(u)

∣∣∣∣∣∣∣f 2(u)−
(
u1 · · · uN

) u1
...
uN


∣∣∣∣∣∣∣

= f 2(N−1)(u)
(
f 2(u)− |∇u|2

)
,

where EN is the N -order identity matrix. In above, we have used the following elementary
relations in advanced algebra∣∣∣∣ Em B

A En

∣∣∣∣ = |En − AB| = |Em −BA|

and
|λEn − AB| = λn−m |λEm −BA| ,

where λ 6= 0, A and B are n×m and m× n matrixes, respectively.
Take

υ = f(u)
N∑
i

υiei + υN+1eN+1,

where

υi =
ui

f(u)
√
f 2(u)− |∇u|2

, i ∈ {1, . . . , N}, υN+1 =
f(u)√

f 2(u)− |∇u|2
.

It is not difficult to verify that υ is the upward unit normal vector field to M . Some simple
computations show that the adjoint matrix of (gij) is(

g∗ij
)

= f 2(N−2)(u)
((
f 2(u)− |∇u|2

)
δji + ujui

)
.

It follows that the inverse of (gij) is (gij) with

gij =
g∗ij

det (gij)
=

δij
f 2(u)

+ υiυj, i, j ∈ {1, . . . , N}.
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By Proposition 7.35 of [21], the second fundamental form can be calculated by

Aij =
〈
Xi,∇Xj

υ
〉

=

〈
Xi,∇Xj

(
1√

f 2(u)− |∇u|2

(
N∑
i

uiei + f(u)eN+1

))〉

=

〈
Xi,∇Xj

(
1√

f 2(u)− |∇u|2

)(
N∑
i

uiei + f(u)eN+1

)〉
+〈

Xi,
1√

f 2(u)− |∇u|2
∇Xj

(
N∑
i

uiei + f(u)eN+1

)〉

=

〈
Xi,

1√
f 2(u)− |∇u|2

∇Xj
(f(u)eN+1)

〉
+

〈
Xi,

1√
f 2(u)− |∇u|2

∇Xj

(
N∑
i

uiei

)〉

=

〈
Xi,

f ′(u)Xj√
f 2(u)− |∇u|2

〉
+

1√
f 2(u)− |∇u|2

〈
Xi,

1

f(u)
∇Xj

(
N∑
i

uiei

)
+∇Xj

(
1

f(u)

)( N∑
i

uiei

)〉

=
f 2(u)f ′(u)δij√
f 2(u)− |∇u|2

+
f(u)uij√

f 2(u)− |∇u|2
− 2f ′(u)uiuj√

f 2(u)− |∇u|2
,

where ∇ is the Levi-Civita connection and uij = ∂2u/∂xi∂xj.
Therefore, the mean curvature of M is

H =
1

N

N∑
i,j=1

gijAij

=
1

N

N∑
i,j=1

(
δij
f 2(u)

+ υiυj

)(
f 2(u)f ′(u)δij√
f 2(u)− |∇u|2

+
f(u)uij√

f 2(u)− |∇u|2
− 2f ′(u)uiuj√

f 2(u)− |∇u|2

)

=
1

Nf(u)
√
f 2(u)− |∇u|2

N∑
i,j=1

(
δij +

uiuj
f 2(u)− |∇u|2

)
uij +

f ′(u)√
f 2(u)− |∇u|2

− f ′(u)|∇u|2

N (f 2(u)− |∇u|2)3/2
.

It follows that

div

(
∇u

f(u)
√
f 2(u)− |∇u|2

)
+

f ′(u)√
f 2(u)− |∇u|2

(
N +

|∇u|2

f 2(u)

)
= NH,

which is just equation (1.5).
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